首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Constitutively active Ras proteins, their regulatory components, and overexpressed tyrosine kinase receptors that activate Ras, are frequently associated with cell transformation in human tumors. This suggests that functional Ras antagonists may have anti-tumor activity. Studies in rodent fibroblasts have shown that S-trans, transfarnesylthiosalicylic acid (FTS) acts as a rather specific nontoxic Ras antagonist, dislodging Ras from its membrane anchorage domains and accelerating its degradation. FTS is not a farnesyltransferase inhibitor, and does not affect Ras maturation. Here we demonstrate that FTS also acts as a functional Ras antagonist in human pancreatic cell lines that express activated K-Ras (Panc-1 and MiaPaCa-2). In Panc-1 cells, FTS at a concentration of 25-100 microM reduced the amount of Ras in a dose-dependent manner and interfered with serum-dependent and epidermal growth factor-stimulated ERK activation, thus inhibiting both anchorage-dependent and anchorage-independent growth of Panc-1 cells in vitro. FTS also inhibited tumor growth in Panc-1 xenografted nude mice, apparently without systemic toxicity. Daily FTS treatment (5 mg/kg intraperitoneally) in mice with tumors (mean volume 0.07 cm3) markedly decreased tumor growth (after treatment for 18 days, tumor volume had increased by only 23+/-30-fold in the FTS-treated group and by 127+/-66-fold in controls). These findings suggest that FTS represents a new class of functional Ras antagonists with potential therapeutic value.  相似文献   

2.
Autophagy, a process of regulated turnover of cellular constituents, is essential for normal growth control but may be defective under pathological conditions. The Ras/PI3K/mTOR signaling pathway negatively regulates autophagy. Ras signaling has been documented in a large number of human cancers. In this in-vitro study we examined the effect of the Ras inhibitor Salirasib (S-trans, trans-farnesylthiosalicylic acid; FTS) on autophagy induction and cell viability. We show that Ras inhibition by FTS induced autophagy in several cell lines, including mouse embryonic fibroblasts and the human cancer cell lines HeLa, HCT-116 and DLD-1. The autophagy induced by FTS seems to inhibit the cell death induced by FTS, since in the absence of autophagy the death of FTS-treated cells was enhanced. Therefore, inhibition of autophagy may promote the inhibition of tumor cell growth and the cell death mediated by FTS.  相似文献   

3.
A Paz  R Haklai  G Elad-Sfadia  E Ballan  Y Kloog 《Oncogene》2001,20(51):7486-7493
Ras genes, frequently mutated in human tumors, promote malignant transformation. Ras transformation requires membrane anchorage, which is promoted by Ras farnesylcysteine carboxymethylester and by a second signal. Previously we showed that the farnesylcysteine mimetic, farnesylthiosalicylic acid (FTS) disrupts Ras membrane anchorage. To understand how this disruption contributes to inhibition of cell transformation we searched for new Ras-interacting proteins and identified galectin-1, a lectin implicated in human tumors, as a selective binding partner of oncogenic H-Ras(12V). The observed size of H-Ras(12V)-galectin-1 complex, which is equal to the sum of the molecular weights of Ras and galectin-1 indicates a direct binding interaction between the two proteins. FTS disrupted H-Ras(12V)-galectin-1 interactions. Overexpression of galectin-1 increased membrane-associated Ras, Ras-GTP, and active ERK resulting in cell transformation, which was blocked by dominant negative Ras. Galectin-1 antisense RNA inhibited transformation by H-Ras(12V) and abolished membrane anchorage of green fluorescent protein (GFP)-H-Ras(12V) but not of GFP-H-Ras wild-type (wt), GFP-K-Ras(12V), or GFP-N-Ras(13V). H-Ras(12V)-galectin-1 interactions establish an essential link between two proteins associated with cell transformation and human malignancies that can be exploited to selectively target oncogenic Ras proteins.  相似文献   

