首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Estrogens enhance skeletal growth during early sexual maturation, whereas high estradiol levels during late puberty result in growth plate fusion in humans. Although the growth plates do not fuse directly after sexual maturation in rodents, a reduction in growth plate height is seen by treatment with a high dose of estradiol. It is unknown whether the effects of estrogens on skeletal growth are mediated directly via estrogen receptors (ERs) in growth plate cartilage and/or indirectly via other mechanisms such as the growth hormone/insulin‐like growth factor 1 (GH/IGF‐1) axis. To determine the role of ERα in growth plate cartilage for skeletal growth, we developed a mouse model with cartilage‐specific inactivation of ERα. Although mice with total ERα inactivation displayed affected longitudinal bone growth associated with alterations in the GH/IGF‐1 axis, the skeletal growth was normal during sexual maturation in mice with cartilage‐specific ERα inactivation. High‐dose estradiol treatment of adult mice reduced the growth plate height as a consequence of attenuated proliferation of growth plate chondrocytes in control mice but not in cartilage‐specific ERα?/? mice. Adult cartilage‐specific ERα?/? mice continued to grow after 4 months of age, whereas growth was limited in control mice, resulting in increased femur length in 1‐year‐old cartilage‐specific ERα?/? mice compared with control mice. We conclude that during early sexual maturation, ERα in growth plate cartilage is not important for skeletal growth. In contrast, it is essential for high‐dose estradiol to reduce the growth plate height in adult mice and for reduction of longitudinal bone growth in elderly mice. © 2010 American Society for Bone and Mineral Research.  相似文献   

2.
3.
Uncovering additional causal clinical traits and exposure variables is important when studying osteoporosis mechanisms and for the prevention of osteoporosis. Until recently, the causal relationship between anthropometric measurements and osteoporosis had not been fully revealed. In the present study, we utilized several state-of-the-art Mendelian randomization (MR) methods to investigate whether height, body mass index (BMI), waist-to-hip ratio (WHR), hip circumference (HC), and waist circumference (WC) are causally associated with two major characteristics of osteoporosis, bone mineral density (BMD) and fractures. Genomewide significant (p ≤ 5 × 10−8) single-nucleotide polymorphisms (SNPs) associated with the five anthropometric variables were obtained from previous large-scale genomewide association studies (GWAS) and were utilized as instrumental variables. Summary-level data of estimated bone mineral density (eBMD) and fractures were obtained from a large-scale UK Biobank GWAS. Of the MR methods utilized, the inverse-variance weighted method was the primary method used for analysis, and the weighted-median, MR-Egger, mode-based estimate, and MR pleiotropy residual sum and outlier methods were utilized for sensitivity analyses. The results of the present study indicated that each increase in height equal to a single standard deviation (SD) was associated with a 9.9% increase in risk of fracture (odds ratio [OR] = 1.099; 95% confidence interval [CI] 1.067–1.133; p = 8.793 × 10−10) and a 0.080 SD decrease of estimated bone mineral density (95% CI −0.106–(−0.054); p = 2.322 × 10−9). We also found that BMI was causally associated with eBMD (beta = 0.129, 95% CI 0.065–0.194; p = 8.113 × 10−5) but not associated with fracture. The WHR adjusted for BMI, HC adjusted for BMI, and WC adjusted for BMI were not found to be related to fracture occurrence or eBMD. In conclusion, the present study provided genetic evidence for certain causal relationships between anthropometric measurements and bone mineral density or fracture risk. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

4.
Thrombosis after liver transplantation substantially impairs graft- and patient survival. Inevitably, heritable disorders of coagulation originating in the donor liver are transmitted by transplantation. We hypothesized that genetic variants in donor thrombophilia genes are associated with increased risk of posttransplant thrombosis. We genotyped 775 donors for adult recipients and 310 donors for pediatric recipients transplanted between 1993 and 2018. We determined the association between known donor thrombophilia gene variants and recipient posttransplant thrombosis. In addition, we performed a genome-wide association study (GWAS) and meta-analyzed 1085 liver transplantations. In our donor cohort, known thrombosis risk loci were not associated with posttransplant thrombosis, suggesting that it is unnecessary to exclude liver donors based on thrombosis-susceptible polymorphisms. By performing a meta-GWAS from children and adults, we identified 280 variants in 55 loci at suggestive genetic significance threshold. Downstream prioritization strategies identified biologically plausible candidate genes, among which were AK4 (rs11208611-T, p = 4.22 × 10−05) which encodes a protein that regulates cellular ATP levels and concurrent activation of AMPK and mTOR, and RGS5 (rs10917696-C, p = 2.62 × 10−05) which is involved in vascular development. We provide evidence that common genetic variants in the donor, but not previously known thrombophilia-related variants, are associated with increased risk of thrombosis after liver transplantation.  相似文献   

