首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in rat dorsal root ganglion (DRG) neurons and sciatic nerve following experimental sciatic nerve compression was studied with the use of quantitative immunohistochemistry and in situ hybridization. Previously, we have investigated changes in PACAP expression after nerve transection and, here, the far more frequently encountered condition of nerve compression injury is examined. Nerve compression was performed unilaterally on the rat sciatic nerve, at mid-thigh level, by application of a narrow silicone tube around the nerve for 3, 7, 14 or 28 days, respectively. We detect a statistically significant upregulation in the number and density of PACAP mRNA expression in both small and large DRG neurons in response to nerve compression. An increased number of PACAP-immunoreactive neurons is also found in the ipsilateral DRG. In addition, PACAP immunoreactivity is observed in the compressed sciatic nerve segment and adjacent nerve tissue after nerve compression. The present findings can be compared with previous studies where we have shown that PACAP expression is upregulated in DRG; in response to peripheral inflammation (primarily in small-medium neurons), and after axotomy (dramatic upregulation in medium-large neurons). In view of the recent findings of an increased PACAP expression in DRG after nerve compression, as well as the previous findings of a modulation of PACAP expression in response to axotomy and inflammation, it is likely that PACAP is also involved in the modulation of the response to peripheral nerve compression.  相似文献   

2.
Neuropeptides and neurotrophin receptors are regulated in primary sensory neurons in response to axonal injury, and axonal lesions are characteristic stigmata of aging primary sensory neurons. We have therefore examined the expression of neuropeptides and neurotrophin receptor mRNAs in 30-month-old (median survival age) Sprague-Dawley rats to see if similar adaptive mechanisms operate in senescence. The content of neuropeptides was examined with immunohistochemistry (IHC) and in situ hybridization (ISH), and the cellular mRNA expression of neurotrophin receptors was studied with ISH. All of the aged rats had symptoms of hind limb incapacity (posterior paralysis), but fore limbs did not seem affected. The size-distribution of neuronal profiles in cervical and lumbar dorsal root ganglia (DRGs) was similar in aged and young adult (2–3 months old) rats. In aged rats, the DRG neurons showed an increase in both immunolabelling and mRNA content of neuropeptide tyrosine (NPY), as well as an increased cellular expression of galanin mRNA. In the same animals, there were decreased cellular levels of calcitonin gene-related peptide (CGRP; IHC and ISH) and substance P (SP; IHC and ISH), while the difference in neuronal somatostatin (IHC and ISH) was small. The distribution of neuropeptide immunoreactivities in the dorsal horn of the corresponding spinal cord segments revealed a decreased labelling for CGRP-, SP-, and somatostatin-like immunoreactivities (LI) in the aged rats at both cervical and lumbar levels. NPY- and galanin-LI had a similar distribution in aged and young adult rats. NPY-immunoreactive fibers were also encountered in the dorsal column of aged but not young adult rats. ISH revealed that most of the primary sensory neurons express mRNA for the p75 low-affinity neurotrophin receptor (p75-LANR) and that there was no discernible difference between young adult and aged rats. The labelling intensity for mRNA encoding high-affinity tyrosine kinase receptors (TrkA, TrkB, and TrkC) was decreased in aged rat DRG neurons, while the percentage of neuronal profiles expressing mRNA for TrkA/B/C was similar in young adult and aged rats. The changed pattern of neuropeptide expression in primary sensory neurons of aged rats resembled that seen in young adult rats subjected to axonal injury of peripheral sensory nerves and may, thus, indicate aging-related lesions of sensory fibers. Since NPY is primarily present in large and galanin in small DRG neurons, the stronger effect on NPY as compared to galanin expression may indicate that aging preferentially affects neurons associated with mechanoreception (Aα and Aβ fibers) as compared to nociceptive units (A and C fibers). Furthermore, the observed changes in neuropeptide expression were most pronounced in lumbar DRGs, that harbors the sensory neurons supplying the affected hindlimbs of the rats. © 1996 Wiley-Liss, Inc.  相似文献   

3.
4.
