首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
BACKGROUND: The peripheral blood progenitor cell (PBPC) mobilization capacity of EPO in association with either G-CSF or sequential GM-CSF/G-CSF was compared in a randomized fashion after epirubicin, paclitaxel, and cisplatin (ETP) chemotherapy. STUDY DESIGN AND METHODS: Forty patients with stage IIIB, IIIC, or IV ovarian carcinoma were enrolled in this randomized comparison of mobilizing capacity and myelopoietic effects of G-CSF + EPO and GM-/G-CSF + EPO following the first ETP chemotherapy treatment. After ETP chemotherapy (Day 1), 20 patients received G-CSF 5 microg per kg per day from Day 2 to Day 13 and 20 patients received GM-CSF 5 microg per kg per day from Day 2 to Day 6 followed by G-CSF 5 microg per kg per day from Day 7 to Day 13. EPO (150 IU per kg) was given every other day from Day 2 to Day 13 to all patients in both arms of the study. Apheresis (two blood volumes) was performed during hematologic recovery. RESULTS: The magnitude of CD34+ cell mobilization and the abrogation of patients' myelosuppression were comparable in both study arms; however, GM-/G-CSF + EPO patients had significantly higher CD34+ yields because of a higher CD34+ cell collection efficiency (57.5% for GM-/G-CSF + EPO and 46.3% for G-CSF + EPO patients; p = 0.0009). Identical doses of PBPCs mobilized by GM-/G-CSF + EPO and G-CSF + EPO drove comparable hematopoietic recovery after reinfusion in patients treated with identical high-dose chemotherapy. CONCLUSION: The sequential administration of GM-CSF and G-CSF in combination with EPO is feasible and improves the PBPC collection efficiency after platinum-based intensive polychemotherapy, associating high PBPC mobilization to high collection efficiency during apheresis.  相似文献   

2.
BACKGROUND: The collection of peripheral blood stem and progenitor cells (PBPCs) for transplantation can be time-consuming and expensive. Thus, the utility of counting CD34+ cells and white cells (WBCs) in the peripheral blood was evaluated as a predictor of CD34+ cell yield in the apheresis component. STUDY DESIGN AND METHODS: The WBC and CD34+ cell counts in the peripheral blood and the apheresis components from 216 collections were assessed. Sixty-three patients underwent mobilization with chemotherapy plus filgrastim, and 17 patients and 14 allogeneic PBPC donors did so with filgrastim alone. The relationship between the number of WBC and CD34+ cells in the peripheral blood and in the apheresis component was analyzed by using rank correlation and linear regression analysis. RESULTS: The correlation coefficient for CD34+ cells per liter of peripheral blood with CD34+ cell yield (x 10(6)/kg) was 0.87 (n = 216 collections). This correlation existed for many patient and collection variables. However, patients with acute myeloid leukemia had fewer CD34+ cells in the apheresis component at any level of peripheral blood CD34+ cell count. Components collected from patients with CD34+ cell counts below 10 x 10(6) per L in the peripheral blood contained a median of 0.75 x 10(6) CD34+ cells per kg. When the WBC count in the blood was below 5.0 x 10(9) per L, the median number of CD34+ cells in the peripheral blood was 5.6 x 10(6) per L (range, 1.0-15.5 x 10(6)/L). A very poor correlation was found between the WBC count in the blood and the CD34+ cell yield (p = 0.12, n = 158 collections). CONCLUSION: The number of CD34+ cells, but not WBCs, in the peripheral blood can be used as a predictor for timing of apheresis and estimating PBPC yield. This is a robust relationship not affected by a variety of patient and collection factors except the diagnosis of acute myeloid leukemia. Patients who undergo mobilization with chemotherapy and filgrastim also should undergo monitoring of peripheral blood CD34+ cell counts, beginning when the WBC count in the blood exceeds 1.0 to 5.0 x 10(9) per L.  相似文献   