5.
Roux-en Y gastric bypass (RYGB) surgery is an effective treatment for obesity; however, it may negatively impact skeletal health by increasing fracture risk. This increase may be the result not only of decreased bone mineral density but also of changes in bone microstructure, for example, increased cortical porosity. Increased tibial and radial cortical porosity of patients undergoing RYGB surgery has been observed as early as 6 months postoperatively; however, local microstructural changes and associated biological mechanisms driving this increase remain unclear. To provide insight, we studied the spatial distribution of cortical porosity in 42 women and men (aged 46 ± 12 years) after RYGB surgery. Distal tibias and radii were evaluated with high-resolution peripheral quantitative computed tomography (HR-pQCT) preoperatively and at 12 months postoperatively. Laminar analysis was used to determine cortical pore number and size within the endosteal, midcortical, and periosteal layers of the cortex. Paired t tests were used to compare baseline versus follow-up porosity parameters in each layer. Mixed models were used to compare longitudinal changes in laminar analysis outcomes between layers. We found that the midcortical (0.927 ± 0.607 mm−2 to 1.069 ± 0.654 mm−2, p = 0.004; 0.439 ± 0.293 mm−2 to 0.509 ± 0.343 mm−2, p = 0.03) and periosteal (0.642 ± 0.412 mm−2 to 0.843 ± 0.452 mm−2, p < 0.0001; 0.171 ± 0.101 mm−2 to 0.230 ± 0.160 mm−2, p = 0.003) layers underwent the greatest increases in porosity over the 12-month period at the distal tibia and radius, respectively. The endosteal layer, which had the greatest porosity at baseline, did not undergo significant porosity increase over the same period (1.234 ± 0.402 mm−2 to 1.259 ± 0.413 mm−2, p = 0.49; 0.584 ± 0.290 mm−2 to 0.620 ± 0.299 mm−2, p = 0.35) at the distal tibia and radius, respectively. An alternative baseline-mapping approach for endosteal boundary definition confirmed that cortical bone loss was not primarily endosteal. These findings indicate that increases in cortical porosity happen in regions distant from the endosteal surface, suggesting that the underlying mechanism driving the increase in cortical porosity is not merely endosteal trabecularization. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   

6.
The growth plates are key engines of skeletal development and growth and contain a top reserve zone followed by maturation zones of proliferating, prehypertrophic, and hypertrophic/mineralizing chondrocytes. Trauma or drug treatment of certain disorders can derange the growth plates and cause accelerated maturation and premature closure, one example being anti-hedgehog drugs such as LDE225 (Sonidegib) used against pediatric brain malignancies. Here we tested whether such acceleration and closure in LDE225-treated mice could be prevented by co-administration of a selective retinoid antagonist, based on previous studies showing that retinoid antagonists can slow down chondrocyte maturation rates. Treatment of juvenile mice with an experimental dose of LDE225 for 2 days (100 mg/kg by gavage) initially caused a significant shortening of long bone growth plates, with concomitant decreases in chondrocyte proliferation; expression of Indian hedgehog, Sox9, and other key genes; and surprisingly, the number of reserve progenitors. Growth plate involution followed with time, leading to impaired long bone lengthening. Mechanistically, LDE225 treatment markedly decreased the expression of retinoid catabolic enzyme Cyp26b1 within growth plate, whereas it increased and broadened the expression of retinoid synthesizing enzyme Raldh3, thus subverting normal homeostatic retinoid circuitries and in turn accelerating maturation and closure. All such severe skeletal and molecular changes were prevented when LDE-treated mice were co-administered the selective retinoid antagonist CD2665 (1.5 mg/kg/d), a drug targeting retinoid acid receptor γ, which is most abundantly expressed in growth plate. When given alone, CD2665 elicited the expected maturation delay and growth plate expansion. In vitro data showed that LDE225 acted directly to dampen chondrogenic phenotypic expression, a response fully reversed by CD2665 co-treatment. In sum, our proof-of-principle data indicate that drug-induced premature growth plate closures can be prevented or delayed by targeting a separate phenotypic regulatory mechanism in chondrocytes. The translation applicability of the findings remains to be studied. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

