首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. 5-Hydroxytryptamine 1A (5-HT1A) receptors have attracted increasing attention as a promising target for antipsychotic therapy. Although many atypical antipsychotic drugs, including the prototype clozapine, have been reported to be partial agonists at 5-HT1A receptors, these results are often fragmental and derived mainly from experiments that used cultured cells. 2. In the present study, [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) binding assay in rat hippocampal membranes was applied to a series of antipsychotic drugs, especially atypical antipsychotics. 3. Most, but not all, of atypical antipsychotic drugs and the classical antipsychotic drug nemonapride behaved as partial agonists at 5-HT1A receptors with varied potencies and relative efficacies. The most potent compound was perospirone with a mean EC50 of 27 nmol/L, followed by aripiprazole (45 nmol/L) > ziprasidone (480 nmol/L) > nemonapride (790 nmol/L) > clozapine (3900 nmol/L) > quetiapine (26,000 nmol/L). The maximal percentage increases over the basal binding (%Emax) for these antipsychotic drugs were 30-50%, with the exception of perospirone (approximately 15%), whereas 5-HT stimulated the binding to a mean %Emax of 105%. 4. Increasing concentrations of the selective and neutral 5-HT1A antagonist WAY100635 shifted the concentration-response curve of nemonapride-stimulated [35S]GTPgammaS binding to the right and in parallel. 5. The relative efficacy or intrinsic activity of a compound was affected differently by the differing concentrations of guanosine diphosphate (GDP) in the assay buffer, which should be taken into consideration when determining the relative efficacies of these antipsychotics as 5-HT1A receptor agonists. 6. These results provide important information concerning the relevance of 5-HT1A receptor partial agonist properties in the treatment for schizophrenic patients with most, if not all, of atypical antipsychotic drugs.  相似文献   

2.
Trazodone is an effective antidepressant drug with a broad therapeutic spectrum, including anxiolytic efficacy. Although trazodone is usually referred to as a serotonin (5-HT) reuptake inhibitor, this pharmacological effect appears to be too weak to fully account for its clinical effectiveness. The present study aimed to elucidate the agonist properties of trazodone and its active metabolite, m-chlorophenylpiperazine (m-CPP), at 5-HT(1A) receptors by means of the guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding assay. In membranes prepared from Chinese hamster ovary cells expressing human 5-HT(1A) receptors (CHO/h5-HT(1A)), trazodone behaved as an almost full agonist and m-CPP was also a highly efficacious partial agonist at 5-HT(1A) receptors. The intrinsic activities of both compounds were higher than those of tandospirone and buspirone, which are clinically effective anxiolytics with well-known 5-HT(1A) partial agonist properties. These effects were replicated in the 5-HT(1A) receptor-mediated [(35)S]GTPgamma(S) binding assay in native rat brain membranes (at least in hippocampal membranes), although the intrinsic activities of the compounds were low and differently ranked compared to those in CHO/h5-HT(1A) cell membranes. When considering the implications of 5-HT(1A) receptors in anxiety and/or depression, as well as the clinical effectiveness of azapirone anxiolytics with partial 5-HT(1A) receptor agonist properties such as buspirone, it is possible that the agonist effects on 5-HT(1A) receptors of trazodone and its active metabolite m-CPP presented in this study contribute, at least in part, to the clinical efficacy of the atypical antidepressant trazodone.  相似文献   

3.
G-protein activation mediated by 5-HT1B receptors was studied in human brain by [35S]GTPgammaS autoradiographic methods. 5-HT (10 microM) increased [35S]GTPgammaS binding in caudate-putamen nucleus, globus pallidus, dentate gyrus, CA1, entorhinal cortex and substantia nigra. In basal ganglia and midbrain, this effect was blocked by GR 127935 (5-HT(1B/1D) antagonist). In contrast, WAY 100635 (selective 5-HT1A antagonist) reversed the effect of 5-HT in hippocampus and entorhinal cortex. Therefore, a detailed pharmacological study was carried out in basal ganglia and substantia nigra using 5-HT and the 5-HT(1B/1D) agonists GTI and CP 93129. In these areas, these agonists stimulated [35S]GTPgammaS binding in a concentration-dependent manner, with no significant differences in the potency for a given structure. Furthermore, GTI was more potent in the putamen than in globus pallidus. In caudate-putamen, the three agonists showed the same efficacy, while in globus pallidus and substantia nigra the efficacy of 5-HT was higher than GTI and CP 93129. The selective 5-HT1B antagonist SB-224289 inhibited GTI- and CP 93129-stimulated [35S]GTPgammaS binding in basal ganglia and substantia nigra, while coincubation with BRL 15572 (selective 5-HT1D antagonist) did not result in any significant change. Here we report the anatomical pattern of distribution of 5-HT1B-dependent functionality by using specific pharmacological tools in human brain sections.  相似文献   