3.
BACKGROUND: Nowadays, the collection of PBPCs by apheresis from healthy donors is a routine method. The mobilization with rHu G-CSF and the apheresis procedures are usually well tolerated without severe side effects. STUDY DESIGN AND METHODS: We report a severe complication in a 41-year-old unrelated female donor who was allowed to donate PBPCs and was mobilized with 10 microg of G-CSF per kg per day. During PBPC apheresis, she experienced a circulatory arrest after 132 minutes and processing of 7078 mL of blood (twice the donor's blood volume). RESULTS: Immediate cardiopulmonary resuscitation restored sinus rhythm and regulatory respiration without sequelae. Subsequent cardiologic examinations (heart catheterization, electrophysiologic testing, tilting table test) resulted in the diagnosis of a neurocardiogenic syncope. Other cardiac or circulatory disorders could be excluded. The implantation of a cardiac pacemaker was recommended to the donor. The 4-year-old recipient was successfully transplanted with the partial product collected until the arrest occurred. The patient received a total of 2.54 x 106 CD34+ cells per kg of body weight. CONCLUSION: After exclusion of other cardiac diseases, the diagnosed neurocardiogenic syncope probably induced the circulatory arrest during apheresis rather than the administration of G-CSF.  相似文献   

4.
BACKGROUND: Current regimens for peripheral blood progenitor cell (PBPC) mobilization in patients with multiple myeloma are based on daily subcutaneous injections of granulocyte-colony-stimulating factor (G-CSF) starting shortly after cytotoxic therapy. Recently a polyethylene glycol-conjugated G-CSF (pegfilgrastim) was introduced that has a substantially longer t(1/2) than the original formula. STUDY DESIGN AND METHODS: The use of pegfilgrastim was examined at two dose levels for PBPC mobilization in patients with Stage II or III multiple myeloma. Four days after cytotoxic therapy with cyclophosphamide (4 g/m(2)), a single dose of either 6 mg pegfilgrastim (n = 15) or 12 mg pegfilgrastim (n = 15) or daily doses of 8 microg per kg unconjugated G-CSF (n = 15) were administered. The number of circulating CD34+ cells was determined during white blood cell (WBC) recovery, and PBPC harvesting was performed by large-volume apheresis. RESULTS: Pegfilgrastim was equally potent at 6 and 12 mg with regard to mobilization and yield of CD34+ cells. No dose dependence was observed because CD34+ cell concentration peaks were 131 and 85 per microL, respectively, and CD34+ cell yield was 10.2 x 10(6) and 7.4 x 10(6) per kg of body weight, respectively. Pegfilgrastim in either dose was associated with a more rapid WBC recovery (p = 0.03) and an earlier performance of the first apheresis procedure (p < 0.05) in comparison to unconjugated G-CSF. No difference regarding CD34+ cell maximum and yield could be observed. CONCLUSION: A single dose of 6 mg pegfilgrastim is equally potent as 12 mg for mobilization and harvest of PBPCs in patients with multiple myeloma. Because no dose dependency was seen at these dose levels, this might be also true for even smaller doses.  相似文献   

5.
BACKGROUND: It has been previously reported that the number of circulating immature cells (CIC) in peripheral blood (PB) estimates the number of CD34+ cells collected in G-CSF plus chemotherapy-induced PBPC mobilization. The correlation of CIC counts in PB with CD34+ cell yield and its usefulness was evaluated in G-CSF-induced PBPC mobilization for healthy donors. STUDY DESIGN AND METHODS: CIC counts in PB and CD34+ cell counts in the apheresis product from 122 collections were assessed, and the relationship between these two variables was evaluated with the Pearson rank correlation analysis, the chi-squared test, and the U-test. RESULTS: CIC counts were correlated weakly with the number of CD34+ cells per L of blood processed in the apheresis product (Pearson rank correlation analysis; r=0.357, p<0.0001). When a level of 1.7 x 10(9) CICs per L was selected as a cutoff value, the sensitivity and specificity for collecting more than 20 x 10(6) CD34+ cells per L of blood processed were 63.6 and 77.5 percent, respectively. CONCLUSION: The present study suggests that the number of CICs in PB may estimate the number of CD34+ cells collected. The data indicate that CIC counts above 1.7 x 10(9) per L can be used as a good predictor for PBPC collections containing more than 20 x 10(6) CD34+ cells per L of blood processed in a single apheresis procedure.  相似文献   