Previous work has shown that administration of the neurotrophin NT-3 intrathecally or to the proximal stump can prevent axotomy-induced sensory neuron loss and that NT-3 can stimulate sensory neuron differentiation in vitro. We have examined the effect of axotomy and systemic NT-3 administration on neuronal loss, apoptosis (defined by morphology and activated caspase-3 immunoreactivity), and nestin expression (a protein expressed by neuronal precursor cells) in dorsal root ganglia (DRG) following axotomy of the adult rat sciatic nerve. Systemic administration of 1.25 or 5 mg of NT-3 over 1 month had no effect on the incidence of apoptotic neurons but prevented the overall loss of neurons seen at 4 weeks in vehicle-treated animals. Nestin-immunoreactive neurons began to appear 2 weeks after sciatic transection in untreated animals and steadily increased in incidence over the next 6 weeks. NT-3 administration increased the number of nestin-immunoreactive neurons at 1 month by two- to threefold. Nestin-IR neurons had a mean diameter of 20.78 +/- 2.5 microm and expressed the neuronal markers neurofilament 200, betaIII-tubulin, protein gene product 9.5, growth associated protein 43, trkA, and calcitonin gene-related peptide. Our results suggest that the presence of nestin in DRG neurons after nerve injury is due to recent differentiation and that exogenous NT-3 may prevent neuron loss by stimulating this process, rather than preventing neuron death.  相似文献   

5.
The favorable prognosis of regeneration in the peripheral nervous system after axonal lesions is generally regarded as dependent on the Schwann cell basal lamina. Laminins, a heterotrimeric group of basal lamina molecules, have been suggested to be among the factors playing this supportive role. For neurons to utilize laminin as a substrate for growth, an expression of laminin binding receptors, integrins, is necessary. In this study, we have examined the expression of laminin binding integrin subunits in dorsal root ganglion (DRG) neurons after transection to either their peripherally projecting axons, as in the sciatic nerve, followed by regeneration, or the centrally projecting axons in dorsal roots, followed by no or weak regenerative activity. In uninjured DRG, immunohistochemical staining revealed a few neurons expressing integrin subunit alpha6, whereas integrin subunits alpha7 and foremost beta1 were expressed in a majority of neurons. After an injury to the sciatic nerve, mRNAs encoding all three integrins were up-regulated in DRG neurons. By anterograde tracing, immunoreactivity for all studied integrins was also found in association with growing axons after a sciatic nerve crush lesion in vivo. In contrast, mRNA levels remained constant in DRG neurons after a dorsal root injury. Together with previous findings, this suggests that integrin subunits alpha6, alpha7, and beta1 have an important role in the regenerative response following nerve injury and that the lack of regenerative capacity following dorsal root injury could in part be explained by the absence of response in integrin regulation.  相似文献   

6.
Proinflammatory neuropeptides, such as substance P and calcitonin gene-related peptide, are up-regulated in primary afferent neurons in acute and chronic inflammation. While these neuropeptides have been intensively studied, potentially anti-inflammatory and/or anti-nociceptive neuropeptides such as somatostatin (SS) have been less widely investigated. Endogenous somatostatin is thought to exert a tonic antinociceptive effect. Exogenous SS is anti-inflammatory and antinociceptive and is thought to exert these actions through inhibition of proinflammatory neuropeptide release. In this study we have compared the expression of somatostatin in two inflammatory models: arthritis, a condition associated with increased nociception, and periodontitis, in which there is little evidence of altered nociceptive thresholds. In acute arthritis (< 24 h) SS mRNA was down-regulated in ipsilateral dorsal root ganglia (DRG; 52 +/- 7% of control, P < 0.05), and up-regulated in contralateral DRG (134 +/- 10% of control; P < 0.05). In chronic arthritis (14 days) this pattern of mRNA regulation was reversed, with SS being up-regulated ipsilaterally and down-regulated contralaterally. In chronic mandibular periodontitis (7-10 days), SS mRNA was up-regulated in only the mandibular division of the ipsilateral trigeminal ganglion (TG) (day 7, 219 +/- 9% and day 10, 217 +/- 12% of control; P < 0.02) but showed no change in other divisions of the trigeminal ganglion or in the mesencephalic nucleus. These data show that antinociceptive and anti-inflammatory neuropeptides are also regulated in inflammation. It is possible that the degree of inflammation and nociception seen may depend on the balance of pro- and anti-inflammatory and nociceptive peptide expression in a particular condition.  相似文献   

7.
