首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review critical trends in imaging genetics as applied to schizophrenia research, and then discuss some future directions of the field. A plethora of imaging genetics studies have investigated the impact of genetic variation on brain function, since the paradigm of a neuroimaging intermediate phenotype for schizophrenia first emerged. It was initially posited that the effects of schizophrenia susceptibility genes would be more penetrant at the level of biologically based neuroimaging intermediate phenotypes than at the level of a complex and phenotypically heterogeneous psychiatric syndrome. The results of many studies support this assumption, most of which show single genetic variants to be associated with changes in activity of localized brain regions, as determined by select cognitive controlled tasks. From these basic studies, functional neuroimaging analysis of intermediate phenotypes has progressed to more complex and realistic models of brain dysfunction, incorporating models of functional and effective connectivity, including the modalities of psycho-physiological interaction, dynamic causal modeling, and graph theory metrics. The genetic association approaches applied to imaging genetics have also progressed to more sophisticated multivariate effects, including incorporation of two-way and three-way epistatic interactions, and most recently polygenic risk models. Imaging genetics is a unique and powerful strategy for understanding the neural mechanisms of genetic risk for complex CNS disorders at the human brain level.  相似文献   

2.
The transgenerational epigenetic programming involved in the passage of environmental exposures to stressful periods from one generation to the next has been examined in human populations, and mechanistically in animal models. Epidemiological studies suggest that gestational exposures to environmental factors including stress are strongly associated with an increased risk of neurodevelopmental disorders, including attention deficit-hyperactivity disorder, schizophrenia, and autism spectrum disorders. Both maternal and paternal life experiences with stress can be passed on to offspring directly during pregnancy or through epigenetic marks in the germ cell. Animal models of parental stress have examined relevant offspring phenotypes and transgenerational outcomes, and provided unique insight into the germ cell epigenetic changes associated with disruptions in neurodevelopment. Understanding germline susceptibility to exogenous signals during stress exposure and the identification of the types of epigenetic marks is critical for defining mechanisms underlying disease risk.  相似文献   

3.
Genetic epidemiology has provided consistent evidence that schizophrenia has a genetic component It is now clear that this genetic component is complex and polygenic, with several genes interacting in epistasis. Although molecular studies have failed to identify any DNA variant that clearly contributes to vulnerability to schizophrenia, several regions have been implicated by linkage studies. To overcome the difficulties in the search for schizophrenia genes, it is necessary (i) to use methods of analysis that are appropriate for complex multifactorial disorders; (ii) to gather large enough clinical samples; and (iii) in the absence of genetic validity of the diagnostic classification currently used, to apply new strategies in order to better define the affected phenotypes. For this purpose, we describe here two strategies: (i) the candidate symptom approach, which concerns affected subjects and uses proband characteristics as the affected phenotype, such as age at onset, severity, and negative/positive symptoms; and (ii) the endophenotypic approach, which concerns unaffected relatives and has already provided positive findings with phenotypes, such as P50 inhibitory gating or eye-movement dysfunctions.  相似文献   

4.
Schizophrenia is an illness where the clinical signs and symptoms, course, and cognitive characteristics are well described. Successful pharmacological treatments do exist, even though they are likely palliative. However, this broad knowledge base has not yet led to the identification of its pathophysiology or etiology The risk factors for schizophrenia are most prominently genetic and scientists anticipate that contributions from the new genetic information in the human genome will help progress towards discovering a disease mechanism. Brain-imaging techniques have opened up the schizophrenic brain for direct inquiries, in terms of structure, neurochemisiry, and function. New proposals for diagnosis include grouping schizophrenia together with schizophrenia-related personality disorders into the same disease entity, and calling this schizophrenia spectrum disorder. New hypotheses of pathophysiology do not overlook dopamine as playing a major role, but do emphasize the participation of integrative neural systems in the expression of the illness and of the limbic system in generating symptoms. Critical observations for future discovery are likely to arise from molecular genetics, combined with hypothesis-generating experiments using brain imaging and human postmortem tissue.  相似文献   

