首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPR174 plays a crucial role in immune responses, but the role of GPR174 in the pathological progress of sepsis remains incompletely understood. In this study, we generated a sepsis model by cecal ligation and puncture (CLP) to investigate the role of GPR174 in regulating functions and underlying mechanism of marginal zone B (MZ B) cells in sepsis. We found that in Gpr174 deficient mice, the number of splenic MZ B cells was increased. Moreover, Gpr174−/− MZ B cells exhibited an enhanced response to LPS stimulation in vitro. By using the CLP-induced sepsis model, we demonstrated that the increased MZ B cells attenuated early inflammatory responses during sepsis. RNA sequencing results revealed that the expression of c-fos in splenic B lymphocytes was upregulated in Gpr174 deficient mice. However, the protective role of increased MZ B cells in Gpr174 deficient mice was weakened by a c-fos-specific inhibitor. Collectively, these findings suggested that GPR174 plays an immunomodulatory role in early immune responses during sepsis through the regulation of MZ B cells.  相似文献   

2.
Urinary trypsin inhibitor (UTI), also known as ulinastatin, has been reported to protect multiple organs against inflammation- and/or injury-induced dysfunction. In the present study, we aimed to investigate the immunomodulation effects of a recombinant human ulinastatin (urinary trypsin inhibitor, UTI) (rhUTI) on splenic dendritic cells (DCs) in cecal ligation and puncture (CLP)-induced septic mice. CLP mice were treated with rhUTI intramuscularly at 0, 12, and 24 h after procedure. Splenic CD11c+ DCs were isolated and accessed with flow cytometry for apoptotic or phenotypic analysis. Protein markers and cytokines were determined with Western blotting or ELISA. Treatment with rhUTI could markedly upregulate levels of costimulatory molecules (CD80, CD86) and MHC-II on surface of the splenic DC in CLP mice. The apoptotic rate of splenic DCs was decreased in CLP mice after rhUTI treatment. The survival rate of septic mice was increased after treatment with rhUTI. In addition, protein level of markers in endoplasmic reticulum stress (ERS)-related apoptotic pathways (including GRP78, caspase-12, and CHOP) were obviously down-regulated in the rhUTI-treated group when compared with the CLP group. These results indicate that rhUTI protects CLP-induced sepsis in mice by improving immune response of splenic DCs and inhibiting the excessive ERS-mediated apoptosis.  相似文献   

3.
Fulminant hepatitis (FH), characterized by overwhelmed inflammation and massive hepatocyte apoptosis, is a life-threatening and high mortality rate. Gastrodin (GTD), a phenolic glucoside extracted from Gastrodiaelata Blume, exerts anti-apoptosis, and anti-inflammatory activities. In the present study, we aimed to evaluate whether GTD treatment could alleviate lipopolysaccharide and d-galactosamine (LPS/GalN)-induced FH in mice and its potential mechanisms. These data suggested that GTD treatment remarkably protected against LPS/GalN-induced FH by enhancing the survival rate of mice, reducing ALT and AST levels, attenuating histopathological changes, and suppressing interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α secretion. In addition, GTD treatment relieved hepatic apoptosis by the regulation of peroxisome proliferator-activated receptors (PPARs), P53 and caspase-3/9. Furthermore, GTD treatment could significantly inhibit inflammation-related signaling pathways activated by LPS/GalN, including the suppression of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) and nuclear factor-kappa B (NF-κB) activation. Importantly, GTD treatment effectively restored but not induced LPS/GalN-reduced the expression of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, as well as the level of pro-autophagy proteins. Taken together, our investigation indicated that GTD played an essential role in liver protection by relieving hepatocyte apoptosis and inflammation reaction, which may be closely involved in the inhibition of NLRP3 inflammasome and NF-κB activation, regulation of apoptosis-related proteins expression, and the recovery of AMPK/ACC/autophagy.  相似文献   

4.
Liver disease is a global health problem and is a primary cause of mortality and morbidity worldwide. Specifically, it accounts for approximately two million deaths per year worldwide. The common causes of mortality are the complications of liver cirrhosis, viral hepatitis and hepatocellular carcinoma (HCC). The mechanism of immune response and infiltration of cellular immunity is essential for promoting hepatic inflammatory, especially when the liver is abundant with lymphocytes and phagocytic cells. The injured and immunity cells secret different types of interleukins (cytokines), which can directly or indirectly amplify or inhibit liver inflammation. Many types of cells can produce interleukin-34 (IL-34) that induces the release of multiple inflammatory factors in patients via interaction with various cytokines. This phenomenon leads to the enlargement of the inflammatory response to liver diseases and induces liver fibrosis. This review highlights the proposed roles of IL-34 in liver diseases and discusses the recent findings of IL-34 that support its emerging role in HCC. Specifically, the facilitating effects of these new insights on the rational development of IL-34 for targeted therapies in the future are explored.  相似文献   