A second vesicular glutamate transporter (VGLUT2) has been reported to be expressed in neurosecretory neurons of the hypothalamic-neurohypophysial system. To study its role in the neurosecretory neurons, we evaluated the expression of the VGLUT2 gene in the paraventricular (PVN) and supraoptic (SON) nuclei as well as the immunoreactivity in the neurohypophysis under euhydrated and chronic hyperosmotic conditions with in situ hybridization and immunohistochemistry. The intensity of hybridization signals in the PVN, SON and thalamus of rats subjected to water deprivation for 7 days, or drinking 2% NaCl for 4 or 7 days, was compared with that of euhydrated rats (control). The overall intensity in the entire PVN or SON, but not the thalamus, was higher in osmotically stimulated rats than in controls. Within the PVN, a significantly higher intensity of signals than that of controls was found only in the dorsolateral posterior magnocellular region in 4-day salt-loaded rats and in all subregions in water-deprived or 7-day salt-loaded rats. The intensity in the SON was higher in the stimulated rats than in controls, regardless of subregions. In the neurohypophysis, VGLUT2 staining was frequently localized in vasopressin terminals of control rats and was apparently reduced in stimulated rats. These results indicate that VGLUT2 is principally expressed in magnocellular vasopressin neurons, suggesting some local effect of intrinsic glutamate on neurohypophysial hormone secretion.  相似文献   

8.
Although the molecular and cellular responses to injury in the central nervous system (CNS) have been widely investigated, few studies have examined the potential variations between direct and indirect neuronal injury. To differentiate between the response to axotomy and deafferentation, two central cholinergic populations were analyzed: the horizontal limb of the diagonal band of Broca (HLDB) and the interneurons in the corpus striatum (CS). At time points from one hour to eight weeks postinjury the levels of choline acetyltransferase (ChAT) mRNA and protein were assessed by in situ hybridization and immunohistochemistry. Also examined was the expression of the immediate early gene product, c-fos. One week post axotomy, neurons in the HLDB exhibited an increase in the levels of ChAT mRNA without a concomitant increase in ChAT protein, followed by a steady decrease reaching a nadir in both parameters at eight weeks. In contrast, a transient increase occurred at one week postdeafferentation in the levels of both ChAT mRNA and protein in the interneurons of the CS. Axotomized neurons in the HLDB did not exhibit either c-fos mRNA or protein expression, while robust fos induction occurred after one hour in deafferented neurons in the CS. These data demonstrate that the molecular and cellular responses differ following direct and indirect neufenal injury. Furthermore, they suggest that in these central cholinergic populations deafferentation may result in cellular hyperactivity and cell survival while axotomy, results in decreased cellular activity and subsequent cellular regression. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Gluco- and mineralocorticoid receptors (GR and MR) act via common promoter elements but may exert different effects on gene regulation in various regions of the forebrain. In order to separately analyse the role of GR and MR in the regulation of neurotrophic factor genes and their receptors, we used adrenalectomy and subsequent hormone injections in the rat as a model system. Twenty-four hours after adrenalectomy rats were injected with a single dose of corticosterone (2 and 10 mg/kg), aldosterone (0.5 mg/kg) or the synthetic glucocorticoid agonist RU 28362 (4 mg/kg). Gene expression of basic fibroblast growth factor (bFGF) and its high-affinity receptors [fibroblast growth factor receptor subtypes 1-3 (FGF-R1, FGF-R2, FGF-R3)], as well as brain-derived growth factor (BDNF) and neurotrophin-3 (NT-3) was analysed at 4 h after the hormone injection in CA1-CA4 (cornus of Ammon areas of the hippocampus) and dentate gyrus of the dorsal hippocampus and in neocortex by means of in situ hybridization. We found that bFGF is regulated in CA2, CA3 and dentate gyrus by GR and MR together, and in CA1, CA4 and neocortex by GR alone. FGF-R2 expression in the hippocampus seems to be regulated only by MR, while BDNF expression appears to depend on both receptors. FGF-R1, FGF-R3 and NT-3 were only moderately affected by the hormone activation of GR and MR acting in concert or alone in the various regions. Thus, the present findings suggest that the adrenal cortical system through GR and MR participate in the control of neurotrophic factor signalling in a highly subregion- and cellular-dependent manner.  相似文献   

10.
