首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It is well known that the early life experiences affect stress responses and other physiological and behavioral traits in adulthood. Both rat and human studies have shown that early postnatal effects are associated with methylation of the hippocampal glucocorticoid receptor gene exon 17 (rat) and 1-F (human) promoters. Methylation of these sites is also seen following methionine administration in adult rats. However, it remains unclear whether similar alterations in DNA methylation profiles can result from prenatal influences. To address this question, we fed pregnant rats a methyl-supplemented diet that resulted in alteration of the stress response. However, methylation analysis revealed no effect of methyl supplements on methylation patterns of the glucocorticoid receptor gene exon 17 promoter in offspring. These results suggest that the pre- and postnatal effects of methyl supplementation have different mechanisms.  相似文献   

3.
Epigenetic modifications control chromatin structure and function, and thus mediate changes in gene expression, ultimately influencing protein levels. Recent research indicates that environmental events can induce epigenetic changes and, by this, contribute to long-term changes in neural circuits and endocrine systems associated with altered risk for stress-related psychiatric disorders such as major depression. In this review, we describe recent approaches investigating epigenetic modifications associated with altered risk for major depression or response to antidepressant drugs, both on the candidate gene levels as well as the genome-wide level. In this review we focus on DNA methylation, as this is the most investigated epigenetic change in depression research.  相似文献   

4.
Clinical studies find that childhood adversity and stress-ful life events in adulthood increase the risk for major depression and for suicide. The predispositions to either major depression or suicide are thought to depend on genetic risk factors or epigenetic effects. We investigated DNA methylation signatures postmortem in brains of suicides with diagnosis of major depressive disorder. DNA methylation levels were determined at single C-phosphate-G (CpG) resolution sites within ventral prefrontal cortex of 53 suicides and nonpsychiatric controls, aged 16 to 89 years. We found that DNA methylation increases throughout the lifespan. Suicides showed an 8-fold greater number of methylated CpG sites relative to controls (P<2.2x10-16), with greater DNA methylation changes over and above the increased methylation observed in normal aging. This increased DNA methylation may be a significant contributor to the neuropathology and psychopathology underlying the risk of suicide in depression.  相似文献   

5.
Objectives. Transmission of parental post-traumatic stress disorder (PTSD) to offspring might be explained by transmission of epigenetic processes such as methylation status of the glucocorticoid receptor (GR) gene (NR3C1). Methods. We investigated PTSD and depression severity, plasma cortisol, GR and mineralocorticoid receptor (MR) levels, and methylation status of NR3C1 and NR3C2 promoter regions in 25 women exposed to the Tutsi genocide during pregnancy and their children, and 25 women from the same ethnicity, pregnant during the same period but not exposed to the genocide, and their children. Results. Transmission of PTSD to the offspring was associated with transmission of biological alterations of the HPA axis. Mothers exposed to the genocide as well as their children had lower cortisol and GR levels and higher MR levels than non-exposed mothers and their children. Moreover, exposed mothers and their children had higher methylation of the NR3C1 exon 1F than non-exposed groups. Finally, exposed mothers showed higher methylation of CpGs located within the NR3C2 coding sequence than non-exposed mothers. Conclusions. PTSD was associated with NR3C1 epigenetic modifications that were similarly found in the mothers and their offspring, modifications that may underlie the possible transmission of biological alterations of the HPA axis.  相似文献   

6.
Schizophrenia (SZ) and bipolar disorder (BPD) patients show a downregulation of GAD67, reelin (RELN), brain-derived neurotrophic factor (BDNF), and other genes expressed in telencephalic GABAergic and glutamatergic neurons. This downregulation is associated with the enrichment of 5-methylcytosine and 5-hydroxymethylcytosine proximally at gene regulatory domains at the respective genes. A pharmacological strategy to reduce promoter hypermethylation and to induce a more permissive chromatin conformation is to administer drugs, such as the histone deacetylase (HDAC) inhibitor valproate (VPA), that facilitate chromatin remodeling. Studies in mouse models of SZ indicate that clozapine induces DNA demethylation at relevant promoters, and that this action is potentiated by VPA. By activating DNA demethylation, clozapine or its derivatives with VPA or other more potent and selective HDAC inhibitors may be a promising treatment strategy to correct the gene expression deficits detected in postmortem brain of SZ and BPD patients.  相似文献   