5.
Biological traits that are predictive of the later development of psychosis have not yet been identified. The complex, multidetermined nature of schizophrenia and other psychoses makes it unlikely that any single biomarker will be both sensitive and specific enough to unambiguously identify individuals who will later become psychotic. However, current genetic research has begun to identify genes associated with schizophrenia, some of which have phenotypes that appear early in life. While these phenotypes have low predictive power for identifying individuals who will become psychotic, they do serve as biomarkers for pathophysiological processes that can become the targets of prevention strategies. Examples are given from work on the role of the alpha(T)nicotinic receptor and its gene CHRNA7 on chromosome 15 in the neurobiology and genetic transmission of schizophrenia.  相似文献   

6.
7.
The nature and extent of the impact of gender and reproductive function on mood has been the subject of speculation and controversy for centuries. Over the past 50 years, however, it has become increasingly clear that not only is the brain a major target of reproductive steroid hormones, but additionally, the steroid hormones, as neuroregulators, create a context thai influences a broad range of brain activities; ie, neural actions and resultant behaviors are markedly different in the presence and absence of gonadal steroids. In turn, the actions of gonadal steroids are themselves context-dependent. Thus, even where it can be demonstrated thai gonadal steroids trigger mood disorders, the triggers are normal levels of gonadal steroids (to be contrasted with the mood disturbances accompanying endocrinopathies), and the mood disorders appear only in a subset of susceptible individuals. The context specificity and differential susceptibility to affective dysregulation seen in women with reproductive endocrine-related mood disorders are undoubtedly important underlying characteristics of a wide range of psychiatric disorders in which the triggers have not yet been identified. Consequently, reproductive endocrine-related mood disorders offer unparalleled promise for the identification of those contextual variables that permit biological stimuli to differentially translate into depression in individuals at risk.  相似文献   

8.
Since the time of Kraepelin and Bleuler, it has been recognized that schizophrenia is associated with a profound and persistent cognitive impairment. This paper reviews the major clinical and epidemiological studies of cognitive functioning in schizophrenia and other psychotic disorders, and presents several possible models to explain the association between cognitive impairment and psychosis. Cognitive impairment is present in the majority of patients with schizophrenia, and, in some, it is already evident in the premorbid stages of the disorder. This cognitive impairment is not secondary to psychotic symptoms, negative symptoms, or socioeconomic status. Cognitive impairment can also be observed in nonpsychotic family members of psychotic patients. On the basis of this evidence, it has been proposed that abnormal cognitive functioning can be considered as a possible causal risk factor for psychosis. Recent studies assessing the relationship between genetic background, cognition, brain function, and schizophrenia are presented here as an outline for future research.  相似文献   

9.
The search for the mutant genes for monogenic disorders has been a spectacular success. This was accomplished because of the mapping and sequencing of the human genome, the determination of the sequence variability, the collection of well-characterized families with mendelian disorders, the development of statistical methods for linkage analysis, and laboratory methods for mutation search. The challenge of the genetic medicine is now to decipher the nucleotide sequence variants that predispose to common complex, polygenic phenotypes. The methodology for this challenge is in development and constant evolution, it is anticipated that, in the next 10 to 20 years, susceptibility alleles for these common disorders will be identified.  相似文献   

10.
Specifying the complex genetic architecture of the "fuzzy" clinical phenotype of schizophrenia is an imposing problem. Utilizing metabolic, neurocognitive, and neurophysiological "intermediate" endophenotypic measures offers significant advantages from a statistical genetics standpoint. Endophenotypic measures are amenable to quantitative genetic analyses, conferring upon them a major methodological advantage compared with largely qualitative diagnoses using the Diagnostic and Statistical Manual of Mental Health, 4th Edition (DSM-IV). Endophenotypic deficits occur across the schizophrenia spectrum in schizophrenia patients, schizotypal patients, and clinically unaffected relatives of schizophrenia patients. Neurophysiological measures, such as P50 event-related suppression and the prepulse inhibition (PPI) of the startle response, are endophenotypes that can be conceptualized as being impaired because of a single genetic abnormality in the functional cascade of DNA to RNA to protein. The "endophenotype approach" is also being used to understand other medical disorders, such as colon cancer, hemochromatosis, and hypertension, where there is interplay between genetically conferred vulnerability and nongenetic stressors. The power and utility of utilizing endophenotypes to understand the genetics of schizophrenia is discussed in detail in this article.  相似文献   