7.
Polygenic risk scores (PRSs) calculated from genome-wide association studies (GWASs) of non-melanoma skin cancer (NMSC) in a general, non-transplant setting have recently been shown to predict risk of and time to post-renal transplant skin cancer. In this study, we set out to test these findings in a cohort of heart, lung, and liver transplant patients to see whether these scores could be applied across different organ transplant types. Using the PRS from Stapleton et al (2018), PRS was calculated for each sample across a European ancestry heart, lung, and liver transplant cohorts (n = 523) and tested as predictor of time to NMSC post-transplant. The top PRS, squamous cell carcinoma (SCC) pT1 x 10−5, (n SNPs = 1953), SCC pT1 x 10−6, and SCC pT1 x 10−6 (n SNPs = 1061) were significantly predictive in the time to NMSC, SCC, and basal cell carcinoma (BCC) analysis across organ (P = .006, .02, and .02, respectively). We observed here a similar direction of effect and effect size [NMSC HR = 1.31(1.08-1.59)] to that in the original discovery study with increased polygenic burden leading to a faster time to developing NMSC. In summary, we found that PRS of NMSC calculated from GWAS of NMSC in non-transplant populations independently replicated in this cohort of heart, lung, and liver transplant.  相似文献   

8.
Nao Otomo  Hsing-Fang Lu  Masaru Koido  Ikuyo Kou  Kazuki Takeda  Yukihide Momozawa  Michiaki Kubo  Yoichiro Kamatani  Yoji Ogura  Yohei Takahashi  Masahiro Nakajima  Shohei Minami  Koki Uno  Noriaki Kawakami  Manabu Ito  Tatsuya Sato  Kei Watanabe  Takashi Kaito  Haruhisa Yanagida  Hiroshi Taneichi  Katsumi Harimaya  Yuki Taniguchi  Hideki Shigematsu  Takahiro Iida  Satoru Demura  Ryo Sugawara  Nobuyuki Fujita  Mitsuru Yagi  Eijiro Okada  Naobumi Hosogane  Katsuki Kono  Masaya Nakamura  Kazuhiro Chiba  Toshiaki Kotani  Tsuyoshi Sakuma  Tsutomu Akazawa  Teppei Suzuki  Kotaro Nishida  Kenichiro Kakutani  Taichi Tsuji  Hideki Sudo  Akira Iwata  Kazuo Kaneko  Satoshi Inami  Yuta Kochi  Wei-Chiao Chang  Morio Matsumoto  Kota Watanabe  Shiro Ikegawa  Chikashi Terao 《Journal of bone and mineral research》2021,36(8):1481-1491
Adolescent idiopathic scoliosis (AIS) is a common disease causing three-dimensional spinal deformity in as many as 3% of adolescents. Development of a method that can accurately predict the onset and progression of AIS is an immediate need for clinical practice. Because the heritability of AIS is estimated as high as 87.5% in twin studies, prediction of its onset and progression based on genetic data is a promising option. We show the usefulness of polygenic risk score (PRS) for the prediction of onset and progression of AIS. We used AIS genomewide association study (GWAS) data comprising 79,211 subjects in three cohorts and constructed a PRS based on association statistics in a discovery set including 31,999 female subjects. After calibration using a validation data set, we applied the PRS to a test data set. By integrating functional annotations showing heritability enrichment in the selection of variants, the PRS demonstrated an association with AIS susceptibility (p = 3.5 × 10−40 with area under the receiver-operating characteristic [AUROC] = 0.674, sensitivity = 0.644, and specificity = 0.622). The decile with the highest PRS showed an odds ratio of as high as 3.36 (p = 1.4 × 10−10) to develop AIS compared with the fifth in decile. The addition of a predictive model with only a single clinical parameter (body mass index) improved predictive ability for development of AIS (AUROC = 0.722, net reclassification improvement [NRI] 0.505 ± 0.054, p = 1.6 × 10−8), potentiating clinical use of the prediction model. Furthermore, we found the Cobb angle (CA), the severity measurement of AIS, to be a polygenic trait that showed a significant genetic correlation with AIS susceptibility (rg = 0.6, p = 3.0 × 10−4). The AIS PRS demonstrated a significant association with CA. These results indicate a shared polygenic architecture between onset and progression of AIS and the potential usefulness of PRS in clinical settings as a predictor to promote early intervention of AIS and avoid invasive surgery. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