4.
The deoxycytidine analogue 2',2'-difluoro-2'-deoxycytidine (gemcitabine) is a potent radiation sensitizer in a variety of solid tumors and tumor cell lines. Previous studies have shown that radiosensitization by gemcitabine is accompanied by simultaneous depletion of dATP pools (through ribonucleotide reductase inhibition) and accumulation in the S-phase of the cell cycle. Because of the importance of cell cycle redistribution in gemcitabine-mediated radiosensitization, we investigated the role of checkpoint kinase (Chk) 1 and Chk2 in gemcitabine-induced cell cycle arrest. We hypothesized that gemcitabine might induce Chk1 or Chk2 signal transduction pathways that mediate S-phase arrest. We found that radiosensitizing concentrations of gemcitabine induced accumulation of phosphorylated Chk1 and Chk2 and down-regulation of Cdc25A in BxPC-3 (10 nmol/L), Panc-1 (100 nmol/L), A549 (30 nmol/L), RKO (30 nmol/L), and SW620 (30 nmol/L) cells. Depletion of Chk1 from Panc-1 cells prevented the down-regulation of Cdc25A in response to gemcitabine. Furthermore, Chk1 depletion permitted Panc-1 and SW620 cells treated with gemcitabine to enter mitosis despite incomplete DNA synthesis. However, depletion of neither Chk1 nor Chk2 abrogated the inhibition of DNA synthesis in response to gemcitabine. These results provide evidence that Chk1 negatively regulates entry into mitosis in response to gemcitabine. Furthermore, these data imply that Chk1 acts to coordinate the cell cycle with DNA synthesis, thus preventing premature mitotic entry in gemcitabine-treated cells.  相似文献   

5.
A lipophilic farnesyl moiety attached to the carboxyl terminal cysteine of ras proteins structurally supports their membrane anchorage, required for ras-dependent growth-factor signaling and for transforming activity of ras oncoproteins. It has been shown that inhibition of ras farnesylation can block tumor growth in nude mice but that some ras-dependent tumors escape such blockage as a result of prenylation of ras. S-trans-transfarnesylthiosalicylic acid (FTS) is a potent ras-dislodging antagonist that does not affect ras prenylation but rather acts on the mature, membrane-bound ras and facilitates its degradation. Here we demonstrate that FTS induces reappearance of stress fibers in H-ras-transformed rat-1 cells (EJ cells) in vitro, inhibits their anchorage-independent growth in vitro, and blocks EJ-tumor growth in nude mice. The anchorage-independent growth of cells expressing ErbB2 (B104), but not that of v-raf-transformed cells, is also inhibited by FTS, suggesting specificity towards activated ras. FTS treatment (5 mg/kg i.p. daily) caused inhibition (75-80%) of tumor growth in nude mice implanted with EJ, but not in mice implanted with v-raf-transformed cells, with no evidence of systemic toxicity. Moreover, FTS treatment increased the survival rate of EJ-tumor-bearing mice from 48 to 68 days. Here we demonstrate anti-tumor potency in a synthetic, non-toxic, ras-dislodging antagonist acting independently of farnesyltransferases.  相似文献   

6.
The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death.  相似文献   

7.
Aizman E  Mor A  Levy A  George J  Kloog Y 《Oncotarget》2012,3(2):144-157
A major concern in targeted drug therapy is that the inhibition of receptors and signaling molecules in tumor cells may also affect similar components in the tumor microenvironment or in the immune system, with undefined consequences for inhibition of tumor growth. One example is given by the Ras inhibitor salirasib (Farnesythiosalycilic acid, FTS), which in addition to its antitumor activity in mice and humans also exhibits anti-inflammatory activity. Here we show three major effects through which Ras inhibition by FTS provides a favorable antitumor environment in immune-competent mice with subcutaneous or intracranial tumors. First, FTS exhibited antitumor activity in intracranial immune-competent tumor-bearing mice and increased their survival relative to tumor-bearing immune-compromised mice. Second, FTS induced an increase in regulatory T cells in mouse splenocytes, in which Foxp3+ T cells did not interfere with the tumor growth inhibitory effects of FTS. Third, FTS induced an increase in antitumor cytotoxic T-cell reactivity in glioma cells by downregulating their own expression of Foxp3. This downregulation induced a TGF-β-associated mechanism in glioma cells altering the tumor microenvironment and causing reduced resistance of the tumor to the immune system. These results are important as they might explain some of the major beneficial effects of Ras inhibitors. They may provide an experimental framework for examination of the impact of other anticancer drugs on cancer and the immune system.  相似文献   