In order to study the factors that govern the expression of sodium channel α-, β1- and β2-subunits, the influence that Schwann cells (SC) exert in the expression of sodium channels in DRG neurons was examined with in situ hybridization, immunocytochemistry, and patch clamp recording. The expression of sodium channel α-, β1-, and β2-subunit mRNAs in DRG neurons isolated from E15 rats cultured in defined medium in the absence (control) or presence of SC, or in SC-conditioned medium, was examined with isoform-specific riboprobes for sodium channel α-subunits I, II, III, NaG, Na6, hNE/PN1, SNS, and β1- and β2-subunits. DRG neurons cultured in the presence of SC displayed a significant (P < 0.05) increase in the hybridization signal for NaG, Na6, SNS, and Naβ2 mRNAs in comparison to control DRG neurons. In contrast, in SC-conditioned medium, only the hybridization signal for SNS mRNA was significantly increased. The upregulation of sodium channel mRNAs in DRG neurons co-cultured with SC was paralleled by an increase in sodium channel immunoreactivity of these cells. An increase in the mean sodium current density in DRG neurons in the presence of SC was also observed. These results demonstrate that a SC-derived factor selectively upregulates sodium channel α- and β-subunit mRNAs in DRG neurons isolated from E15 rats that is reflected in an increase in functional sodium channels in these cells. This culture system may allow elucidation of the SC factor(s) that modulate the expression of sodium channels in DRG neurons. GLIA 21:339–349, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
We have recently described populations of tyrosine hydroxylase-immunoreactive neurons in the hamster brain in regions not known to contain catecholamine cell bodies. In the present study, the nature of the tyrosine hydroxylase immunoreactivity in the hamster brain was determined. In addition, these tyrosine hydroxylase-immunoreactive cell groups were examined for their ability to express aromatic amino acid decarboxylase. Immunohistochemistry with two different antibodies to tyrosine hydroxylase identified immunoreactive cell bodies in regions known to contain catecholamine neurons, including the substantia nigra and locus ceruleus. In addition, tyrosine hydroxylase-immunoreactive neurons were observed in other regions, including the basal forebrain, inferior colliculus, lateral parabrachial nucleus, and dorsal motor nucleus of the vagus. Western blotting indicated that hamster brain contained only one immunoreactive molecule, very similar in size to rat tyrosine hydroxylase. Thus it is likely that the immunohistochemical studies stained authentic hamster tyrosine hydroxylase. Indeed, in situ hybridization studies using a synthetic oligonucleotide probe against tyrosine hydroxylase mRNA resulted in specific and heavy labelling of these novel tyrosine hydroxylase-immunoreactive neurons. When adjacent sections were stained with antibodies to aromatic amino acid decarboxylase, known catecholamine cell groups were stained. However, the novel tyrosine hydroxylase cell groups did not display any aromatic amino acid decarboxylase immunoreactivity. These results suggest that neurons are present in the hamster brain that are able to hydroxylate tyrosine to L-DOPA, but that lack the ability to decarboxylate aromatic amino acids to produce dopamine or other catecholamines.  相似文献   

12.