11.
Schizophrenia and bipolar disorder have a largely unknown pathophysiology and etiology, but they are highly heritable. Although linkage and association studies have identified a series of chromosomal regions likely to contain susceptibility genes, progress in identifying causative genes has been largely disappointing. However, rapid technological advances are beginning to lead to new insights. Systematic genome-wide association and follow-up studies have reported genome-wide significant association findings of common variants for schizophrenia and bipolar disorder. The risk conferred by individual variants is small, and some variants confer a risk for both disorders. In addition, recent studies have identified rare, large structural variants (copy number variants) that confer a greater risk for schizophrenia. This review summarizes recent developments in genetic research into schizophrenia and bipolar disorder, and discusses possible future directions in this field.  相似文献   

12.
Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.  相似文献   

13.
14.
The identification of endophenotypes in the personality disorders may provide a basis for the identification of underlying genotypes that influence the traits and dimensions of the personality disorders, as well as susceptibility to major psychiatric illnesses. Clinical dimensions of personality disorders that lend themselves to the study of corresponding endophenotypes include affective instability, impulsivity, aggression, emotional information processing, cognitive disorganization, social deficits, and psychosis. For example, the propensity to aggression can be evaluated by psychometric measures, interview, laboratory paradigms, neurochemical imaging, and pharmacological studies. These suggest that aggression is a measurable trait that may be related to reduced serotonergic activity. Hyperresponsiveness of amygdala and other limbic structures may be related to affective instability, while structural and functional brain alterations underlie the cognitive disorganization in psychotic-like symptoms of schizotypal personality disorder. Thus, an endophenotypic approach not only provides clues to underlying candidate genes contributing to these behavioral dimensions, but may also point the way to a better understanding of pathophysiological mechanisms.  相似文献   

15.
16.
Understanding the genetic basis of schizophrenia continues to be major challenge. The research done during the last two decades has provided several candidate genes which unfortunately have not been consistently replicated across or within a population. The recent genome-wide association studies (GWAS) and copy number variation (CNV) studies have provided important evidence suggesting a role of both common and rare large CNVs in schizophrenia genesis. The burden of rare copy number variations appears to be increased in schizophrenia patients. A consistent observation among the GWAS studies is the association with schizophrenia of genetic markers in the major histocompatibility complex (6p22.1)-containing genes including NOTCH4 and histone protein loci. Molecular genetic studies are also demonstrating that there is more overlap between the susceptibility genes for schizophrenia and bipolar disorder than previously suspected. In this review we summarize the major findings of the past decade and suggest areas of future research.  相似文献   