8.
Pancreatic cancer is a serious healthcare problem worldwide because of its high mortality. Gemcitabine, a DNA synthesis inhibitor, is the standard first-line treatment for advanced pancreatic cancer and is also expected as a key drug for the combination therapy of this malignancy. Retinoids, which are derivatives of vitamin A, exert anti-tumor effects in various types of human malignancies, including pancreatic cancer. This study examined whether combination therapy with gemcitabine and acyclic retinoid (ACR), a new synthetic retinoid, had enhanced anti-tumor efficacy in pancreatic cancer. ACR, 9-cis-retinoic acid and gemcitabine preferentially inhibited the growth of human pancreatic cancer cells (Panc-1 and KP-2) in comparison to PE normal human pancreatic epithelial cells. The combination of ACR plus gemcitabine synergistically inhibited the growth of Panc-1 cells. The combined treatment with these two agents also acted synergistically to induce apoptosis and to inhibit Ras activation in these cancer cells. In vivo, the combination therapy augmented tumor growth inhibition through the induction of apoptosis and inhibition of cell proliferation in tumor tissue. These results suggest that the combination of ACR plus gemcitabine may therefore be an effective regimen for the chemotherapy of pancreatic cancer.  相似文献   

9.
The three oncogenes, ErbB receptors, Ras proteins and nucleolin may contribute to malignant transformation. Previously, we demonstrated that nucleolin could bind both Ras protein and ErbB receptors. We also showed that the crosstalk between the three proteins facilitates anchorage independent growth and tumor growth in nude mice, and that inhibition of this interaction in prostate and colon cancer cells reduces tumorigenicity. In the present study, we show that treatment with Ras and nucleolin inhibitors reduces the oncogenic effect induced by ErbB1 receptor in U87-MG cells. This combined treatment enhances cell death, reduces cell proliferation and cell migration. Moreover, we demonstrate a pivotal role of nucleolin in ErbB1 activation by its ligand. Nucleolin inhibitor prevents EGF-induced receptor activation and its downstream signaling followed by reduced proliferation. Furthermore, inhibition of Ras by Salirasib (FTS), mainly reduces cell viability and motility. The combined treatment, which targets both Ras and nucleolin, additively reduces tumorigenicity both in vitro and in vivo. These results suggest that targeting both nucleolin and Ras may represent an additional opportunity for inhibiting cancers, including glioblastoma, that are driven by these oncogenes.  相似文献   

10.
Active Ras and phosphatidylinositol-3-kinase-dependent pathways contribute to the malignant phenotype of glioblastoma multiformes (GBM). Here we show that the Ras inhibitor trans-farnesylthiosalicylic acid (FTS) exhibits profound antioncogenic effects in U87 GBM cells. FTS inhibited active Ras and attenuated Ras signaling to extracellular signal-regulated kinase, phosphatidylinositol-3-kinase, and Akt. Concomitantly, hypoxia-inducible factor 1alpha (HIF-1alpha) disappeared, expression of key glycolysis pathway enzymes and of other HIF-1alpha-regulated genes (including vascular endothelial growth factor and the Glut-1 glucose transporter) was down-regulated, and glycolysis was halted. This led to a dramatic reduction in ATP, resulting in a severe energy crisis. In addition, the expression of E2F-regulated genes was down-regulated in the FTS-treated cells. Consequently, U87 cell growth was arrested and the cells died. These results show that FTS is a potent down-regulator of HIF-1alpha and might therefore block invasiveness, survival, and angiogenesis in GBM.  相似文献   