9.
The growth plate provides a substantial source of mesenchymal cells in the endosteal marrow space during endochondral ossification. The current model postulates that a group of chondrocytes in the hypertrophic zone can escape from apoptosis and transform into cells that eventually become osteoblasts in an area beneath the growth plate. The growth plate is composed of cells with various morphologies; particularly at the periphery of the growth plate immediately adjacent to the perichondrium are “borderline” chondrocytes, which align perpendicularly to other chondrocytes. However, in vivo cell fates of these special chondrocytes have not been revealed. Here we show that borderline chondrocytes in growth plates behave as transient mesenchymal precursor cells for osteoblasts and marrow stromal cells. A single-cell RNA-seq analysis revealed subpopulations of Col2a1-creER-marked neonatal chondrocytes and their cell type–specific markers. A tamoxifen pulse to Pthrp-creER mice in the neonatal stage (before the resting zone was formed) preferentially marked borderline chondrocytes. Following the chase, these cells marched into the nascent marrow space, expanded in the metaphyseal marrow, and became Col(2.3 kb)-GFP+ osteoblasts and Cxcl12-GFPhigh reticular stromal “CAR” cells. Interestingly, these borderline chondrocyte-derived marrow cells were short-lived, as they were significantly reduced during adulthood. These findings demonstrate based on in vivo lineage-tracing experiments that borderline chondrocytes in the peripheral growth plate are a particularly important route for producing osteoblasts and marrow stromal cells in growing murine endochondral bones. A special microenvironment neighboring the osteogenic perichondrium might endow these chondrocytes with an enhanced potential to differentiate into marrow mesenchymal cells. © 2019 American Society for Bone and Mineral Research.  相似文献   

10.
Autophagy is activated during nutritionally depleted or hypoxic conditions to facilitate cell survival. Because growth plate is an avascular and hypoxic tissue, autophagy may have a crucial role during chondrogenesis; however, the functional role and underlying mechanism of autophagy in regulation of growth plate remains elusive. In this study, we generated TamCartAtg7–/– (Atg7cKO) mice to explore the role of autophagy during endochondral ossification. Atg7cKO mice exhibited growth retardation associated with reduced chondrocyte proliferation and differentiation, and increased chondrocyte apoptosis. Meanwhile, we observed that Atg7 ablation mainly induced the PERK‐ATF4‐CHOP axis of the endoplasmic reticulum (ER) stress response in growth plate chondrocytes. Although Atg7 ablation induced ER stress in growth plate chondrocytes, the addition of phenylbutyric acid (PBA), a chemical chaperone known to attenuate ER stress, partly neutralized such effects of Atg7 ablation on longitudinal bone growth, indicating the causative interaction between autophagy and ER stress in growth plate. Consistent with these findings in vivo, we also observed that Atg7 ablation in cultured chondrocytes resulted in defective autophagy, elevated ER stress, decreased chondrocytes proliferation, impaired expression of col10a1, MMP­13, and VEGFA for chondrocyte differentiation, and increased chondrocyte apoptosis, while such effects were partly nullified by reduction of ER stress with PBA. In addition, Atg7 ablation‐mediated impaired chondrocyte function (chondrocyte proliferation, differentiation, and apoptosis) was partly reversed in CHOP–/– cells, indicating the causative role of the PERK‐ATF4‐CHOP axis of the ER stress response in the action of autophagy deficiency in chondrocytes. In conclusion, our findings indicate that autophagy deficiency may trigger ER stress in growth plate chondrocytes and contribute to growth retardation, thus implicating autophagy as an important regulator during chondrogenesis and providing new insights into the clinical potential of autophagy in cartilage homeostasis. © 2017 American Society for Bone and Mineral Research.  相似文献   