6.
BACKGROUND: The optimal time for postchemotherapy granulocyte-colony stimulating factor (G-CSF) administration before peripheral blood stem and progenitor cell (PBPC) collection is not well defined. The impact of G-CSF scheduling on the number of CD34+ cells collected by leukapheresis from 65 patients with malignant disease was studied retrospectively. STUDY DESIGN AND METHODS: Chemotherapy was performed on Days 1 and 2 and was followed by G-CSF to mobilize PBPCs. In Group 1, 30 patients received the first dose of G-CSF immediately after the end of chemotherapy, as commonly recommended. In Group 2, 35 patients received the first G-CSF dose after the end of chemotherapy (Days 7 or 8). RESULTS: No difference was observed between the two groups in white cell recovery and the median number of CD34+ cells harvested. The number of leukapheresis procedures necessary to obtain the minimal number of 3 x 10(6) CD34+ cells per kg was the same. The proportion of patients with a failure of PBPC collection was similar, and G-CSF consumption was reduced in Group 2 without increasing infectious risks. CONCLUSION: Early administration of G-CSF after chemotherapy appears not to be a prerequisite for satisfactory PBPC collection. This approach could allow significant savings in terms of medical cost. A randomized and prospective study would be necessary, however, to assess the validity of these conclusions.  相似文献   

7.
BACKGROUND: A clinical study was performed to evaluate the peripheral blood progenitor cell (PBPC) collection, transfusion, and engraftment characteristics associated with use of a blood cell separator (Amicus, Baxter Healthcare). STUDY DESIGN AND METHODS: Oncology patients (n = 31) scheduled for an autologous PBPC transplant following myeloablative therapy were studied. PBPCs were mobilized by a variety of chemotherapeutic regimens and the use of G-CSF. As no prior studies evaluated whether PBPCs collected on the Amicus separator would be viable after transfusion, to ensure patient safety, PBPCs were first collected on another cell separator (CS-3000 Plus, Baxter) and stored as backup. The day after the CS-3000 Plus collections were completed, PBPC collections intended for transfusion were performed using the Amicus instrument. For each transplant, >2.5 x 10(6) CD34+ PBPCs per kg of body weight were transfused. RESULTS: Clinical data collected on the donors immediately before and after PBPC collection with the Amicus device were comparable to donor data similarly obtained for the CS-3000 Plus collections. While the number of CD34+ cells and the RBC volume in the collected products were equivalent for the two devices, the platelet content of the Amicus collections was significantly lower than that of the CS-3000 Plus collections (4.35 x 10(10) platelets/bag vs. 6.61 x 10(10) platelets/bag, p<0.05). Collection efficiencies for CD34+ cells were 64 +/- 23 percent for the Amicus device and 43 +/- 14 percent for the CS-3000 Plus device (p<0.05). The mean time to engraftment for cells collected via the Amicus device was 8.7 +/- 0.7 days for >500 PMNs per microL and 9.7 +/- 1.5 days to attain a platelet count of >20,000 per microL-equivalent to data in the literature. No CS-3000 Plus backup cells were transfused and no serious adverse events attributable to the Amicus device were encountered. CONCLUSIONS: The mean Amicus CD34+ cell collection efficiency was better (p<0.05) than that of the CS-3000 Plus collection. Short-term engraftment was durable. The PBPCs collected with the Amicus separator are safe and effective for use for autologous transplant patients requiring PBPC rescue from high-dose myeloablative chemotherapy.  相似文献   

8.
Mobilization failure is a major concern in patients undergoing hematopoietic cell transplantation, especially in an autologous setting, as almost all donor harvests can be accomplished with granulocyte-colony stimulating factor (G-CSF) alone. Poor mobilizers, defined as those with a peripheral blood CD34+ cell count ≤20 cells/μl after mobilization preceding apheresis is a significant risk factor for mobilization failure. We recommend preemptive plerixafor plus G-CSF (filgrastim, 10?μg/kg daily) as a first mobilization strategy, which yields sufficient peripheral blood progenitor cells (PBPCs) in almost all patients and avoids otherwise unnecessary remobilization. Preemptive plerixafor is administered in patients with a day-4 peripheral blood CD34+ count <15, depending on the disease and the target PBPC amount. Cyclophosphamide is reserved for patients who fail the first PBPC collection. We recommend second mobilization for patients who could not achieve a sufficient PBPC amount with the first mobilization. In these patients, a second attempt with plerixafor plus G-CSF or mobilization with plerixafor in combination with cyclophosphamide and G-CSF is recommended. Increased dose and/or twice daily administration of G-CSF can be considered.  相似文献   