11.
Tang K  Zhang Z  Bai Z  Ma X  Guo W  Wang Y 《Oncology reports》2011,25(4):963-970
The purpose of this study was to improve the gemcitabine sensitivity in pancreatic cancer by adenovirus-mediated co-regulation of dCK and p8 expression. Firstly, we analyzed the sensitivity of three human pancreatic tumor cell lines (Capan-2, Panc-1 and BxPc-3) to gemcitabine using MTT assays, and found Panc-1 to be relatively resistant to gemcitabine. Further, we investigated the expression of dCK and p8 in different pancreatic cancer cell lines using real-time PCR and Western blot analysis, and found that the expression levels of these two genes were related to the gemcitabine sensitivity of pancreatic cancer cells. We constructed recombinant adenovirus vectors, Ad-dCK and Ad-p8-siRNA, that overexpressed dCK and knocked down p8, respectively. Using MTT assays, we observed that combined infection using Ad-dCK and Ad-p8-siRNA in vitro led to a significant decrease in the gemcitabine IC50 with an increase in apoptosis and caspase-3 activity in Panc-1 cells, which are relatively resistant to gemcitabine. Furthermore, in established subcutaneous pancreatic cancer models in nude mice, the tumor inhibition was markedly enhanced accompanied by elevation of the apoptosis index after intratumoral injection of Ad-dCK and Ad-p8-siRNA on the basis of intraperitoneal gemcitabine chemotherapy. Taken together, the present findings suggest that, dCK and p8 may be the important factors in the regulation of gemcitabine sensitivity in pancreatic cancer cells. Moreover, co-regulation of the two factors achieved better effects than regulation of either one alone.  相似文献   

12.
Background S-trans,trans-farnesylthiosalicylic acid (salirasib, FTS) is a synthetic small molecule that acts as a potent Ras inhibitor. Salirasib inhibits specifically both oncogenically activated Ras and growth factor receptor-mediated Ras activation, resulting in the inhibition of Ras-dependent tumor growth. The objectives of this study were to develop a sensitive LC-MS/MS assay for determination of FTS in plasma, to assess the bioavailabilty of FTS after oral administration to mice, and then to examine the efficacy of orally administered FTS for inhibition of tumor growth in a nude mouse model. Methods FTS was isolated from mouse plasma by liquid chromatography on a Columbus 5-μm particle size, 50 × 2 mm id column with a methanol/5 mM ammonium acetate (80/20) mobile phase (isocratic elution) at a flow rate of 0.3 ml/min. MS/MS was performed on a PE Sciex API 365 with Turbo Ion Spray as interface and negative ion ionization; parent ion (m/z): 357.2; daughter ion (m/z) 153.2; retention time 2.3 min. For plasma analysis, the amount of analyte in each sample was calculated by comparing response of the analyte in that sample to a nine-point standard curve linear over the range 3–1000 ng/ml. Pharmacokinetic studies were performed in mice following intraperitoneal dosing (20 mk/kg in PBS) or oral dosing (40 mg/kg in either 0.5% aqueous CMC or corn oil). Panc-1 tumor growth in nude mice was determined following daily oral dosing with FTS in 0.5% CMC (40, 60, or 80 mg/kg), or in combination with weekly gemcitabine (30 mg/kg). Results Salirasib was readily detected in mouse plasma by LC-MS/MS at a detection limit of 3 ng/ml. For each route of administration, t max was 1 h and t 1/2 ranged from 1.86 to 2.66 h. Compared to IP administration, the oral bioavailabilty of FTS was 69.5% for oral CMC and 55% for oral corn oil suspensions, while clearance and volume of distribution were higher in both oral preparations. The orally administered salirasib inhibited panc-1 tumor growth in a dose dependent manner (67% reduction in tumor weight at the highest dose, P < 0.002 vs. control, n = 10 mice per group) and at a 40 mg/kg daily dose was synergistic with gemcitabine (83% increase in survival rate, n = 8 mice per group). Conclusions Salirasib exhibits good bioavailabilty after oral administration, as determined by a highly sensitive method for quantification in plasma. The orally available Ras inhibitor salirasib inhibited growth in nude mice, and may thus be considered for clinical trials.  相似文献   