5.
Ferula communis L. is thought to possess a wide range of therapeutic qualities. This plant's safety is critical regarding its potential uses as a medicine. Using the techniques outlined in the OECD recommendations, the present study aimed to assess the acute and subacute toxicity profiles of Ferula communis aqueous extract (FC-Ext) in mice. In the acute study, the FC-Ext was administered to adult male and female Swiss albino mice through oral and intraperitoneal routes at doses of 0–4 g/kg. The general behavioral effects, mortality rates, and latency of mortality were evaluated for a period of 14 days. For the sub-acute dose study, the FC-Ext was administered orally to adult mice at doses of 125, 250, and 500 mg/kg on a daily basis for 28 days. Body weight and selected biochemical and hematological parameters were measured, and histological examinations of the liver, kidney, and spleen were conducted to assess any signs of organ damage at the end of the treatment period. The results of the acute toxicity study demonstrated that the LD50 values for the oral and intraperitoneal administration of FC-Ext were 3.6 g/kg and 2.3 g/kg, respectively. In the subacute toxicity study of FC-Ext, no significant changes in body weight were observed. However, a substantial increase in the weights of the liver, kidney, and spleen was observed in male mice. The administration of FC-Ext to mice at doses higher than 250 mg/kg resulted in a decrease in white blood cells and platelets in both sexes and a reduction in red blood cells and mean corpuscular hemoglobin concentration in males and hemoglobin in females. No changes in biochemical parameters were observed. Microscopic examination of vital organs such as the liver, kidney, and spleen revealed no significant injuries. Based on the current results, the aqueous extract of Ferula communis has low toxicity. These findings provide important information about the toxicity profile of the traditional medicine plant Ferula communis.  相似文献   

6.
《Drug discovery today》2022,27(1):326-336
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.  相似文献   

7.
8.
Cardiovascular diseases are a major cause of mortality, and vascular injury, a common pathological basis of cardiovascular disease, is deeply correlated with macrophage apoptosis and inflammatory response. Genistein, a type of phytoestrogen, exerts cardiovascular protective activities, but the underlying mechanism has not been fully elucidated. In this study, RAW264.7 cells were treated with genistein, lipopolysaccharide (LPS), nuclear factor-kappa B (NF-κB) inhibitor, and/or protein kinase B (AKT) agonist to determine the role of genistein in apoptosis and inflammation in LPS-stimulated cells. Simultaneously, high fat diet-fed C57BL/6 mice were administered genistein to evaluate the function of genistein on LPS-induced cardiovascular injury mouse model. Here, we demonstrated that LPS obviously increased apoptosis resistance and inflammatory response of macrophages by promoting miR-21 expression, and miR-21 downregulated tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) expression by targeting the coding region. Genistein reduced miR-21 expression by inhibiting NF-κB, then blocked toll-like receptor 4 (TLR4) pathway and AKT phosphorylation dependent on TIPE2, resulting in inhibition of LPS. Our research suggests that miR-21/TIPE2 pathway is involved in M1 macrophage apoptosis and inflammatory response, and genistein inhibits the progression of LPS-induced cardiovascular injury at the epigenetic level via regulating the promoter region of Vmp1 by NF-κB.  相似文献   