9.
BACKGROUND: Quantification of peripheral blood (PB) CD34+ cells is commonly used to plan peripheral blood progenitor cell (PBPC) collection but is time-consuming. Sysmex has developed a hematology analyzer that can quickly identify a population of immature hematopoietic cells (HPCs) according to cell size, cell density, and differential lysis resistance, which may indicate the presence of PBPCs in PB. This prospective study has evaluated the potential of such method to predict the PBPC mobilization. STUDY DESIGN AND METHODS: A total of 141 patients underwent PBPC mobilization. PB HPCs and PB CD34+ cells were simultaneously quantified with a hematology analyzer (SE2100, Sysmex) and flow cytometry, respectively. The number of blood volumes processed was then based on PB CD34+ cell concentration. RESULTS: The optimal PB HPC level able to predict a minimal level of 10 x 10(6) PB CD34+ cells per L was 5 x 10(6) per L with positive and negative predictive values of 0.93 and 0.36 percent, respectively. For this cutoff point, sensitivity and specificity were 0.81 and 0.65, respectively. The median number of blood volumes processed according to the PB CD34+ cell count allowed us to perform only one apheresis procedure for a majority of patients. CONCLUSION: PB HPC quantification is very useful to quickly determine the initiation of PBPC apheresis especially for patients with higher concentrations. For patients exhibiting a lower HPC count (<5 x 10(6)/L), other parameters such as a CD34 test may be needed. Such a policy associated with a length of apheresis adapted to the richness in the PB CD34+ cells allows for optimizing the organization of centers with an improvement in patient comfort and economical savings.  相似文献   

10.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte-colony-stimulating factor (G-CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 microg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G-CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies. STUDY DESIGN AND METHODS: Various doses of G-CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G-CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G-CSF (median, 3.6 [range, 2.8-4.6] microg/kg/day). Group 2 included 45 patients who received a standard G-CSF dose of 6.0 (5.5-8. 1) microg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens. RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group.The number of leukapheresis procedures necessary to obtain a minimum of 3 x 10(6) CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups. CONCLUSION: The administration of low-dose G-CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection.This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

11.
BACKGROUND: Mobilization and homing of PBPCs are still poorly understood. Thus, a sufficient algorithm for the prediction of PBPC yield in apheresis procedures does not yet exist. STUDY DESIGN AND METHODS: The decline of CD34+ cells in the peripheral blood during apheresis and their simultaneous increase in the collection bag were determined in a prospective study of 18 consecutive apheresis procedures. A cell-kinetic, four-compartment model describing these changes was developed. Retrospective data from 136 apheresis procedures served to further improve this model. A predictive algorithm for the yield was developed that considered the sex, weight, and height of the patient, the number of CD34+ cells in peripheral blood before apheresis, the inlet flow, and the duration of the apheresis. The accuracy of this algorithm was evaluated by comparison of the predicted and the observed yields of CD34+ cells in 105 prospective autologous and 148 retrospective allogeneic apheresis procedures. RESULTS: The correlation between predicted and observed yields was good for the autologous and allogeneic groups with a correlation coefficient (r) of 0.8979 and 0.8311 (p<0.0001), respectively. The regression is described by the equations log (measured value [m]) = 1.0118 + 0.8595 x log (predicted value [p]) for the autologous and log (m) = 2.226 + 0.7559 x log (p) for the allogeneic group. The respective equations for the zero-point regression are log (m) = 1.014 x log (p) and log (m) = 1.026 x log (p). The probability that the measured value was 90 percent or more of the predicted value was 83.8 percent for the autologous and 90.5 percent for the allogeneic apheresis procedures. CONCLUSION: The predictive accuracy of the algorithm and the slope of the zero-point regression curve were higher for allogeneic than autologous PBPC collections. The predictive algorithm may be a useful tool in PBPC harvest, enabling the adaptation of the size of the apheresis to the needs of each patient.  相似文献   

12.
BACKGROUND: A single injection of pegfilgrastim has been shown to be equivalent to daily filgrastim in enhancing neutrophil recovery after chemotherapy, whereas the experiences with pegfilgrastim in mobilization of peripheral blood progenitor cells (PBPCs) are limited. STUDY DESIGN AND METHODS: Forty unselected patients with lymphoma or multiple myeloma were treated with different chemotherapy regimens followed by 6 mg of pegfilgrastim for mobilization of autologous PBPCs. Patients with an inadequate mobilization (blood CD34+ cells 相似文献   