13.
TRAIL与阿霉素联用协同杀伤人结肠癌细胞SW480   总被引:3,自引:0,他引:3  
Xu LH  Deng CS  Zhu YQ  Liu SQ 《癌症》2003,22(8):816-820
背景与目的:肿瘤坏死因子相关凋亡诱导配体(tumornecrosisfactor-relatedapoptosisinducingligand,TRAIL)可选择性杀伤肿瘤细胞,而不影响正常细胞生长。当一部分肿瘤细胞对TRAIL不敏感时,特定的其它药物可增强其杀伤作用。本文旨在探讨结肠癌细胞SW480对TRAIL的敏感性,以及TRAIL与阿霉素联用对细胞的杀伤作用及可能作用机制。方法:常规培养结肠癌细胞SW480。利用MTT法检测细胞毒性作用,流式细胞术定量分析凋亡细胞比例,透射电镜在亚细胞结构形态上证实凋亡细胞,Westernblot分析p53及bcl-2蛋白表达变化。结果:(1)SW480细胞对TRAIL不敏感,100ng/mlTRAIL只能杀伤7.8%的细胞,IC50>1000ng/ml,且不存在浓度依赖性。(2)SW480细胞对阿霉素敏感,存在浓度依赖性作用,IC50=65μmol/L,0.86μmol/L的阿霉素对细胞不表现杀伤作用。(3)TRAIL与阿霉素合用表现出协同作用,亚毒性浓度TRAIL(100ng/ml)与亚毒性浓度阿霉素(0.86μmol/L)联用可杀伤80%SW480细胞。流式细胞学证实这种杀伤作用主要通过诱导细胞凋亡实现,透射电镜亦观察到大量凋亡细胞存在。药物作用前后,p53及bcl-2蛋白表达水平无明显改变。结论:结肠癌细胞株SW480对TRAIL不敏感,但TRAIL与亚毒性浓度阿霉素联用对癌细胞有协同杀伤作用,这种细胞毒性作用主要表现  相似文献   

14.
A major cause of treatment failure in advanced colon cancer is resistance to chemotherapy. p38 mitogen-activated protein kinase (MAPK) has been associated with cellular apoptosis and plays an important role in multidrug resistance (MDR) in cancer cells. In the present study the effect of p38 MAPK on the sensitivity of 5-fluorouracil (5-FU)-resistant SW480 (SW480/5-FU) human colon cancer cells to noscapine was investigated. Following p38 MAPK interference, the inhibitory effect of noscapine on cell viability and proliferation was increased in the SW480/5-FU cells and there was also a decrease in the expression level of minichromosome maintenance proteins, recombinant Ki-67 and proliferating cell nuclear antigen. Inhibition of p38 MAPK also enhanced noscapine-induced G1-phase cell cycle arrest in the SW480/5-FU cells and there was also a decrease in the protein and mRNA expression level of cyclin D, cyclin E and cyclin-dependent kinase 2, and an increase in the expression level of P57. Furthermore, p38 MAPK interference increased noscapine-induced apoptosis of the SW480/5-FU cells and there was an increase in the protein and mRNA expression level of caspases-3 and 8 and Bax, and decreased Bcl-2 expression level. The sensitivity of the SW480/5-FU cells to noscapine was also increased following p38 MAPK interference, as demonstrated by MDR inhibition via decreased Akt activity and reduced protein expression level of the MDR proteins P-glycoprotein, multidrug resistance protein 1 and ATP-binding cassette G2. These observations indicated that inhibition of p38 MAPK increased the sensitivity of the SW480/5-FU cells to noscapine by suppressing proliferation, induction of cell cycle arrest and apoptosis, and reversal of MDR in the SW480/5-FU cells.  相似文献   

15.
PURPOSE: Farnesylthiosalicylic acid (FTS) is a Ras inhibitor that dislodges all active Ras isoforms from the membrane. We assessed the ability of FTS to reverse the transformed phenotype of neurofibromatosis type 1 (NF1)-associated tumor cell lines of malignant peripheral nerve sheath tumor (MPNST). EXPERIMENTAL DESIGN: nf1 mutations were genotyped, allelic losses were analyzed, and neurofibromin expression levels were determined in MPNST cell lines ST88-14, S265P21, and 90-8. The effects of FTS on GTP-bound Ras (Ras-GTP) and its prominent downstream targets, as well as on cell morphology, anchorage-dependent and anchorage-independent growth, and tumor growth in mice, were assessed. RESULTS: The MPNST cell lines were biallelic, NF1 inactive, and neurofibromin deficient. We show that FTS treatment shortened the relatively long duration of Ras activation and signaling to extracellular signal-regulated kinase, Akt, and RalA in all NF1-deficient MPNST cell lines (NF1 cells) to that observed in a non-NF1, normally expressing neurofibromin MPNST cell line. These effects of FTS led to lower steady-state levels of Ras-GTP and its activated targets. Both anchorage-dependent and anchorage-independent growth of NF1 cells were dose dependently inhibited by FTS, and the inhibition correlated positively with Ras-GTP levels. NF1 cells were found to possess strong actin stress fibers, and this phenotype was also corrected by FTS. NF1 tumor growth in a nude mouse model was inhibited by oral FTS. CONCLUSIONS: FTS treatment of NF1 cells normalized Ras-GTP levels, resulting in reversal of the transformed phenotype and inhibition of tumor growth. FTS may therefore be considered as a potential drug for the treatment of NF1.  相似文献   