Interactions between sympathetic and parasympathetic nerves are important in regulating visceral target function. Sympathetic nerves are closely apposed to, and form functional synapses with, parasympathetic axons in many effector organs. The molecular mechanisms responsible for these structural and functional interactions are unknown. We explored the possibility that Nerve Growth Factor (NGF) synthesis by parasympathetic neurons provides a mechanism by which sympathetic-parasympathetic interactions are established. Parasympathetic pterygopalatine ganglia NGF-gene expression was examined by in situ hybridization and protein content assessed by immunohistochemistry. Under control conditions, NGF mRNA was present in approximately 60% and NGF protein was in 40% of pterygopalatine parasympathetic neurons. Peripheral parasympathetic axons identified by vesicular acetylcholine transporter-immunoreactivity also displayed NGF immunoreactivity. To determine if sympathetic innervation regulates parasympathetic NGF expression, the ipsilateral superior cervical ganglion was excised. Thirty days postsympathectomy, the numbers of NGF mRNA-positive neurons were decreased to 38% and NGF immunoreactive neurons to 15%. This reduction was due to a loss of sympathetic nerve impulse activity, as similar reductions were achieved when superior cervical ganglia were deprived of preganglionic afferent input for 40 days. These findings provide evidence that normally NGF is synthesized by parasympathetic neurons and transported anterogradely to fibre terminals, where it may be available to sympathetic axons. Parasympathetic NGF expression, in turn, is augmented by impulse activity within (and presumably transmitter release from) sympathetic axons. It is suggested that parasympathetic NGF synthesis and its modulation by sympathetic innervation provides a molecular basis for establishment and maintenance of autonomic axo-axonal synaptic interactions.  相似文献   

13.
The overactivity of subthalamopallidal and corticostriatal glutamatergic neurons observed in Parkinson's disease (PD) suggests that antagonists of glutamate receptor could be used to alleviate the motor symptoms of the disease. In this study, we analysed two features of the striatopallidal complex: (1) the distribution of α-amino-3 hydroxy-5-methyl-4-isoxasol-propionate (AMPA) and kainate receptors and their corresponding mRNA by immunohistochemistry and in situ hybridisation and (2) the effect of dopaminergic denervation on AMPA receptor gene expression in PD patients and rats with 6-hydroxydopamine (6-OHDA)-induced degeneration of the nigrostriatal dopaminergic system. All AMPA receptor mRNAs and proteins (GluR1–4) were detected in the internal segment of the globus pallidus (GPi). Among kainate receptors, only KA1 and KA2 were detectable and only at a low level. Only GluR4 protein was detected in the neuropil of the GPi. In the striatum, GluR1, GluR2, and GluR3 were detected in about 70% of medium-sized and large neurons. By contrast, GluR4 mRNA was detected in only a small number of large and medium-sized neurons. Among kainate receptors, GluR6, GluR7, and KA2 were detected in about 50–60% of medium-sized neurons, whereas GluR5 and KA1 were restricted to 1–2% and 20–30% of these neurons, respectively. These results suggest that antagonists of AMPA and kainate receptors could be effective in alleviating motor symptoms in Parkinson's disease by blocking the overstimulation of pallidal and striatal neurons by glutamate. A significant decrease in GLuR1 gene expression (−33%) was observed in the neurons of the GPi in PD patients and in rat entopeduncular nucleus ipsilateral to the 6-OHDA lesion (−20%). GluR2, GluR3, and GluR4 mRNA levels in the GPi and GluR1–4 mRNA levels in the striatum were unchanged in PD patients and 6-OHDA-lesioned rats compared with their respective controls. These data suggest that dopamine positively regulates only GluR1 gene expression in the GPi. © 1996 Wiley-Liss, Inc.  相似文献   

14.
15.
