首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karyotypes were examined in 56 cases of Ph1-positive hematologic disorders based on direct examination of bone marrow material and culture of blood for 24 hr without phytohemagglutinin (PHA). Various banding techniques (Q, followed by R or C, where necessary) were used. The series of patients consisted of 21 females and 35 males with the ages ranging from 3 to 72 years. In three cases, the clinical and hematologic picture at the time of diagnosis and karyotyping was not compatible with chronic myeloid leukemia (CML): 1 case had acute myeloblastic leukemia (AML), another acute lymphoblastic leukemia (ALL) and the third subacute myeloid leucosis. The results are as follows: In three cases (two female, one male), no Ph1 translocation could be demonstrated in any of the metaphases either with Q- or R-banding. In 50 cases (19 female, 31 male), a standard Ph1 translocation, t(9;22)(q34;q11), was observed. In two of these cases, ages 45 and 47, the Ph1 translocation was accompanied by loss of the Y chromosome in all the metaphases examined. Finally, in three cases (all male), variant Ph1-translocations were found: t(7;9)(9;22)(q35?;q31?;q11), t(3;9;22)(p21;q34;q11), and t(1;9)(9;22)(q21;q34;q11).  相似文献   

2.
Seventy-seven patients were identified with Rare recurring (excluding 11q23, 21q22, inv(16), and t(15;17)) chromosome abnormalities among 511 patients with treatment-related myelodysplastic syndromes and acute leukemia accepted from centers in the United States, Europe, and Japan. The abnormality subsets included 3q21q26 (17 patients), 11p15 (17 patients), t(9;22)(q34;q11) (10 patients), 12p13 (9 patients), t(8;16)(p11;p13) (9 patients), and an "other" subset, which included t(6;9)(p23;q34) (3 patients), t(10;11)(p13;q13 approximately q21) (3 patients), t(1;17)(p36;q21) (2 patients), t(8;14)(q24;q32) (2 patients), t(11;19)(q13;q13) (2 patients), t(1;3)(p36;q21) (2 patients), and t(3;5)(q21;q31) (1 patient). Increased karyotypic complexity with additional balanced and unbalanced rearrangements was observed in 70% of cases. Among 54 cases with secondary abnormalities, chromosome 5 and/or 7 abnormalities were observed in 59%. The most frequent primary diseases were breast cancer (24 cases), Hodgkin disease (14 cases), non-Hodgkin lymphoma (10 cases), and de novo ALL (5 cases). Thirty-seven patients received alkylating agents plus topoisomerase II inhibitors with or without radiation therapy. The presenting diagnosis was t-AML in 47 cases, t-MDS in 23 cases (10 progressed to t-AML), and t-ALL in seven cases, five of whom had a t(9;22). The median latency time from initiation of original therapy to therapy-related disease diagnosis was quite long (69 months), and the overall median survival from the date of therapy-related disease diagnosis was very short (7 months). The 1-year survival rate was 34 +/- 7%, with no significant differences among subsets. Comparison with previously reported cases showed increased karyotypic complexity and adult presentation of pediatric-associated chromosome abnormalities.  相似文献   

3.
Variant Ph translocations in chronic myeloid leukemia   总被引:3,自引:0,他引:3  
Variant translocations were found in eight of 142 consecutive patients with Ph-positive, chronic myeloid leukemia encountered in our laboratory during the last decade. Two patients had simple, two-way variant translocations: t(17;22)(p13;q11) and t(16;22)(q24;q11). Both of these patients had an additional translocation involving chromosomes #9: t(7;9)(q22;q34) and t(9;17)(q34;q21), respectively. Complex variant translocations were found in four cases: t(2;9;22)(p23q12;q34;q11), t(3;9;22)(p21;q34;q11), t(9;12;22)(q34;q13;q11q13), and t(13;17;22)(p11;p11q21;q11). In two cases, the only discernable cytogenetic aberration was del(22)(q11). A review of the chromosomal breakpoints involved in this series and in 185 cases of variant Ph translocations previously reported in the literature reveals that a disproportionately large number of breakpoints are located in light-staining regions of G-banded chromosomes. Furthermore, the breakpoints in simple variant translocations are more often located in terminal chromosomal regions, whereas, the breakpoints in complex translocations typically affect nonterminal bands. No obvious correlation was detected between variant Ph translocation breakpoints and either fragile sites, oncogene locations, or consistent chromosome breakpoints in other malignancies.  相似文献   