16.
This study assessed the antiproliferative activity of sapacitabine (CYC682, CS-682) in a panel of 10 human cancer cell lines with varying degrees of resistance or sensitivity to the commonly used nucleoside analogues ara-C and gemcitabine. Growth inhibition studies using sapacitabine and CNDAC were performed in the panel of cell lines and compared with both nucleoside analogues and other anticancer compounds including oxaliplatin, doxorubicin, docetaxel and seliciclib. Sapacitabine displayed antiproliferative activity across a range of concentrations in a variety of cell lines, including those shown to be resistant to several anticancer drugs. Sapacitabine is biotransformed by plasma, gut and liver amidases into CNDAC and causes cell cycle arrest predominantly in the G(2)/M phase. No clear correlation was observed between sensitivity to sapacitabine and the expression of critical factors involved in resistance to nucleoside analogues such as deoxycytidine kinase (dCK), human equilibrative nucleoside transporter 1, cytosolic 5'-nucleotidase and DNA polymerase-alpha. However, sapacitabine showed cytotoxic activity against dCK-deficient L1210 cells indicating that in some cells, a dCK-independent mechanism of action may be involved. In addition, sapacitabine showed a synergistic effect when combined with gemcitabine and sequence-specific synergy with doxorubicin and oxaliplatin. Sapacitabine is therefore a good candidate for further evaluation in combination with currently used anticancer agents in tumour types with unmet needs.  相似文献   

17.
Pancreatic cancer is resistant to almost all cytotoxic drugs. Currently, gemcitabine appears to be the only clinically active drug but, because of pre-existing or acquired chemoresistance of most of the tumor cells, it failed to significantly improve the outcome of pancreatic carcinoma patients. The current study examined the relevance of nuclear factor kappaB (NF-kappaB) and PI3K/Akt in the resistance of five pancreatic carcinoma cell lines towards gemcitabine. Treatment for 24 h with gemcitabine (0.04-20 micro M) led to a strong induction of apoptosis in PT45-P1 and T3M4 cells but not in BxPc-3, Capan-1 and PancTu-1 cells. These resistant cell lines exhibited a high basal NF-kappaB activity in contrast to the sensitive cell lines. Furthermore, gemcitabine showed a dose-dependent induction of NF-kappaB. At a dose of 0.04 micro M, gemcitabine still induced apoptosis in the sensitive cell lines, but did not induce NF-kappaB. In addition, NF-kappaB inhibition by MG132, sulfasalazine or the IkappaBalpha super-repressor strongly diminished the resistance against gemcitabine (0.04-20 micro M). In contrast to this obvious correlation between basal NF-kappaB activity and gemcitabine resistance, PI3K/Akt seems not to be involved in gemcitabine resistance of these cell lines. Neither did the basal Akt activity correlate with the sensitivity towards gemcitabine treatment, nor did the inhibition of PI3K/Akt by LY294002 alter gemcitabine-induced apoptosis. These results indicate that constitutive NF-kappaB activity confers resistance against gemcitabine and that modulation of this activity by pharmacological or genetic approaches may have therapeutical potential when combined with gemcitabine in the treatment of pancreatic carcinoma.  相似文献   