7.
The long-term consequences of early environmental experiences for development have been explored extensively in animal models to better understand the mechanisms mediating risk of psychopathology in individuals exposed to childhood adversity. One common feature of these models is disruption of the mother-infant relationship which is associated with impairments in stress responsivity and maternal behavior in adult offspring. These behavioral and physiological characteristics are associated with stable changes in gene expression which emerge in infancy and are sustained into adulthood. Recent evidence suggests that these long-term effects may be mediated by epigenetic modification to the promoter regions of steroid receptor genes. In particular, DNA methylation may be critical to maternal effects on gene expression and thus generate phenotypic differentiation of offspring and, through effects on maternal behavior of offspring, mediate the transmission of these effects across generations. In this review we explore evidence for the influence of mother-infant interactions on the epigenome and consider evidence for and the implications of such epigenetic effects for human mental health.  相似文献   

8.
Variations in maternal care alter the developmental programming of some genes by creating lasting differences in DNA methylation patterns, such as the estrogen receptor alpha (ERα) promoter region. Interestingly, mother rats preferentially lick and groom their male offspring more than females; therefore, we questioned whether the somatosensory stimuli associated with maternal grooming influences potential sex differences in DNA methylation patterns within the developing amygdala, an area important for socioemotional processing. We report a sex difference in the DNA methylation pattern of specific CpG sites of the ERα promoter region within the developing amygdala. Specifically, males have higher levels of ERα promoter methylation contrasted to females. Increasing the levels of maternal stimuli in females masculinized ERα promoter methylation patterns to male-like levels. As expected, higher levels of ERα promoter methylation were associated with lower ERα mRNA levels. These data provide further evidence that the early neonatal environment, particularly maternal care, contributes to sex differences and early programming of the neonatal brain via an epigenetic mechanism.  相似文献   

9.
10.
Alterations in gene expression are implicated in the pathogenesis of several neuropsychiatrie disorders, including drug addiction and depression, increasing evidence indicates that changes in gene expression in neurons, in the context of animal models of addiction and depression, are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular, and bioinformatic approaches that are being used to understand the complex epigenetic regulation of gene expression in brain by drugs of abuse and by stress. These advances promise to open up new avenues for improved treatments of these disorders.  相似文献   

11.
Early-onset, familial Alzheimer''s disease (AD) is rare and may be attributed to disease-causinq mutations. By contrast, late onset, sporadic (non-Mendelian) AD is far more prevalent and reflects the interaction of multiple genetic and environmental risk factors, together with the disruption of epigenetic mechanisms controlling gene expression. Accordingly, abnormal patterns of histone acetylation and methylation, as well as anomalies in global and promoter-specific DNA methylation, have been documented in AD patients, together with a deregulation of noncoding RNA. In transgenic mouse models for AD, epigenetic dysfunction is likewise apparent in cerebral tissue, and it has been directly linked to cognitive and behavioral deficits in functional studies. Importantly, epigenetic deregulation interfaces with core pathophysiological processes underlying AD: excess production of Aβ42, aberrant post-translational modification of tau, deficient neurotoxic protein clearance, axonal-synaptic dysfunction, mitochondrial-dependent apoptosis, and cell cycle re-entry. Reciprocally, DNA methylation, histone marks and the levels of diverse species of microRNA are modulated by Aβ42, oxidative stress and neuroinflammation. In conclusion, epigenetic mechanisms are broadly deregulated in AD mainly upstream, but also downstream, of key pathophysiological processes. While some epigenetic shifts oppose the evolution of AD, most appear to drive its progression. Epigenetic changes are of irrefutable importance for AD, but they await further elucidation from the perspectives of pathogenesis, biomarkers and potential treatment.  相似文献   