13.
BACKGROUND: The impact of amifostine on PBPC mobilization with paclitaxel and ifosfamide plus G-CSF was assessed. STUDY DESIGN AND METHODS: Forty patients with a median age of 34 years (range, 19-53) who had germ cell tumor were evaluated for high-dose chemotherapy. Patients were randomly assigned to receive either a single 500-mg dose of amifostine (Group A, n = 20) or no amifostine (Group B, n = 20) before mobilization chemotherapy with paclitaxel (175 mg/m(2)) given over 3 hours and ifosfamide (5 g/m(2)) given over 24 hours (TI) on Day 1. G-CSF at 10 microg per kg per day was given subsequent to TI with or without amifostine from Day 3 until the end of leukapheresis procedures. RESULTS: In 2 (10%) of 20 patients receiving amifostine and 3 (15%) of 20 patients not receiving it, no PBPC separation was performed because of mobilization failure. No significant differences were observed in the study arms with regard to the time from chemotherapy until first PBPC collection or the number of apheresis procedures needed to harvest more than 2.5 x 10(6) CD34+ cells per kg. Furthermore, leukapheresis procedures yielded comparable doses of CD34+ cells per kg (3.4 x 10(6) vs. 3.6 x 10(6); p = 0.82), MNCs per kg (2.7 x 10(8) vs. 2.6 x 10(8); p = 0.18), and CFU-GM per kg (15.9 x 10(4) vs. 19.3 x 10(4); p = 0.20). Patients in Group A had higher numbers of circulating CD34+ cells on Day 10 (103.0/microL vs. 46.8/microL; p = 0.10) and on Day 11 (63.0/microL vs.14.3/microL; p = 0.04) than did patients in Group B. CONCLUSION: Administration of a single dose of amifostine before chemotherapy with TI mobilized higher numbers of CD34 cells in the circulation, but did not enhance the overall collection efficiency in the present trial.  相似文献   

14.
BACKGROUND: Autologous peripheral blood progenitor cells (PBPCs) are usually collected after the administration of conventional-dose chemotherapy (CDCT) and growth factors. However, there are no data available concerning the collection of PBPCs after high-dose chemotherapy (HDCT) and autologous hematopoietic transplantation in a larger series. STUDY DESIGN AND METHODS: Patients (n = 30) underwent leukapheresis for PBPC harvest after CDCT. After HDCT and autografting, the collection of a second PBPC autograft was attempted. RESULTS: Leukapheresis was performed after CDCT in all cases at a median of 118 CD34+ cells per microL (range, 18-589) and resulted in 6.4 x 10(6) CD34+ cells per kg (range, 1.7-29.0). After HDCT and autografting, 24 patients (80%) underwent secondary leukapheresis, although they had a significantly lower median of peripheral blood (PB) CD34+ cells (30/microL; range, 10-171; p < 0.001). In these patients a median of 3.6 x 10(6) CD34+ cells per kg (range, 1.6-10.1) was collected in the post-transplantation course. In the remaining six patients (20%) with PB CD34+ cells < 10 per microL, no PBPC harvesting was performed. These so-called poor mobilizers had received significantly less CD34+ cells for autologous transplantation than patients with successful post-HDCT mobilization (median, 2.5 x 10(6)/kg [range, 1.7-3.0] vs. 6.5 x 10(6)/kg [range, 3.2-19.6]; p < 0.001). CONCLUSION: Collection of PBPCs is possible in most patients during the recovery phase of hematopoiesis after HDCT plus autografting, and the number of circulating PBPCs may be related to the CD34+ cell dose transfused by the preceding autograft.  相似文献   