18.
Four different human tissue-derived cell lines, each previously shown to express either a Ha-, Ki-, or N-ras-activated oncogene, were fused in four different paired combinations. The three combinations that involved the tumor line HT1080 (activated N-ras oncogene) were found to be tumorigenic in nude mice, but to different degrees. However, the fusion of the tumor lines EJ and SW480 (activated Ha-ras and Ki-ras, respectively) resulted in hybrid cells suppressed for tumorigenicity. The EJ x SW480 hybrids were found to harbor and express both of the activated ras oncogenes. The results suggest that tumorigenic suppression can occur in the presence of two transforming oncogenes of the ras family and that tumorigenicity associated with ras oncogene activation involves additional mechanisms that may differ among tumor cells.  相似文献   

19.
One of the greatest challenges in the treatment of pancreatic cancer remains its inherent lack of beneficial response to cytotoxic chemotherapy. Chinese herbal extracts have been widely used for the treatment of various cancers, but objective information on their efficacy in pancreatic cancer is lacking. Eight human pancreatic cancer cell lines (MIA, Panc-1, BxPC, ASPC, HS-766T, CaPan-2, CFPAC, and HTB-147) were studied for in vitro susceptibility to ethanol extracts of SPES and PC-SPES, two quality-controlled, dried, encapsulated supplements of 15 and eight Chinese herbs, respectively. Resulting toxicities, alone and in combination with doxorubicin or gemcitabine, were analyzed by [(3)H]thymidine incorporation or sulforhodamine B staining, colony formation, and TUNEL flow cytometry assays. Combination toxicity mechanisms were calculated by the combination index method of Chou and Talalay. In all cell lines, there was dose-dependent inhibition of proliferation. By [(3)H]thymidine incorporation assay, 50% growth inhibition after 48 h continuous exposure (IC(50)) occurred at concentrations of 0.2-0.8 microl/ml SPES and 0.4-1.3 microl/ml PC-SPES. Growth inhibition was accompanied by a significant enhancement of the TUNEL-positive apoptotic fraction of all cell lines after treatment with either extract. After treatment with PC-SPES, the cell lines consistently displayed a G2 cell cycle block; SPES induced an increase in S phase, with a smaller impact on G2. When added at a concentration of 0.2 microl/ml (approximately IC(20)), both extracts enhanced Panc-1 cell killing mediated by doxorubicin, with an average decrease in the corresponding IC(50) of 33% (range 11-62%). Combination effects with either extract appeared to be antagonistic in the case of gemcitabine and additive to mildly synergistic in the case of doxorubicin. Both SPES and PC-SPES exhibited significant toxicity in pancreatic cancer cells, mediated via induction of apoptosis. Both mixtures should be evaluated for their in vivo and clinical therapeutic utility as monotherapy agents against pancreatic cancer. SPES could possibly be combined with cell cycle-independent cytotoxic drugs. Due to a consistent G2 blocking pattern, PC-SPES may prove useful as a radiation sensitizer.  相似文献   

20.
The constitutive activity of a number of growth and cell survival pathways are thought to contribute to the inherent resistance of melanoma to chemotherapy and radiotherapy. Many of these pathways are driven through the small GTPase Ras. Novel drugs such as the farnesyl transferase inhibitors (FTIs) and farnesyl thiosalicylic acid (FTS) interfere with the signaling of oncogenic Ras. The aim of our study was to assess the anti-tumour activity of the FTI SCH66336 in melanoma and to assess whether SCH66336 and FTS could modulate chemoresistance in melanoma cells. SCH66336 had marked anti-proliferative activity in both human and mouse melanoma cell lines, but not in non-transformed NIH 3T3 cells. The anti-proliferative activity of SCH66336 was due to G1-phase cell cycle arrest and retinoblastoma protein inactivation, followed by apoptosis. Cisplatin, when administered alone, induced little apoptosis. In combination with cisplatin, both FTS and SCH66336 markedly enhanced the level of cisplatin-induced apoptosis, an effect that was associated with enhanced G2/M cell cycle arrest. Pharmacological inhibitors of either ERK or PI-3 kinase/Akt did not mimic the chemosensitising activity of either SCH66336 or FTS. In summary, our study demonstrates that SCH66336 has good in vitro anti-tumour activity in both human and mouse melanoma cell lines, and suggests that Ras antagonists could be useful in overcoming chemoresistance to cisplatin in melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号