4.
Band 11q23 is known to be involved in translocations and insertions with a variety of partner chromosomes. They lead to MLL rearrangement, resulting in a fusion with numerous genes. We report here 2 male adults in whom a diagnosis of acute myelomonoblastic leukemia (FAB M4) and acute monoblastic leukemia (FAB M5) was made. Conventional cytogenetic techniques showed a 45,XY,t(1;11)(p32;q23),-7 karyotype in the first case and a 46,XY, t(11;17)(q23;q21) in the second case. Fluorescent in situ hybridization (FISH) with a specific MLL probe showed the gene to be disrupted, the 3' region being translocated on the derivative chromosomes 1 and 17, respectively. Fourteen and 24 patients, including ours, with acute myeloblastic leukemia associated with a t(1;11)(p32;q23) and a t(11;17)(q23;q21), respectively have been reported in the literature. Several patients with the latter translocation have also been identified to have acute lymphoblastic leukemia (ALL). Although both translocations are preferentially associated with monocytic differentiation, the t(11;17)(q23;q21) is more common in adults and has been reported in many patients with ALL, compared to the t(1;11)(p32;q23).  相似文献   

5.
Eleven patients with Burkitt's lymphoma (BL), i.e., small noncleaved non-Hodgkin's lymphoma, and 5 patients with Burkitt-type acute lymphocytic leukemia (ALL-L3) were selected for chromosome study. Two of the 16 patients had no B-cell markers, but the erythrocyte marker--glycophorin A--was present on the surface of the leukemic blasts. The critical breakpoint at 8q24 was detected in 14 of the 16 patients, whereas this aberration was not detected in any of the 134 patients belonging to other subgroups of non-Hodgkin's lymphoma or ALL that we studied during the same period. In addition to the t(8;14)(q24;q32), the following translocations with the breakpoint at 8q24 were seen: t(2;8)(p11;q24), t(8;11)(q24;q13) in BL, and t(2;8;14)(p11 or p12;q24;q32) in ALL. Additional aberrations seen more than once were trisomy #7 and abnormalities in chromosomes #1, #11, and #13.  相似文献   

6.
Bone marrow cells from the majority of patients with acute promyelocytic leukemia (APL) are characterized by t(15;17)(q22;q11-12). At least 12 variant translocations have both also reported, and in each case, either abnormal chromosome 15 or del(17q) or both were involved in complex rearrangements. We report a patient with APL showing two translocations without apparent involvement of chromosome 15 and without del(17q). The karyotype was 46,XY,t(7;12)(p15;p13),t(11;17)(q13;q12). Rearrangement involving t(11;17) is probably associated with APL, while t(7;12) appears to be therapy related.  相似文献   

7.
A fragile site on the long arm of chromosome #16 (q22) was detected in a 24-year-old man with pancytopenia. During the course of the disease he developed an inverted duplication of region q11-12 of chromosome #1 and a translocation between chromosomes #9 and #13: t(9;13)(p22;q32). These abnormalities, as well as an additional iso-like marker chromosome that consisted of one normal 9p and the abnormal 9p arm, were detected in Epstein-Barr nuclear antigen-positive B-cell cultures. Two years later, evolution of the abnormal clone with loss of chromosome #7 and, subsequently, chromosome #22 occurred in connection with development of acute myeloid leukemia. Although the heritable fragile site on chromosome #16 was present in all cell populations investigated, it was not involved in the evolution of the abnormal karyotype. This fragile chromosome #16 also was found in 4 of 11 family members in whom chromosome analysis was performed, thus suggesting this aberration was inherited in a dominant autosomal pattern. The incidence of the heritable fragile site in normal and leukemic cells of the patient, as well as stimulated blood cultures of his relatives, are reported. In addition, the possible relationship between this constitutional chromosome breakage syndrome and the occurrence of leukemia is analyzed.  相似文献   