9.
Interleukin-1 receptor-associated kinases (IRAKs), particularly IRAK1 and IRAK4, are important in transducing signal from Toll-like receptor 4. We interrogated if a selective inhibition of IRAK1 could alleviate lipopolysaccharide (LPS)-induced sepsis. In this study, we tested the impact of a novel selective IRAK1 inhibitor Jh-X-119-01 on LPS-induced sepsis in mice. Survival at day 5 was 13.3% in control group where septic mice were treated by vehicle, while the values were 37.5% (p = 0.046, vs. control) and 56.3% (p = 0.003, vs. control) for 5 mg/kg and 10 mg/kg Jh-X-119-01-treated mice. Jh-X-119-01 alleviated lung injury and reduced production of TNFα and IFNγ in peritoneal macrophages. Jh-X-119-01 decreased phosphorylation of NF-κB and mRNA levels of IL-6 and TNFα in LPS-treated macrophages in vitro. Jh-X-119-01 selectively inhibited IRAK1 phosphorylation comparing with a non-selective IRAK1/4 inhibitor which simultaneously inhibited phosphorylation of IRAK1 and IRAK4. Both Jh-X-119-01 and IRAK1/4 inhibitor increased survival of septic mice, but Jh-X-119-01-treated mice had higher blood CD11b+ cell counts than IRAK1/4 inhibitor-treated ones [24 h: (1.18 ± 0.26) × 106/ml vs. (0.79 ± 0.20) × 106/ml, p = 0.001; 48 h: (1.00 ± 0.30) × 106/ml vs. (0.67 ± 0.23) × 106/ml, p = 0.042]. IRAK1/4 inhibitor induced more apoptosis of macrophages than Jh-X-119-01 did in vitro. IRAK1/4 inhibitor decreased protein levels of anti-apoptotic BCL-2 and MCL-1 in RAW 264.7 and THP-1 cells, an effect not seen in Jh-X-119-01-treated cells. In conclusion, Jh-X-119-01 selectively inhibited activation of IRAK1 and protected mice from LPS-induced sepsis. Jh-X-119-01 showed less toxicity on macrophages comparing with a non-selective IRAK1/4 inhibitor.  相似文献   

10.
Recent studies have shown that epigenetic factors may affect immune responses. We previously reported that histone methyltransferase enhancer of zeste homolog 2 (EZH2) was involved in the innate inflammatory responses both in animal model of sepsis and in septic patients. In this study, we prospectively evaluated EZH2 expression kinetics in peripheral CD4+ and CD8+ T cells and HLA-DR expression in CD14+ cells from 48 patients with sepsis and 48 healthy controls. Results showed higher level of EZH2 in CD4+ T cells and CD8+ T cells in sepsis patients than in controls. Meanwhile, EZH2 expression was correlated with CD27 status on T cells. Mean fluorescence intensity (MFI) of EZH2 in CD8+ T cells on day 1 independently predicted death in septic patients. Also, the combination of CD8+ T cell EZH2 expression with APACHEII and SOFA score could enhance the prognostic predictive ability. Moreover, multivariate logistic regression analysis showed that increased expression (proportion and MFI) of EZH2 in CD4+ and CD8+ lymphocytes on day 3 were independently associated with nosocomial infection in septic patients. Additionally, spearman correlation analysis indicated that the levels of EZH2 in CD4+ T cells and CD8+ T cells correlated to CD14+ cells-expressing HLA-DR in patients with sepsis at each time point. Overall, these findings suggest that EZH2 in CD4+ T cells or/and CD8+ T cells may be a novel biomarker for predicting adverse outcomes (mortality and secondary infectious complications) in patients with sepsis.  相似文献   

11.
The metastasis of cervical cancer has always been a clinical challenge. We investigated the effects of low-dose naltrexone (LDN) on the epithelial mesenchymal transition of cervical cancer cells in vitro as well as its influence on macrophage polarization and associated cytokines in vivo. The results suggested that LDN supressed the proliferation, migration and invasion abilities and promote their apoptosis in Hela cells, whereas the opioid growth factor receptor (OGFr) silenced significantly reversed these effects in vitro. Knockdown the expression of OGFr, the inhibitory of LDN on EMT was weakened. LDN could inhibit cervical cancer progression in nude mice. In additon, LDN indirectly reduced the number of tumor-associated macrophages (TAMs), mainly M2 macrophages, and decreased expression of anti-inflammatory factor IL-10 in the serum of nude mice. These findings demonstrate that LDN could be a potential treatment for cervical cancer.  相似文献   