12.
13.
Dynamic regulation of chromatin structure in postmitotic neurons plays an important role in learning and memory. Methylation of cytosine nucleotides has historically been considered the strongest and least modifiable of epigenetic marks. Accumulating recent data suggest that rapid and dynamic methylation and demethylation of specific genes in the brain may play a fundamental role in learning, memory formation, and behavioral plasticity. The current review focuses on the emergence of data that support the role of DNA methylation and demethylation, and its molecular mediators in memory formation.  相似文献   

14.
The prenatal environment, including prenatal stress, has been extensively studied in laboratory animals and humans. However, studies of the prenatal environment usually directly stress pregnant females, but stress may come 'indirectly', through stress to a cage-mate. The current study used indirect prenatal bystander stress and investigated the effects on the gross morphology, pre-weaning behavior, and epigenome of rat offspring. Pregnant Long-Evans rats were housed with another female rat that underwent elevated platform stress from gestational days 12 to 16. We found that ultrasonic vocalizations of female cage-mates were disrupted following the stress procedure. After birth, offspring were tested on two behavioral tasks and sacrificed at postnatal day 21 (p21). Frontal cortex and hippocampal tissue was used to measure global DNA methylation and gene expression changes. At p21, bystander-stressed female offspring exhibited increased body weight. Offspring behavior on the negative geotaxis task was altered by prenatal bystander stress, and locomotor behavior was reduced in female offspring. Global DNA methylation increased in the frontal cortex and hippocampus of bystander-stressed offspring. Microarray analysis revealed significant gene expression level changes in 558 different genes, of which only 10 exhibited overlap between males and females or brain areas. These alterations in gene expression were associated with overrepresentation of 36 biological processes and 34 canonical pathways. Prenatal stress thus does not have to be experienced by the mother herself to influence offspring brain development. Furthermore, this type of 'indirect' prenatal stress alters offspring DNA methylation patterns, gene expression profiles, and behavior.  相似文献   

15.
DNA methylation (addition of methyl groups to cytosines) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavior. Here, we measured methylation of DNA associated with the Brain-derived neurotrophic factor (Bdnf) gene, a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed male controls and stressed females. Further, prenatally-stressed animals had shorter telomeres than controls in the mPFC. Together findings indicate a long-term impact of prenatal stress on brain DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational molecular changes.  相似文献   

16.
In animal models, prenatal and postnatal stress is associated with elevated hypothalamic–pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life.  相似文献   

17.
Animals respond to stress by activating a wide array of behavioral and physiological responses that are collectively referred to as the stress response. Corticotropin-releasing factor (CRF) plays a central role in the stress response by regulating the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, CRF initiates a cascade of events that culminate in the release of glucocorticoids from the adrenal cortex. As a result of the great number of physiological and behavioral effects exerted by glucocorticoids, several mechanisms have evolved to control HPA axis activation and integrate the stress response. Glucocorticoid feedback inhibition plays a prominent role in regulating the magnitude and duration of glucocorticoid release. In addition to glucocorticoid feedback, the HPA axis is regulated at the level of the hypothalamus by a diverse group of afferent projections from limbic, midbrain, and brain stem nuclei. The stress response is also mediated in part by brain stem noradrenergic neurons, sympathetic andrenomedullary circuits, and parasympathetic systems. In summary, the aim of this review is to discuss the role of the HPA axis in the integration of adaptive responses to stress. We also identify and briefly describe the major neuronal and endocrine systems that contribute to the regulation of the HPA axis and the maintenance of homeostasis in the face of aversive stimuli.  相似文献   