It has been known for a number of years that mu-opioid receptor agonists (e.g., morphine, beta-endorphin, and enkephalin) inhibit luteinizing hormone (LH), vasopressin (VP), and oxytocin (OT) release and stimulate prolactin secretion in rodents and primates by an action at the level of the brain. Also, electrophysiological studies have established that hypothalamic neurons, including gonadotropin-releasing hormone (GnRH), VP, OT, beta-endorphin, and dopamine neurons, are responsive to mu-receptor activation. Although mu-receptor expression has been demonstrated in the hypothalamus, there have been few studies localizing these receptors in neurosecretory neurons. Therefore, we sought to document mu-opioid receptor mRNA expression in immunocytochemically identified hypothalamic neurons. The brains from both female and male guinea pigs were examined by using in situ hybridization and immunocytochemistry. The studies revealed that mu-receptor mRNA was expressed in different diencephalic regions including the preoptic area, the bed nuclei stria terminalis, the paraventricular nucleus thalamus, and the anterior hypothalamus, as well as the supraoptic (SON), paraventricular (PVH), ventromedial, dorsomedial, and arcuate nuclei of the hypothalamus. Importantly, mu-opioid receptors were expressed in subpopulations of GnRH neurons (33.25 +/- 4.6% and 33.6 +/- 3.7% in females and males, respectively), dopamine neurons (51.7 +/- 5.8% to 75.0 +/- 2.6%, depending on neuronal location), beta-endorphin neurons (68.3.0 +/- 4.4%), and VP neurons (41-70%, depending on neuronal location). Because mu-opioid receptors couple via G-proteins to activate inwardly rectifying potassium channels and to inhibit calcium channels, the presence of these receptors is likely to play a major role in directly controlling the excitability of hypothalamic neurons.  相似文献   

16.
Function and evolution in the NGF family and its receptors.   总被引:11,自引:0,他引:11  
The gene family of neurotrophins includes nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Recently, neurotrophin-5 (NT-5), a possible mammalian homologue to NT-4 described in the frog Xenopus, has been cloned in man and rat. The neurotrophins stimulate survival and differentiation of a range of target neurons by binding to cell surface receptors. The structure of NGF has recently been clarified from crystallographic data. The similarities between the different neurotrophins are substantial with the variable regions, giving specificity to each of the family members, being localized to some exposed loop regions. Low-affinity binding (Kd of 10(-9) M) of all tested neurotrophins is mediated via a 75 K glycoprotein (LNGFR) that has been cloned and characterized. A 140 K tyrosine protein kinase encoded by the proto-oncogene trk has been found to bind NGF with high affinity (Kd of 10(-11) M) and to evoke the cellular neurotrophic responses. In addition, a protein encoded by the trk-related gene trkB has been shown to bind BDNF. Recently, a third member of the trk family, trkC, has been cloned and demonstrated to function as a high-affinity receptor for NT-3. The expression of trk and LNGFR mRNA are co-localized in the rat brain to the medial septal nucleus and the nucleus of Broca's diagonal band containing the NGF-responsive magnocellular cholinergic neurons projecting to hippocampus and cerebral cortex. In sharp contrast, the pattern of expression of trkB is widely spread in many areas of the cortex as well as lateral septum. The trkB protein might serve general functions in large areas of the cortex. Site-directed mutagenesis and expression of recombinant chimaeric neurotrophin proteins have made it possible to localize a likely region for the interaction between NGF and the LNGFR. This region could be altered, resulting in the total loss of LNGFR binding by the mutant NGF protein without affecting the binding to the trk receptor which was sufficient for the full biological activity. Cladistic analysis of likely phylogenies within the neurotrophins shows BDNF and NT-4 to be most closely related whereas NGF may be the sister group to NT-3, BDNF, and NT-4. Neurotrophins offer obvious clinical possibilities for treatment of neurodegenerative diseases.  相似文献   

17.
18.