11.
Previous genome‐wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta‐analyses of these results have identified numerous single‐nucleotide polymorphisms (SNPs) of modest effect at genome‐wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta‐analysis restricted to premenopausal white women from four cohorts (n = 4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age‐ and weight‐adjusted bone‐mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p = 1.7 × 10?9) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p = 1.3 × 10?8) achieved genome‐wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic‐American, and African‐American descent (combined n = 5597 for femoral neck; n = 4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p = 1.3 × 10?11; ESR1/C6orf97 joint p = 1.4 × 10?10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p < 1 × 10?5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. © 2013 American Society for Bone and Mineral Research.  相似文献   

12.
The mechanism whereby poor intrauterine growth increases risk of adult hip fracture is unclear. We report the association between birth weight and proximal femoral geometry and density in community‐dwelling elderly men. We used self‐reported birth weight, measured adult height and weight and proximal femoral quantitative computed tomography (QCT) measurements of femoral neck axis length, cross‐sectional area, and volumetric BMD (vBMD) among the participants in the Osteoporotic Fractures in Men (MrOS), a cohort study of community‐dwelling US men aged 65 and older. We compared men with birth weight <7 pounds (lower birth weight [LBW]; n = 501) and ≥9 pounds (higher birth weight [HBW]; n = 262) with those weighing 7–8.9 pounds (medium birth weight [MBW], referent group; n = 1068) using linear regression adjusting for current age, height, and BMI. The mean age of the 1831 men who had both birth weight and QCT measurements was 73 years (SD 5.9). Compared with the referent MBW, HBW men had concordantly longer femoral neck (+0.16 SD; p = .028) and cross‐sectional area (+0.24 SD, p = .001). LBW men had a smaller cross‐sectional (–0.26 SD, p < .001) but longer femoral neck for their height (+0.11 SD, p = .05). Neither cortical nor trabecular vBMD at the femoral neck was associated with birth weight. These findings support the hypothesis that the skeletal envelope, but not density, is set, in part, at birth. Further research exploring the association between early developmental factors and lifetime fracture risk is needed and may inform primary preventative strategies for fracture prevention. © 2011 American Society for Bone and Mineral Research  相似文献   

13.
Wrist fracture is not only one of the most common osteoporotic fractures but also a predictor of future fractures at other sites. Wrist bone mineral density (BMD) is an important determinant of wrist fracture risk, with high heritability. Specific genes underlying wrist BMD variation are largely unknown. Most published genome‐wide association studies (GWASs) have focused only on a few top‐ranking single‐nucleotide polymorphisms (SNPs)/genes and considered each of the identified SNPs/genes independently. To identify biologic pathways important to wrist BMD variation, we used a novel pathway‐based analysis approach in our GWAS of wrist ultradistal radius (UD) BMD, examining approximately 500,000 SNPs genome‐wide from 984 unrelated whites. A total of 963 biologic pathways/gene sets were analyzed. We identified the regulation‐of‐autophagy (ROA) pathway that achieved the most significant result (p = .005, qfdr = 0.043, pfwer = 0.016) for association with UD BMD. The ROA pathway also showed significant association with arm BMD in the Framingham Heart Study sample containing 2187 subjects, which further confirmed our findings in the discovery cohort. Earlier studies indicated that during endochondral ossification, autophagy occurs prior to apoptosis of hypertrophic chondrocytes, and it also has been shown that some genes in the ROA pathway (e.g., INFG) may play important roles in osteoblastogenesis or osteoclastogenesis. Our study supports the potential role of the ROA pathway in human wrist BMD variation and osteoporosis. Further functional evaluation of this pathway to determine the mechanism by which it regulates wrist BMD should be pursued to provide new insights into the pathogenesis of wrist osteoporosis. © 2010 American Society for Bone and Mineral Research  相似文献   