8.
目的 探讨中国南方地区原发性眼附属器黏膜相关淋巴组织结外边缘区B细胞淋巴瘤(简称MALT淋巴瘤)分子遗传学异常的发生情况.方法应用间期荧光原位杂交(FISH)方法,检测57例来自中国南方部分地区眼附属器MALT淋巴瘤病例组织中t(11;18)(q21;q21)/API2-MALT1、t(1;14)(p22;q32)/IgH-bcl-10、t(14;18)(q32;q21)/IgH-MALT1以及涉及bcl-6和FOXP1基因的染色体易位等分子遗传学异常.结果 57例眼附属器MALT淋巴瘤标本中,有9例携带染色体易位,总的发生率为15.8%.其中4例(7.0%)为t(11;18)(q21;q21)/API2-MALT1,1例(1.8%)为t(14;18)(q32;q21)/IgH-MALT1,1例(1.8%)为涉及bcl-6基因的染色体易位,3例(5.3%)为涉及IgH但未知与其易位伙伴基因的染色体易位.另外,伴有3个bcl-6基因或3个MALT1基因拷贝的分别有17例(29.8%)和21例(36.8%),同时伴有3个bcl-6基因和3个MALT1基因拷贝的有12例(21.1%).结论中国南方地区眼附属器MALT淋巴瘤中,存在MALT淋巴瘤特异性相关染色体易位t(11;18)(q21;q21)/API2-MALT1和t(14;18)(q32;q21)/IgH-MALT1,与中国北方地区和北美的报道有明显差异,进一步证实眼附属器MALT淋巴瘤的染色体易位存在地域性差异.MALT1基因3拷贝和bcl-6基因3拷贝现象是中国南方地区眼附属器MALT淋巴瘤中最常见的分子遗传学异常,提示其可能与MALT淋巴瘤的发病机制有关.  相似文献   

9.
染色体复杂重排的细胞遗传学检测及遗传咨询   总被引:1,自引:0,他引:1  
目的 以4例染色体复杂重排新核型的确诊为例,探讨这类染色体异常的检测方法及遗传咨询。方法 应用常规G显带技术分析4例复杂易位患者的染色体核型,其中2例为智力低下患者,另2例来自有自然流产史的夫妇。2例智力低下患者应用FISH和CGH技术进一步分析并检测其父母核型。查询相关数据库检索4例核型的发生率。结果 4例患者的核型分别为46,XYqh+,t(1;12;2;10)(q25;q11;p14;p11),inv(1)(p22q25),46,XY,t(7;21;8)(p13;q22;p21),46,XX,t(3;7;10)(q28;p15;q22)和46,XY,t(2;16;5)(q33;p12;q33)。2例有智力低下患者经FISH和CGH检测未发现其他染色体的异常,未见染色体微小重复或缺失。4例核型均为国内外文献未曾报道的新核型。结论 染色体复杂重排的遗传学检测需要综合考虑多种核型分析方法的结果,染色体复杂重排的遗传咨询需要着重结合其重排类型和临床症状进行分析。  相似文献   

10.
Cytogenetic abnormalities are observed in approximately one half of cases of myelodysplastic syndrome (MDS). Partial or complete chromosome losses and chromosome gains are frequently found, but there is a relatively high incidence of unbalanced translocations in MDS. We describe here two cases of MDS with an unbalanced translocation, der(11)t(11;12)(q23;q13). Both patients were 69 years of age and diagnosed with refractory anemia with excess of blasts in transformation (RAEB-t) according to the high percentage of blasts in the peripheral blood. Cytoplasmic hypogranulation of neutrophils was evident as a dysplastic change. The blasts were positive for CD4 and CD41a as well as CD13, CD33, CD34 and HLA-DR in both cases. Chromosome analysis showed complex karyotypes including a der(11)t(1;11)(q11;p15)t(11;12)(q23;q13) in case 1 and der(11)t(11;12)(q23;q13) in case 2 plus several marker chromosomes. Spectral karyotyping confirmed the der(11)t(11; 12)(q23;q13) and clarified the origin of marker chromosomes, resulting in del(5q) and del(7q). Fluorescence in situ hybridization (FISH) analyses with a probe for the MLL gene demonstrated that the breakpoints at 11q23 were telomeric to the MLL gene in both cases. FISH also showed that the breakpoint at 11p15 of the case 1 was telomeric to the NUP98 gene. Considering another reported case, our results indicate that the der(11)t(11;12)(q23;q13) is a recurrent cytogenetic abnormality and may be involved in the pathogenesis of advanced-stage MDS.  相似文献   

11.
A patient with acute myeloblastic leukemia (AML-M2) and a balanced translocation, t(9;11)(p21;q23), is described. The translocation appears to be the same as that previously reported in some patients with acute monoblastic leukemia (AMoL-M5). This suggests that, although t(9;11)(p21;q23) frequently may be associated with AMoL, the translocation may not be specific for that disorder.  相似文献   