12.
3,4,5-Trihydroxycinnamic acid (THCA), a derivative of hydroxycinnamic acid, has been reported to exert anti-inflammatory and antioxidant activities. However, its anti-inflammatory effects in chronic obstructive pulmonary disease (COPD) have not yet been elucidated. Therefore, we explored the protective effects of THCA on pulmonary inflammation in an experimental COPD model elicited by cigarette smoke (CS) and lipopolysaccharide (LPS). Oral administration of THCA significantly inhibited the activity of elastase, the release of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO) and the numbers of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) of experimental COPD mice. THCA also exerted inhibitory effects on the recruitment of inflammatory cells, the levels of PAS positive cells and cAMP-response-element-binding protein (CREB) activation, and the expression of phosphodiesterase 4 (PDE4) in the lungs of experimental COPD mice. In addition, THCA exerted a regulatory effect on the activation of p38, ERK and nuclear factor-κB (NF-κB) in the lungs of experimental COPD mice. THCA also significantly upregulated the expression of NAD(P)H dehydrogenase (quinone 1) 1 (NQO1) and the activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) in the lungs of mice. Furthermore, THC restored the reduction of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in the lungs of experimental COPD mice. In phorbol myristate acetate (PMA)-stimulated A549 or H292 airway epithelial cells, pretreatment of THCA dose-dependently inhibited the generation of IL-6. THCA also led to increased NQO1 expression in H292 cells. Collectively, these protective effects of antioxidant THCA were notably excellent and are thought to be associated with the downregulation of MAPK (partial)/NF-κB signaling and upregulation of NQO1 and SIRT1 expression.  相似文献   

13.
14.
Efferocytosis as an apoptotic cell (AC) clearance mechanism facilitates the removal of dangerous and damaged cells, an important process in regulating normal homeostasis. Failure to correctly execute apoptosis and efferocytosis is associated with atherosclerosis, as well as chronic inflammatory and autoimmune disorders such as systemic lupus erythematosus (SLE). Effective and timely efferocytosis involves various molecules that act as “Find-Me” signals or as alarmins to quickly allow identification by phagocytic cells. In recent years, most of these molecules have been investigated, but less attention has been paid to the nuclear molecules associated with efferocytosis of ACs and necrotic cells (NCs). These molecules have several functions including acting as alarmin signals for faster recognition of ACs, facilitating the cleanup of ACs and for maintaining self-tolerance. The same group of molecules is also implicated in several inflammatory and autoimmune diseases. Previous studies have shown that these molecules also serve as targets for pharmacological agents such as necrostatins, recombinant Fcnb, anti-histone, neutralizing antibodies, calbiochem, aminophylline, activated protein C, CD24IgG recombinant fission protein, and recombinant thrombomodulin. Thus, greater understanding of these molecules/pathways will enable developments in the treatment and/or prevention of various disorders, especially autoimmune diseases. Here, we review current knowledge about the mechanisms by which nucleic acids, histones, nucleosomes and monosodium urate microcrystals (MSU) can act as alarmins/“Find-Me” signals, how they might be stimulated in defective efferocytosis and their function and importance as biomarkers for prognosis and treatment of atherosclerosis, inflammatory disorders and autoimmune diseases.  相似文献   

15.
16.
Neuroinflammation contributes to the generation of epileptic seizures and is associate with neuropathology and comorbidities. Transient receptor potential melastatin 2 (TRPM2) expresses in various cell types in the brain. It plays a pathological role in a wide range of neuroinflammatory diseases, but has yet been studied in epilepsy. Here, a temporal lobe epilepsy model was generated by pilocarpine administration in mice. At 24 h, knockout (KO) TRPM2 alleviated the level of neuroinflammation, showing a reduction of IL-1β, TNF-α, CXCL2 and IL-6 mRNA production, NLRP3, ASC, and Caspase-1 protein expression and glial activation. Moreover, KO TRPM2 alleviated neurodegeneration, concurrent with reduced Beclin-1 and ATG5 protein expression. Later, KO TRPM2 ameliorated the epilepsy-induced psychological disorders, with improved performance in the open-field, Y maze and novel object recognition test. Together, these results suggest that TRPM2 facilitates epilepsy-related brain injury and may shed light on its potential as a therapeutic target for epilepsy-associated neuropathology and comorbidities.  相似文献   

17.
Viral myocarditis (VMC) is characterized by cardiac inflammation and excessive inflammatory responses after viral infection. SENP2, a deSUMO-specific protease, has been reported to regulate antiviral innate immunity. This study aimed to investigate whether SENP2 affects CVB3-induced VMC. We generated a CVB3-induced VMC mouse model in 6-week-old cardiomyocyte-specific Senp2 knockout mice. The mice were sacrificed at days 0, 2, 4 and 6 after CVB3 infection. The survival rate, body weight, myocardial histopathological changes, viral load, cytokine levels and antiviral gene expression in cardiac tissues of both groups were investigated. Our study indicated that the expression of Senp2 in primary cardiomyocytes was upregulated by CVB3 infection. Moreover, deletion of Senp2 in the heart exacerbated CVB3 infection-induced myocarditis, facilitated CVB3 viral replication and downregulated the expression of antiviral proteins. In conclusion, our findings suggest a protective role for SENP2 in CVB3-induced VMC.  相似文献   