15.
BACKGROUND: There are still limited data on the efficacy and safety of repeated donations of granulocyte-colony-stimulating factor (G-CSF)-mobilized peripheral blood progenitor cells (PBPCs) for allogeneic transplantation. STUDY DESIGN AND METHODS: Sixty-seven healthy donors undergoing two consecutive mobilizations of PBPCs within a median interval of 5 months (range, 0.1-47 months) were investigated. For both first mobilization (FM) and second mobilization (SM), G-CSF (lenograstim) at 7.5 microg per kg per day was administered. RESULTS: The nonhematologic side effects were comparable between both mobilizations. A significantly lower yield of CD34+ cells x 10(6) per kg of donor weight was obtained on Day 5 of SM in female (n = 31; FM, 5.0; SM, 3.23; p = 0.008) but not in male (n = 36; FM, 5.96; SM, 5.36; p = 0.24) donors. Multivariate analysis identified a lower CD34+ blood concentration on Day 5 of FM (p < 0.001) as well as female sex (p = 0.015) as independent risk factors for a lower yield of progenitor cells, whereas donor age and body mass index, interval between donations, and schedule of G-CSF application showed no significant impact. CONCLUSION: The identified risk factors allow the estimation of the efficacy of a SM in an individual donor before G-CSF administration, thus avoiding distress to both the donor and the recipient.  相似文献   

16.
BACKGROUND: Failure to mobilize PBPCs for auto-logous transplantation has mostly been attributed to previous therapy and poses therapeutic problems. STUDY DESIGN AND METHODS: The role of underlying disease was analyzed in 17 of 73 (23%) patients with PBPC mobilization failure, and secondary mobilization with high-dose filgrastim was attempted. RESULTS: Of 16 patients with acute leukemia, 13 (81%) mobilized poorly. In contrast, of 57 patients with non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple myeloma, and solid tumor, 53 (93%, p < 0.001) showed good PBPC mobilization. Relapsed disease did not predispose to poor mobilization. As secondary mobilization attempt, 7 patients received 25 micro g per kg per day filgrastim without chemotherapy leading to a 3.7 +/- 2.8-fold (SD) increase in the maximum number of circulating CD34+ cells (p = 0.104). PBPC apheresis yielded 3.3 (+/-0.5) x 10(6) CD34+ cells per kg of body weight in 5 patients. Four poor mobilizers received 50 micro g per kg per day filgrastim as second or third mobilization attempt. Circulating CD34+ cells in these patients increased by 1.5 (+/-0.7) compared with the primary G-CSF application. CONCLUSION: Selective PBPC mobilization failure was seen in patients with acute leukemia whereas remarkably good mobilization was seen in other malignancies. Increasing the filgrastim dose to 25 micro g per kg per day may allow PBPC collection in patients failing PBPC mobilization.  相似文献   

17.
BACKGROUND: Efficient collection of progenitor cells is essential for PBPC transplantation. Two apheresis machines (Amicus, Baxter Healthcare; and Spectra, Gambro BCT, software version 4.7) were compared prospectively by a crossover trial. STUDY DESIGN AND METHODS: Apheresis collections were performed for two consecutive days on patients for autologous and donors for allogeneic PBPC transplantation. The patients and donors, receiving a G-CSF, were randomized into two groups. In Group I, PBPCs were collected by the Amicus on the 1st day and the Spectra on the 2nd day, and the reverse order was used with Group II. A total of 60 apheresis procedures of 30 (16 in Group I and 14 in Group II) among 40 patients and donors enrolled were performed and evaluated. RESULTS: The nucleated cell counts, MNC counts, CD34+ PBPC counts, and amounts of CFU-GM collected per procedure were similar with the Amicus and the Spectra. On the other hand, the decrease of peripheral blood platelet counts of patients and donors was more prominent from using Spectra than Amicus (p < 0.0001). Components collected by the Amicus had fewer platelets than those collected by the Spectra (p < 0.0001). The efficiencies of collecting nucleated cells, MNCs, and CD34+ PBPCs were not different between the machines (p > 0.05). However, the efficiency of collecting platelets was significantly higher with Spectra than with Amicus (p < 0.0001). The Amicus took longer than the Spectra to process the same volume (p < 0.05). CONCLUSION: Amicus is superior to Spectra in avoiding apheresis-induced thrombocytopenia caused by platelets contaminating the collected samples. Therefore, the Amicus is useful for patients with thrombocytopenia or with a less-than-normal platelet count.  相似文献   