17.
More than a century since the delineation of dementia praecox by Kraepelin, the etiology, neuropathology, and pathophysiology of schizophrenia remain elusive. Despite the availability of criteria allowing reliable diagnostic identification, schizophrenia essentially remains a broad clinical syndrome defined by reported subjective experiences (symptoms), loss of function (behavioral impairments), and variable patterns of course. Research has identified a number of putative biological markers associated with the disorder, including neurocognitive dysfunction, brain dysmorphology, and neurochemical abnormalities. Yet none of these variables has to date been definitively proven to possess the sensitivity and specificity expected of a diagnostic test. Genetic linkage and association studies have targeted multiple candidate loci and genes, but failed to demonstrate that any specific gene variant, or a combination of genes, is either necessary or sufficient to cause schizophrenia. Thus, the existence of a specific brain disease underlying schizophrenia remains a hypothesis. Against a background of an ever-increasing volume of research data, the inconclusiveness of the search for causes of the disorder fuels doubts about the validity of the schizophrenia construct as presently defined. Given the protean nature of the symptoms of schizophrenia and the poor coherence of the clinical and biological findings, such doubts are not without reason. However, simply dismantling the concept is unlikely to result in an alternative model that would account for the host of clinical phenomena and research data consistent with a disease hypothesis of schizophrenia. For the time being, the clinical concept of schizophrenia is supported by empirical evidence that its multiple facets form a broad syndrome with non-negligible internal cohesion and a characteristic evolution over time. The dissection of the syndrome with the aid of endophenotypes is beginning to be perceived as a promising approach in schizophrenia genetics.  相似文献   

18.
Recent years have seen an explosive growth of interest in the application of imaging genetics to understand neurogenetic mechanisms of schizophrenia. Imaging genetics applies structural and functional neuroimaging to study subjects carrying genetic risk variants that relate to a psychiatric disorder. We review selected aspects of this literature, starting with a widely studied candidate gene--the catechol-O-methyltransferase gene (COMT)--discussing other candidate genes in the dopaminergic system, and then discussing variants with genome-wide support. In future perspectives, approaches to characterize epistatic effects, the identification of new risk genes through forward-genetic approaches using imaging phenotypes, and the study of rare structural variants are considered.  相似文献   

19.
Because of the wide availability of hardware as well as of standardized analytic quantification tools, proton magnetic resonance spectroscopy (1H-MRS) has become widely used to study psychiatric disorders. 1H-MRS allows measurement of brain concentrations of more traditional singlet neurometabolites like N-acetylaspartate, choline, and creatine. More recently, quantification of the more complex multiplet spectra for glutamate, glutamine, inositol, and γ-aminobutyric acid have also been implemented. Here we review applications of 1H-MRS in terms of informing treatment options in schizophrenia, bipolar disorder, and major depressive disorders. We first discuss recent meta-analytic studies reporting the most reliable findings. Then we evaluate the more sparse literature focused on 1H-MRS-detected neurometabolic effects of various treatment approaches in psychiatric populations. Finally we speculate on future developments that may result in translation of these tools to improve the treatment of psychiatric disorders.  相似文献   

20.
Alcohol dependence (alcoholism) is a complex disorder attributed to the interaction of genetic and environmental factors that form a collage of "disease" predisposition, which is not identical for every alcohol-dependent individual. There is considerable evidence to demonstrate that genetic predisposition accounts for roughly half the risk in the development of alcohol dependence. Both family and population studies have identified a number of genomic regions with suggestive links to alcoholism, yet there have been relatively few definitive findings with regard to genetic determinants of alcoholism. This ambiguity can be attributed to a multitude of complications of studying complex mental disorders, such as clinical heterogeneity, polygenic determinants, reduced penetrance, and epistatic effects. Complex mental disorders are clinical manifestations described by combinations of various signs and symptoms. One approach to overcoming the ambiguity in studying the association between genetic risk factors and disease is to dissect the complex, heterogeneous disorder by using intermediate phenotypes--or endophenotypes--to generate more homogeneous diagnostic groupings than an all-encompassing definition, such as the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-derived term "alcohol dependence" or the commonly used term "alcoholism." The advantage of using endophenotypes is that the number of influential factors that contribute to these characteristics should be fewer and more easily identified than the number of factors affecting the heterogeneous entity of alcohol dependence (alcoholism). A variety of alcohol-related characteristics have been investigated in epidemiological, clinical, and basic research as potential endophenotypes of alcohol dependence. These include phenotypes related to alcohol metabolism, physiological and endocrine measures, neural imaging, electrophysiology, personality, drinking behavior, and responses to alcohol and alcohol-derived cues. This review summarizes the current literature, focused on human data, of promising endophenotypes for dissecting alcoholism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号