12.
Bone marrow clones with abnormal chromosomes were observed in 56% of 66 patients with forms of acute myeloid leukemia [French-American-British (FAB) M1-M6]. Acute myeloblastic leukemia (AML, M1 and M2) was the most common form, and 65% of these patients showed chromosomal abnormalities compared with 41% of patients with acute myelomonocytic leukemia (AMMoL, M4). The recognized nonrandom chromosomal abnormalities found were trisomy 8, monosomy 5 or 7, trisomy 1q, t(6;9), t(8;21), t(15;17), and abnormalities in 17q. There was also a strong involvement of chromosome No. 11: Abnormalities were found in eight patients when their leukemia was diagnosed and in a further three patients during the course of karyotypic evolution. Six of these patients had AMMoL or AMoL. Complex or multiple clones were found in 37% of AML patients at diagnosis. Our AML patients had a reduced frequency of abnormalities in chromosome No. 5 or 7 and an increased frequency of abnormalities in chromosome No. 8 compared with studies reported in other countries (p = 0.01). This difference suggests that in New Zealand AML might be caused by factors different from those operating in more industrialized centers.  相似文献   

13.
Cytogenetic study of malignant triton tumor: a case report   总被引:3,自引:0,他引:3  
Malignant triton tumor (MTT) is a highly malignant neoplasm, classified as a variant of malignant peripheral nerve sheath tumor (MPNST) with rhabdomyoblastic differentiation. Few cytogenetic studies of MTT have been reported using conventional cytogenetic analysis. Here, we report a comprehensive cytogenetic study of a case of MTT using G-banding, Spectral Karyotyping(), and fluorescence in situ hybridization (FISH) for specific regions. A complex hyperdiploid karyotype with multiple unbalanced translocations was observed: 48 approximately 55,XY,der(7)add(7)(p?)dup(7)[2],der(7) t(7;20)(p22;?)ins(20;19)[5],der(7)ins(8;7)(?;p22q36)t(3;8)t(8;20)[15],-8[5],-8[19],r(8)dup(8), +der(8)r(8;22)[4],-9[9],der(11)t(11;20)(p15;?)ins(20;19)[22],der(12)t(8;12)(q21;p13)[21],der(13) t(3;13)(q25;p11),-17,-19,der(19)t(17;19)(q11.2;q13.1),-20,-22,+4 approximately 7r[cp24]/46,XY[13]. The 1995 International System for Human Cytogenetic Nomenclature was followed where possible. Note that breakpoints were frequently omitted where only SKY information was known for a small part of an involved chromosome. Our analysis revealed some breakpoints in common with those previously reported in MTT, MPNST, and rhabdomyosarcoma, namely 7p22, 7q36, 11p15, 12p13, 13p11.2, 17q11.2, and 19q13.1. FISH showed high increase of copy number for MYC and loss of a single copy for TP53.  相似文献   

14.
The t(7;21)(p22;q22) resulting in RUNX1‐USP42 fusion, is a rare but recurrent cytogenetic abnormality associated with acute myeloid leukemia (AML) and myelodysplastic syndromes. The prognostic significance of this translocation has not been well established due to the limited number of patients. Herein, we report three pediatric AML patients with t(7;21)(p22;q22). All three patients presented with pancytopenia or leukopenia at diagnosis, accompanied by abnormal immunophenotypic expression of CD7 and CD56 on leukemic blasts. One patient had t(7;21)(p22;q22) as the sole abnormality, whereas the other two patients had additional numerical and structural aberrations including loss of 5q material. Fluorescence in situ hybridization analysis on interphase cells or sequential examination of metaphases showed the RUNX1 rearrangement and confirmed translocation 7;21. Genomic SNP microarray analysis, performed on DNA extracted from the bone marrow from the patient with isolated t(7;21)(p22;q22), showed a 32.2 Mb copy neutral loss of heterozygosity (cnLOH) within the short arm of chromosome 11. After 2‐4 cycles of chemotherapy, all three patients underwent allogeneic hematopoietic stem cell transplantation (HSCT). One patient died due to complications related to viral reactivation and graft‐versus‐host disease. The other two patients achieved complete remission after HSCT. Our data displayed the accompanying cytogenetic abnormalities including del(5q) and cnLOH of 11p, the frequent pathological features shared with other reported cases, and clinical outcome in pediatric AML patients with t(7;21)(p22;q22). The heterogeneity in AML harboring similar cytogenetic alterations may be attributed to additional uncovered genetic lesions.  相似文献   