14.
To investigate the semiquantitative methylation alterations of MLH1 and MSH2 and the possible association among methylation of MLH1 and MSH2, sperm DNA fragmentation and sperm chromatin condensation in idiopathic oligoasthenoteratozoospermic men. Seventy-five idiopathic infertile men and 52 fertile and/or normozoospermic men were included in the study. SDF was analysed using the TUNEL assay in semen samples of 100 men. Promoter methylation of MLH1 and MSH2 genes was assessed by semiquantitative methylight analysis in semen samples of 39 and 40 men respectively. Sperm chromatin condensation was evaluated using aniline blue staining in 114 men. MLH1 promoter methylation was positively correlated with the percentage of aniline blue positive spermatozoa (r = 0.401, p = 0.0188). On the other hand, MSH2 promoter methylation was negatively correlated with sperm concentration and total sperm count (r = −0.421, p = 0.0068 and r = 0.4408, p = 0.009 respectively). The percentage of aniline blue positive spermatozoa in the control group was significantly lower than in the OAT group (p < 0.0001) and negatively correlated with total sperm count (r = −0.683, p < 0.0001), progressive sperm motility (r = −0.628, p < 0.0001), total motility (r = −0.639, p < 0.0001) and normal morphology (r = −0.668, p < 0.0001). Promoter methylation profile of MLH1 and MSH2 genes may play role on sperm DNA packaging and conventional semen parameters respectively.  相似文献   

15.

Summary

Osteoporosis is a major public health problem characterized by low bone mineral density (BMD). This replication study confirmed 38 single-nucleotide polymorphisms (SNPs) out of 139 SNPs previously reported in three recent genome-wide association studies (GWASs) in an independent US white sample. Ten SNPs achieved combined p?<?3.6?×?10?4.

Introduction

BMD is under strong genetic control. This study aims to verify the potential associations between BMD and candidate genes/loci reported by GWAS of FHS100K, Icelandic deCODE, and UK-NL.

Methods

Eight promising (at the genome-wide significant level after Bonferroni correction) and 131 available sub-promising (at the most stringent p value, p?<?5.5?×?10?5 in the three GWASs reports) SNPs were selected. By using genotypic information from Affymetrix 500 K SNP arrays, we tested their associations with BMD in 1,000 unrelated US whites. Fisher's combined probability method was used to quantify the overall evidence of association. BMD was measured by dual energy X-ray absorptiometry.

Results

Two promising SNPs, rs3762397 and rs3736228, were replicated in the current study with p?<?0.05. Besides, 36 sub-promising SNPs were replicated at the same significant level. Ten SNPs achieved significant combined p?<?3.6?×?10?4 (0.05/139 SNPs, corrected for multiple testing).

Conclusions

Osteoporosis susceptibility of 38 SNPs was replicated in 1,000 unrelated US whites. This study showed promise for replication of some initial genome-wide association signals.  相似文献   

16.
Parathyroid hormone–related peptide (PTHrP) 1–84 knock‐in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild‐type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27‐/‐Pthrp KI). We then compared p27‐/‐Pthrp KI mice with p27‐/‐, Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)‐positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)‐, type I collagen‐, and osteocalcin‐positive bone areas were increased in p27‐/‐ mice and reduced in both Pthrp KI and p27‐/‐Pthrp KI mice compared with WT mice; however, these parameters were increased in p27‐/‐Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF‐1, and Bmi‐1, and the numbers of total colony‐forming unit fibroblastic (CFU‐f) and ALP‐positive CFU‐f were similarly increased in p27‐/‐Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action of PTHrP to regulate skeletal growth and development. © 2015 American Society for Bone and Mineral Research.  相似文献   

17.
More rapid skeletal maturation in African‐American (AA) children is recognized and generally attributed to an increased prevalence of obesity. The objective of the present study was to evaluate the effects of population ancestry on relative skeletal maturation in healthy, non‐obese children and adolescents, accounting for body composition and sexual maturation. To do this, we leveraged a multiethnic, mixed‐longitudinal study with annual assessments for up to 7 years (The Bone Mineral Density in Childhood Study and its ancillary cohort) conducted at five US clinical centers. Participants included 1592 children, skeletally immature (45% females, 19% AA) who were aged 5 to 17 years at study entry. The primary outcome measure was relative skeletal maturation as assessed by hand‐wrist radiograph. Additional covariates measured included anthropometrics, body composition by dual‐energy X‐ray absorptiometry (DXA), and Tanner stage of sexual maturation. Using mixed effects longitudinal models, without covariates, advancement in relative skeletal maturation was noted in self‐reported AA girls (~0.33 years, p < 0.001) and boys (~0.43 years, p < 0.001). Boys and girls of all ancestry groups showed independent positive associations of height, lean mass, fat mass, and puberty with relative skeletal maturation. The effect of ancestry was attenuated but persistent after accounting for covariates: for girls, 0.19 years (ancestry by self‐report, p = 0.02) or 0.29 years (ancestry by admixture, p = 0.004); and for boys, 0.20 years (ancestry by self‐report, p = 0.004), or 0.29 years (ancestry by admixture, p = 0.004). In summary, we conclude that advancement in relative skeletal maturation was associated with AA ancestry in healthy, non‐obese children, independent of growth, body composition, and puberty. Further research into the mechanisms underlying this observation may provide insights into the regulation of skeletal maturation. © 2016 American Society for Bone and Mineral Research.  相似文献   