18.
The transgenerational epigenetic programming involved in the passage of environmental exposures to stressful periods from one generation to the next has been examined in human populations, and mechanistically in animal models. Epidemiological studies suggest that gestational exposures to environmental factors including stress are strongly associated with an increased risk of neurodevelopmental disorders, including attention deficit-hyperactivity disorder, schizophrenia, and autism spectrum disorders. Both maternal and paternal life experiences with stress can be passed on to offspring directly during pregnancy or through epigenetic marks in the germ cell. Animal models of parental stress have examined relevant offspring phenotypes and transgenerational outcomes, and provided unique insight into the germ cell epigenetic changes associated with disruptions in neurodevelopment. Understanding germline susceptibility to exogenous signals during stress exposure and the identification of the types of epigenetic marks is critical for defining mechanisms underlying disease risk.  相似文献   

19.
Early life events can alter gene expression through DNA methylation. The methylation status of the exon 17 promoter of the glucocorticoid receptor (Nr3c1 gene) in hippocampus associates with frequency of pup licking. Much of this work was conducted with male rats. Because dams more frequently lick male pups, this may contribute to sex differences in phenotypes through DNA methylation. Modifying litter gender composition (LGC), in which offspring of single-sex litters are compared to mixed-sex litters, alters maternal behavior. Previously, we demonstrated that LGC and sex affected pup licking times as well as anxiety and hippocampal DNA methylation of the Nr3c1 exon 17 promoter gene in adolescence. Now, we expand upon this work by examining effects in cerebellum and measuring mRNA levels. We also re-assessed DNA methylation in hippocampus using pyrosequencing and re-analyzed pup licking with the more commonly used frequency measure. Litters, culled to 8 pups on postnatal day 1 (PN1), were assigned to one of three conditions: all male (n = 10), all female (n = 12), or half of each sex (n = 20). Licking was rated on PN4, 7, and 10. On PN35, hippocampal and cerebellar samples were obtained. Single-sex males were licked the least and mixed-sex males, the most. Hippocampal Nr3c1 mRNA levels were lowest in mixed females with no LGC or Sex effects in DNA methylation. Cerebellar DNA methylation levels were lowest in mixed males with no effect on mRNA levels. Maternal pup licking associated with DNA methylation of the Nr3c1 exon 17 promoter gene in cerebellum and with hippocampal mRNA.  相似文献   

20.
Neuroimaging and neuropathological studies of major depressive disorder (MDD) and bipolar disorder (BD) have identified abnormalities of brain structure in areas of the prefrontal cortex, amygdala, striatum, hippocampus, parahippocampal gyrus, and raphe nucleus. These structural imaging abnormalities persist across illness episodes, and preliminary evidence suggests they may in some cases arise prior to the onset of depressive episodes in subjects at high familial risk for MDD. In other cases, the magnitude of abnormality is reportedly correlated with time spent depressed. Postmortem histopathological studies of these regions have shown abnormal reductions of synaptic markers and glial cells, and, in rare cases, reductions in neurons in MDD and BD. Many of the regions affected by these structural abnormalities show increased glucose metabolism during depressive episodes. Because the glucose metabolic signal is dominated by glutamatergic transmission, these data support other evidence that excitatory amino acid transmission is elevated in limbic-cortical-striatal-pallidal-thalamic circuits during depression. Some of the subject samples in which these metabolic abnormalities have been demonstrated were also shown to manifest abnormally elevated stressed plasma cortisol levels. The co-occurrence of increased glutamatergic transmission and Cortisol hypersecretion raises the possibility that the gray matter volumetric reductions in these depressed subjects are partly accounted for by processes homologous to the dendritic atrophy induced by chronic stress in adult rodents, which depends upon interactions between elevated glucocorticoid secretion and N-meihyl-D-aspartate (NMDA)-glutamate receptor stimulation. Some mood-stabilizing and antidepressant drugs that exert neurotrophic effects in rodents appear to reverse or attenuate the gray matter volume abnormalities in humans with mood disorders. These neurotrophic effects may be integrally related to the therapeutic effects of such agents, because the regions affected by structural abnormalities in mood disorders are known to play major roles in modulating the endocrine, autonomic, behavioral, and emotional experiential responses to stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号