18.
Rosacea is a chronic inflammatory disease in face. Hydroxychloroquine (HCQ), an anti-malaria drug, was reported to have anti-inflammation activities. However, the role of HCQ on rosacea remains unclear. In this study, we revealed the potential molecular mechanism by which HCQ improved rosacea in rosacea-like mice and mast cells (MCs). Moreover, the effects of HCQ treatment for rosacea patients were investigated. In this study, we found HCQ ameliorated the rosacea-like phenotype and MCs infiltration. The elevated pro-inflammatory factors and mast cell protease were significantly inhibited by HCQ treatment in rosacea-like mice. In vitro, HCQ suppresses LL37-induced MCs activation in vitro, including the release of inflammatory factors, chemotaxis, degranulation and calcium influx. Moreover, HCQ attenuated LL37-mediated MCs activation partly via inhibiting KCa3.1-mediated calcium signaling. Thus, these evidences suggest HCQ ameliorated rosacea-like dermatitis may be by regulating immune response of MCs. Finally, the 8-week HCQ treatment exerted satisfactory therapeutic effects on erythema and inflammatory lesions of rosacea patients, indicating that it is a promising drug for rosacea in clinical treatment.  相似文献   

19.
《药学学报(英文版)》2022,12(5):2252-2267
Aristolochic acids (AAs) have long been considered as a potent carcinogen due to its nephrotoxicity. Aristolochic acid I (AAI) reacts with DNA to form covalent aristolactam (AL)–DNA adducts, leading to subsequent A to T transversion mutation, commonly referred as AA mutational signature. Previous research inferred that AAs were widely implicated in liver cancer throughout Asia. In this study, we explored whether AAs exposure was the main cause of liver cancer in the context of HBV infection in mainland China. Totally 1256 liver cancer samples were randomly retrieved from 3 medical centers and a refined bioanalytical method was used to detect AAI–DNA adducts. 5.10% of these samples could be identified as AAI positive exposure. Whole genome sequencing suggested 8.41% of 107 liver cancer patients exhibited the dominant AA mutational signature, indicating a relatively low overall AAI exposure rate. In animal models, long-term administration of AAI barely increased liver tumorigenesis in adult mice, opposite from its tumor-inducing role when subjected to infant mice. Furthermore, AAI induced dose-dependent accumulation of AA–DNA adduct in target organs in adult mice, with the most detected in kidney instead of liver. Taken together, our data indicate that AA exposure was not the major threat of liver cancer in adulthood.  相似文献   

20.
Concanavalin A (Con A) activates innate immunity and causes liver damage mediated by cytotoxic T lymphocytes (CTL) in mice. The Pancreatic lipase-related protein 2 (PLRP2) is induced by interleukin (IL)-4 in vitro in CTLs and associated with CTL functions. We examined the role of PLRP2 in a mouse model of Con A-induced T cell-mediated hepatitis. PLRP2-knockout and wild-type (WT) mice were inoculated with 20 mg/kg Con A. Mice lacking PLRP2 reduced Con A-induced hepatitis, which was manifested by a decrease in serum aminotransferase and histopathological assessment. The expression and secretion of cytokines including tumor necrosis factor-alpha (TNF-α), interferon (IFN)-γ, IL-6, and IL-1β were suppressed in Con A-treated PLRP2-knockout mice. In PLRP2 knockout mice, Con A-induced liver chemokines and adhesion molecules (such as MIP-1α, MIP-1β, ICAM-1 and MCP-1) were also down regulated. In the WT liver treated with Con A, the number of T cells (CD4+ and CD8+) and macrophages (CD11b+ F4/80+) increased significantly, while the lack of PLRP2 reduced the number of T cells in the liver, but had no effect on macrophages. The shift of the metabolic profiles was impaired in Con A-treated PLRP2-knockout mice compared to WT mice. In conclusion, these results indicate that PLRP2 deficiency reduces T-cell mediated Con A-induced hepatitis, and suggest PLRP2 is a potential target of anti-inflammatory and immunomodulatory drugs to treat immune-mediated hepatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号