18.
Two renal-risk variants in the apolipoprotein L1 gene (APOL1) in African American (AA) deceased donors (DD) are associated with shorter renal allograft survival after transplantation. To identify additional genes contributing to allograft survival, a genome-wide association study was performed in 532 AA DDs. Phenotypic data were obtained from the Scientific Registry of Transplant Recipients. Association and single-nucleotide polymorphism (SNP)-by-APOL1 interaction tests were conducted using death-censored renal allograft survival accounting for relevant covariates. Replication and inverse-variance-weighted meta-analysis were performed using data from 250 AA DD in the Genomics of Transplantation study. Accounting for APOL1, multiple SNPs near the Nudix Hydrolase 7 gene (NUDT7) showed strong independent effects (P = 1.6 × 10−8-2.2 × 10−8). Several SNPs in the Translocation protein SEC63 homolog (SEC63; P = 2 × 10−9-3.7 × 10−8) and plasmacytoma variant translocation 1 (PVT1) genes (P = 4.0 × 10−8-7 × 10−8) modified the effect of APOL1 on allograft survival. SEC63 is expressed in human renal tubule cells and glomeruli, and PVT1 is associated with diabetic kidney disease. Overall, associations were detected for 41 SNPs (P = 2 × 10−9-5 × 10−8) contributing independently or interacting with APOL1 to impact renal allograft survival after transplantation from AA DD. Given the small sample size of the discovery and replication sets, independent validations and functional genomic efforts are needed to validate these results.  相似文献   

19.

Background

The incidence of post-operative nausea and vomiting (PONV) remains at about 30% despite all therapeutic efforts to reduce it. The clinical risk factors guiding the prophylactic treatment are well established, but genetic factors associated with PONV remain poorly known. The aim of this study was to explore clinical and genetic factors impacting PONV by performing a genome-wide association study (GWAS) together with relevant clinical factors as covariates, and systematically attempt to replicate previously reported PONV associations. Relevant clinical factors are explored with logistic regression model.

Methods

This was an observational case control study in Helsinki University Hospital between 1 August 2006 and 31 December 2010. One thousand consenting women with elevated risk for PONV, undergoing breast cancer surgery with standardised propofol anaesthesia and antiemetics. After exclusions for clinical reasons and failed genotyping, 815 patients were included with 187 PONV cases and 628 controls. Emergence of PONV up to 7th post-operative day was recorded. PONV at 2–24 h after surgery was selected to be the primary outcome. The GWAS explored associations between PONV and 653 034 genetic variants. Replication attempts included 31 variants in 16 genes.

Results

The overall incidence of PONV up to 7th post-operative day was 35%, where 3% had PONV at 0–2 h and 23% at 2–24 h after surgery. Age, American Society of Anaesthesiologists status, the amount of oxycodone used in the post-anaesthesia care unit, smoking status, previous PONV, and history of motion sickness were statistically significant predictive factors in the logistic model. The receiver operating characteristic-area under the curve of 0.75 (95% CI 0.71–0.79) was calculated for the model. The GWAS identified six variants with suggestive association to PONV (p < 1 × 10−5). Of the previously reported variants, association with the DRD2 variant rs18004972 (TaqIA) was replicated (p = .028).

Conclusions

Our GWAS approach did not identify any high-impact PONV susceptibility variants. The results provide some support for a role of dopamine D2 receptors in PONV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号