15.
The 8p11 myeloproliferative syndrome (EMS) is associated with three translocations, t(8;13)(p11;q12), t(8;9)(p11;q33), and t(6;8)(q27;p11), that fuse unrelated genes (ZNF198, CEP110, and FOP, respectively) to the entire tyrosine kinase domain of FGFR1. In all cases thus far examined (n = 10), the t(8;13) results in an identical mRNA fusion between ZNF198 exon 17 and FGFR1 exon 9. To determine if consistent fusions are also seen in the variant translocations, we performed RT-PCR on four cases and sequenced the products. For two patients with a t(8;9), we found that CEP110 exon 15 was fused to FGFR1 exon 9. For two patients with a t(6;8), we found that FOP exon 5 (n = 1) or exon 7 (n = 1) was fused to FGFR1 exon 9. To determine if FGFR1 might be involved in other myeloid disorders with translocations of 8p, we developed a two-color FISH assay using two differentially labeled PAC clones that flank FGFR1. Disruption of this gene was indicated in a patient with a t(8;17)(p11;q25) and Ph-negative chronic myeloid leukemia in association with systemic malignant mast cell disease, a patient with acute myeloid leukemia with a t(8;11)(p11;p15), and two cases with T-cell lymphoma, myeloproliferative disorder, and marrow eosinophilia with a t(8;12)(p11;q15) and ins(12;8)(p11;p11p21), respectively. For the patient with the t(8;11), the chromosome 11 breakpoint was determined to be in the vicinity of NUP98. We conclude that 1) all mRNA fusions in EMS result in splicing to FGFR1 exon 9 but breakpoints in FOP are variable, 2) two-color FISH can identify patients with EMS, and 3) the t(8;17)(p11;q25), t(8;11)(p11;p15), t(8;12)(p11;q15), and ins(12;8)(p11;p11p21) are novel karyotypic changes that most likely involve FGFR1.  相似文献   

16.
Multicolor spectral karyotyping of serous ovarian adenocarcinoma.   总被引:2,自引:0,他引:2  
We applied multicolor spectral karyotyping (SKY) to decipher the chromosomal complexity of a panel of seven cell lines and four primary tumors derived from patients with high‐grade serous adenocarcinoma of the ovary. By this method we identified a total of 188 unbalanced translocations, nine reciprocal translocations [t(2;15)(q13;q23), t(7;17) (q32;q21), t(8;22)(p11;q11), t(8;22) (q24;q13), t(10;19) (q24;q13.2), t(11;19) (q13;p11), t(12;21)(q13;q22),t(18;20) (q?11;q?11), t(18;22)(q?11;q?13)], 6 isochromosomes [i(1q), i(7q), i(8q), i(9p), i(17q), i(21q)], and 23 deletions. By detailed mapping of rearrangement breakpoints, it was possible to identify several recurring breakpoint clusters at chromosomal bands 1p36, 2p11, 2p23, 3p21, 3q21, 4p11, 6q11, 8p11, 9q34, 10p11, 11p11, 11q13, 12p13, 12q13, 17q21, 18p11, 18q11, 20q11, and 21q22. Recurrent interstitial deletion of chromosomal bands 8p11, 11p11, and 12q13 and a recurrent unbalanced translocation—der(6)t(6;8)(q11;q11)—were also identified. In addition, a homogeneously staining region localized in one cell line to 11q13 was found using SKY to be derived from genetic material originating from chromosome 12. Subsequent comparative genomic hybridization (CGH) studies on this tumor revealed the amplification of DNA sequences derived from the short arm of chromosome 12 at the 12p11.2 region. These studies demonstrate the power of SKY, CGH, and G‐banding to resolve the full spectrum of chromosomal rearrangements in serous ovarian adenocarcinoma. © 2002 Wiley‐Liss, Inc.  相似文献   

17.
We have cytogenetically examined short-term cultures from a squamous cell carcinoma of the tongue, a tumor type in which chromosome aberrations hitherto have not been reported. No less than 12 pseudodiploid clones were detected, giving the tumor karyotype 46,X,der(X)t(X;1)(q26;p32),der(1)(Xqter→Xq26::1p32→cen→1q42:),del(13)(q11q21),t(15;?) (q26;?)/46,XX,t(1;?)(p34;?),inv(2)(p21q11)/46,XX,t(1;10)(p32;q24)/46,XX,+der(1)(12pter→ 12p11::1p11→cen→1q32::11q13→11q32→1q42:),del(11)(q13q22), - 12, der(17)t(1:17) (q42;p13)/46,XX,inv(1)(p22q44)/47,XX,del(1)(q32),der(17)t(1:17)(p22;q25),der(1)inv(1) (q25q44)t(1;17)(p22;q25),ins(14;7)(q11;q22q36), + 14/46,XX,t(1;4)(q23;q35)/46,XX,t(1;21) (q25;q22),t(2;10)(q31;q26),t(22;?)(q12;?)/46,XX,del(1)(q32)/46,XX,t(1;8)(q44;q21)/46,XX, t(2;21)(q11;p11)/46,XX,t(9;11)(q34;q13). The large number of apparently unrelated abnormalities leads us to suggest that the carcinoma may have been of multiclonal origin.  相似文献   