The m2 muscarinic acetylcholine receptor in the cerebral cortex has traditionally been thought of as an autoreceptor located on cholinergic fibers that originate from neurons in the nucleus basalis of Meynert. We now provide evidence for widespread localization of the m2 receptor in noncholinergic neurons and fibers of the cerebral cortex. The cellular and subcellular distribution of the m2 receptor protein and mRNA were examined in normal monkeys and in monkeys in which the cortical cholinergic afferents were selectively lesioned by injection of the specific immunotoxin, anti-p75NTR-saporin into the nucleus basalis. Both in normal and immunolesioned monkeys, the m2 mRNA and protein were localized in pyramidal and nonpyramidal neurons. In pyramidal neurons, membrane-associated receptor immunoreactivity was found exclusively in dendritic spines receiving asymmetric synapses, indicating that the m2 receptor may modulate excitatory neurotransmission at these sites. In nonpyramidal neurons, the m2 immunoreactivity was present along the cytoplasmic surface of membranes in cell bodies, dendrites and axons. Both in pyramidal and nonpyramidal neurons of normal and lesioned monkeys, the m2 receptor was located peri- and extra-synaptically, suggesting that it may be contacted by acetylcholine via volume transmission. The localization of the m2 receptor in cortical neurons and the sparing of m2 immunoreactivity in lesioned monkeys indicates that the m2 receptor is synthesized largely within the cortex and/or is localized to noncholinergic terminals of either intrinsic or extrinsic origin. These findings open the possibility that the loss of the m2 receptor in Alzheimer's disease may in part be due to degenerative changes in m2 positive neurons of the cortex rather than entirely due to the loss of autoreceptors. J. Comp. Neurol. 390:112–132, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide that is related structurally to vasoactive intestinal polypeptide (VIP), has been shown to stimulate neuronal growth and differentiation, indicating a possible function in the development of the nervous system. Studies have indicated that the PACAP receptor is expressed during development, but data on PACAP expression are limited mainly to postnatal development. In the present study, we used immunohistochemistry and in situ hybridization histochemistry to examine the expression of PACAP in autonomic and sensory ganglia and spinal cord of rat fetuses at embryonic days 12–21 (E12–E21). PACAP immunoreactivity was visualized by using a specific monoclonal anti-PACAP antibody to detect both PACAP-38 and PACAP-27, and PACAP mRNA was visualized by using a [33P]-labeled cRNA-probe. PACAP+ nerve fibers were observed in the spinal cord as early as E13. At E14, PACAP-immunoreactive nerve fibers projected to the sympathetic trunk, where few PACAP+ nerve cell bodies were seen from E15. On the same embryonic day, PACAP-immunoreactive nerve cell bodies appeared in the intermediolateral column of the spinal cord. From E15 to E16, PACAP-immunoreactive nerve cell bodies were visible within sensory and autonomic ganglia, such as the dorsal root, the trigeminal, the sphenopalatine, the otic, the submandibular, and the nodose ganglia. At E16, PACAP+ nerve fibers were innervating the adrenal medulla, and immunoreactive fibers could also be observed in the superior cervical ganglion, in which PACAP-immunoreactive cell bodies were detected occasionally from E18. The synthesis of PACAP in neuronal cell bodies was confirmed by the demonstration of PACAP mRNA with in situ hybridization histochemistry. Thus, in all of the structures examined, PACAP appeared at roughly the same embryonic stage and, thereafter, increased to the adult level before birth. Because PACAP occurred with the same distribution pattern as that described in the adult rat, there is no evidence for transient expression. The early expression of PACAP suggests a possible role for the peptide in the developing nervous system. J. Comp. Neurol. 394:403–415, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Vertebrate odorant receptor (OR) genes are divided phylogenetically into two distinct classes: the fish-like class I and the terrestrial-specific class II. In the present study, we systematically analysed mouse class I OR genes (42 subfamilies) to elucidate the expression profiles in the olfactory epithelium (OE) and the projection sites of their olfactory sensory neurons (OSNs) in the olfactory bulb (OB). In situ hybridization (ISH) revealed that most class I OR genes (36 subfamilies) were expressed in the dorso-medial zone (zone 1) of the OE. Furthermore, there appeared to be no significant differences in the distributions of OSNs expressing class I genes within zone 1. These results indicate that there is a clear boundary between zone 1 and non-zone 1 areas in the OE. Some class I ORs are known to possess ligand specificity for aliphatic acids, aldehydes and alcohols. Our ISH analysis has revealed that OSNs expressing the class I ORs in zone 1 tend to converge their axons on a cluster of glomeruli in an antero-dorsal domain that is assumed to be involved in responses to the aliphatic compounds on the OB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号