18.
We have retrospectively evaluated the results of two cycles of mobilization and collection of peripheral blood progenitor cells (PBPC) from 46 healthy donors included in the Spanish National Donor Registry. Mobilization involved the administration of granulocyte colony-stimulating factor (G-CSF) at a median dose of 10 microg/kg per day, and apheresis was begun after the fourth dose of G-CSF in both cycles. The median interval between both mobilizations was 187 days (range, 7-1428 days). The incidence and types of side-effects were similar after both donations, with 25 and 26 donors developing some toxicity after the first and second donations, respectively. The median number of CD34(+) cells collected was higher after the first mobilization than after the second (5.15 versus 3.16 x 10(6)/kg, respectively; p = 0.05), and 29 donors yielded fewer CD34(+) cells after the second mobilization (p = 0.018). A lower proportion of donors yielded CD34(+) cell counts >4 x 10(6)/kg after the second cycle than after the first (52% versus 76%, respectively; p = 0.057). Our study shows that second rounds of PBPC collection from normal donors are well tolerated but are associated with a significantly reduced number of CD34(+) cells collected when the same mobilization scheme is used.  相似文献   

19.
BACKGROUND: Selection of CD34+ cells by specific immunoselection leads to a significant loss of those cells. The factors influencing the yield and purity are not well identified. The results of CD34+ selection from peripheral blood progenitor cells (PBPCs) with high and low platelet contamination that are harvested with two different cell separators are reported. STUDY DESIGN AND METHODS: A progenitor cell concentrator (Ceprate SC, CellPro) was used to select CD34+ cells from 41 PBPC concentrates from 23 consecutive patients with relapsed non-Hodgkin's lymphoma (n = 3), breast cancer (n = 17), and multiple myeloma (n = 3). PBPC collection was performed by using two cell separators (CS3000 Plus, Fenwal: Group A, n = 11; and Spectra, COBE: Group B, n = 9). To reduce platelet contamination in the Spectra PBPC concentrates, an additional low-speed centrifugation was performed before CD34+ cell selection (Group C, n = 3). Leukapheresis components were stored overnight at 4 degrees C and combined with the next day's collection before the CD34+ selection procedure in 19 patients. RESULTS: A median of 1.5 leukapheresis procedures per patient were performed. Pooled PBPC concentrates showed no statistical difference in median numbers of white cells and CD34+ cells in Groups A and B: 3.2 (0.8-9.2) versus 4.4 (1.6-8. 3) x 10(10) white cells per kg and 15.0 (4.7-24.0) versus 12.0 (5. 6-34.0) x 10(6) CD34+ cells per kg. Platelet contamination was significantly higher in Group B: 0.67 (0.15-2.4) versus 2.3 (0.5-7. 1) x 10(11) (p = 0.0273). After the selection process, there was a significantly greater loss of CD34+ cells in Group B than in Group A: 39.1 versus 63.2 percent (p = 0.0070), with a median purity of 78. 0 percent versus 81.0 percent. An additional low-speed centrifugation before CD34+ cell selection seemed to reduce CD34+ cell loss in Group C with 16.9, 31.9, and 37.5 percent, respectively. CONCLUSION: CD34+ cell selection from PBPC concentrates resulted in an increased loss of CD34+ cells in concentrates with a higher platelet content. To improve CD34+ yield, PBPC concentrates with an initially low platelet contamination should be used, or additional low-speed centrifugation should be performed.  相似文献   

20.
应用重组人粒系集落刺激因子(rhG—CSF)对健康供者进行动员并采集造血干细胞用于异基因外周血造血干细胞移植已在临床广泛应用,本研究通过对影响外周干细胞动员和采集效果的多因素分析,进一步探讨最佳动员方案及采集时机。采取回顾性方法分析了431例健康供者外周血干细胞动员采集效果,并进一步分析了供者一般特征、rhG—CSF动员天数、每日皮下注射次数、剂量与采集效果的关系。结果表明:rhG—CSF在动员中平均应用剂量为5.7μg/(kg·d),平均采集1.7次,收获单个核细胞数平均为9.57×10^8/kg,CD34^+细胞平均为4.91×10^6/kg。绝大多数供者不良反应轻微。多因素分析结果显示,采集效率主要与供者体重指数,采集天数相关。rhG—CSF动员第5天采集的供者,其MNC数、CD34^+细胞数及第一次单采成功率均优于其他时间采集的供者。同时,本组供者应用rhG—CSF剂量较小且剂量范围较窄,rhG—CSF剂量不如采集时间对采集物质量的影响明显。结论:小剂量应用rhG—CSF动员并于第5天开始采集是健康供者造血干细胞动员的较理想方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号