18.
Neuroblastoma exhibiting deletion of a segment of the long arm of chromosome 11 represents a genetic subtype of tumor that is distinct from those exhibiting MYCN amplification or 1p deletion. The 11q− genetic subtype is further characterized by gain of 17q and loss of distal 3p material. Gain of 11p material has also been reported in neuroblastoma with 11q loss, but at a considerably lower frequency than gain of 17q or loss of the distal 3p region. Our results, however, indicate that gain of 11p may occur more frequently in 11q− neuroblastoma than what was previously realized. Comparative genomic hybridization analyses of neuroblastoma tissue from eleven patients indicated that six of 11 tumors (55%) with loss of 11q also possessed gain of 11p. The shortest region of 11p gain was 11p11.2→p14. G-banding and fluorescence in situ hybridization analysis performed on tumor cells from primary and metastatic sites from one patient allowed us to infer that gain of 11p arose secondarily to the abnormality that led to the loss of 11q material. Gain of an entire chromosome 7 was detected in 17 of 43 (40%) tumors, whereas gain of 7q was detected in 5 of 43 (12%) tumors. Unlike gain of 11p, gain of an entire chromosome 7 appears to be prevalent in all tumor stages and is not limited to the 11q− tumor subtype. Gain of 7q, however, is more prevalent in higher stage tumors. G-band cytogenetic analysis indicated that an unbalanced t(3;7) was responsible for the gain of 7q and loss of 3p material in one case. We discuss the possibility that gain of 7/7q, and 11p material may contribute to either tumorigenesis or progression.  相似文献   

19.
Only eleven endometrial stromal sarcomas (ESS) with clonal chromosomal abnormalities have been reported in the literature. Of these, four have been reported to harbor the t(7;17) translocation. We report here an additional ESS that exhibited clonal complex chromosome abnormalities not described earlier: 38,XX,-1,del(1)(q11),-2,add(2)(p13),-3,der(4)add(4)(p12)psu dic(4;14)(q35;q11.2), add(6)(p21.3),add(7)(q22),del(7)(p11.2p13),-8,-9,add(9)(q34),- 10,add(10)(q24),-11,-11,ins(12;?) (q13;?),-14,-14,-15,ins(15;?)(q22;?),add(16)(q22),add(17)(q11.2),- 18,der(18)t(7;18)(q11.2;p11.2),-19, add(20)(p13),add(21)(p11.2),-22,add(22)(p11.2),+6mar in metaphase cells from primary short-term culture.  相似文献   

20.
Deletions or translocations of chromosome band 13q14, the locus of the retinoblastoma gene (RB1), have been observed in a variety of hematological malignancies including myelodysplastic syndrome (MDS). We describe here a novel unbalanced translocation der(13)t(7;13)(p13;q14) involving 13q14 in a patient with MDS. A 66-year-old woman was diagnosed as having MDS, refractory anemia with excess of blasts (RAEB-1) because of 7.4% blasts and trilineage dysplasia in the bone marrow cells. G-banding and spectral karyotyping analyses showed complex karyotypes as follows: 46,XX,der(6)t(6;7)(q11;?),der(7)del(7)(?p13)t(6;7)(q?;q11)t(6;13)(q?;q?),der(13)t(7;13)(p13;q14). Fluorescence in situ hybridization (FISH) analyses demonstrated that one allele of the RB1 gene and the microsatellite locus D13S319, located at 13q14 and telomeric to the RB1 gene, was deleted. Considering other reported cases, our results indicate that submicroscopic deletions accompanying 13q14 translocations are recurrent cytogenetic aberrations in MDS. The RB1 gene or another tumor suppressor gene in the vicinity of D13S319, or both, may be involved in the pathogenesis of MDS with 13q14 translocations by monoallelic deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号