4.
The [35S]GTPgammaS binding assay represents a functional approach to assess the coupling between receptors and G-proteins. The optimal conditions for [35S]GTPgammaS binding to human brain homogenates were established in postmortem samples of prefrontal cortex. The influence of protein content, incubation time, GDP, Mg(2+), and NaCl concentrations on the [35S]GTPgammaS binding were assessed in the absence and presence of the alpha(2)-adrenoceptor agonist UK14304 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine). In conditions of 50 microM GDP and 100 mM NaCl, UK14304 increased the apparent affinity of the specific [35S]GTPgammaS binding without changing the apparent density. Concentration-response curves to agonists of alpha(2)-adrenoceptors, mu-opioid, 5-HT(1A), cholinergic muscarinic, and GABA(B) receptors displayed, in the presence of NaCl, maximal stimulations between 24% and 61% with EC(50) values in the micromolar range. Selective antagonists shifted to the right the agonist-induced stimulation curves. The G(i)/G(o)-protein alkylating agent N-ethylmaleimide decreased basal [35S]GTPgammaS binding in a concentration-dependent manner and inhibited the stimulation induced by the different agonists. In cortical sections, [35S]GTPgammaS binding to gray matter was stimulated by the agonist UK14304. The present study demonstrates that functional studies of the receptor coupling to G(i)/G(o)-proteins can be performed in postmortem human brain samples.  相似文献   

5.
Coupling of receptors to G-proteins can be assessed by the ability of specific agonists to stimulate [35S]GTPgammaS binding in both brain membranes and sections in the presence of excess GDP. In some brain regions, however, high basal activity makes it difficult to detect agonist-stimulated [35S]GTPgammaS binding. The present study suggests a modification of the assay to reduce basal [35S]GTPgammaS binding and thus increase the signal:noise ratio. Adenosine A1 receptors belong to the class of G-protein-coupled receptors that activate Gi/Go proteins in brain. In the present study, the A1 agonist R(-)N6-(2-phenylisopropyl)adenosine (R-PIA) stimulated [35S]GTPgammaS binding in brain regions known to contain A1 receptors, including cerebellum, hippocampus and dentate gyrus, medial geniculate body, superior colliculus, certain thalamic nuclei, cerebral cortex, piriform cortex, caudate-putamen, and nucleus accumbens. Treatment of sections and membranes with adenosine deaminase (ADase), which is typically used in adenosine assays to eliminate endogenous adenosine, reduced basal [35S]GTPgammaS binding. In addition, for cannabinoid and mu-opioid agonists, the percent stimulation of [35S]GTPgammaS binding was approximately doubled when ADase was included in the assay. These results suggest that endogenous adenosine contributes significantly to basal [35S]GTPgammaS binding in certain brain regions, and that this activity may be reduced by the addition of ADase, thus improving the signal:noise ratio of agonist-stimulated [35S]GTPgammaS binding.  相似文献   

6.
5-HT-stimulated [(35)S]GTPgammaS binding to rat hippocampal membranes was pharmacologically characterized. Signal/noise ratio or percent increase over basal was optimized with 100 microM GDP, 2-10 mM MgCl(2), and 150-200 mM NaCl. However, we preferred the standard condition (20 microM GDP, 5 mM MgCl(2), and 100 mM NaCl: Condition I) to the alternative one (100 microM GDP, 5 mM MgCl(2), and 150 mM NaCl: Condition II) because 1) absolute values of basal and 5-HT-sensitive bindings decreased with higher concentrations of GDP and NaCl; 2) EC(50) values determined under Condition II were 2 - 6 fold higher than those under Condition I; 3) some partial agonists had less intrinsic activities in the presence of higher concentrations of GDP; and 4) Inhibitory effects of WAY100635 were complete under Condition I, while incomplete under Condition II. Pharmacological profile of concentration-dependent stimulation by a series of 5-HT ligands and concentration-dependent inhibition of 5-HT-stimulated binding by several 5-HT-receptor antagonists clearly indicated that this response under Condition I was mediated solely through 5-HT(1A) receptors. Although caution should be paid especially to the apparent intrinsic activities susceptible to the assay conditions, this method appears useful to investigate functional coupling between 5-HT(1A) receptors and their coupled G proteins in native hippocampal membranes.  相似文献   

7.
Shen C  Li H  Meller E 《Neuropharmacology》2002,42(8):1031-1038
Electrophysiological studies have led to the proposal that the neurobiological mechanism(s) underlying drug therapy of anxiety and depression involve(s) regionally specific adaptations in 5-HT1A receptor sensitivity. Depending on the drug utilized, a decrease in sensitivity of inhibitory somatodendritic autoreceptors, an increase in sensitivity of postsynaptic receptors, or both alterations, occur after several weeks of treatment. This hypothesis was tested using N,N-dipropyl-5-carboxamidotryptamine-stimulated guanosine-5′-O-(3-thio)triphosphate ([35S]GTPγS) binding assessed by autoradiography. Rats were treated for 21 days with one of four different anxiolytic/antidepressant drugs (in mg/kg): fluoxetine (10), imipramine (10), clorgyline (1), ipsapirone (2×20) or saline. Three brain regions rich in 5-HT1A receptors were examined: the dorsal raphe (somatodendritic), the dorsal hippocampus (postsynaptic) and the lateral septum (postsynaptic). Only imipramine (+17%) and fluoxetine (+54%) significantly increased agonist-stimulated binding in the dorsal hippocampus; all drugs except imipramine significantly decreased binding in the dorsal raphe (−19 to −41%). These results generally support the concept of a net enhancement of hippocampal 5-HT neurotransmission via one or more 5-HT receptor subtypes. The most consistent effect, however, was a significant decrease in stimulated [35S]GTPγS binding in the lateral septum after all four treatments (−14 to −23%), suggesting that this may be a heretofore unrecognized common outcome of antidepressant treatment deserving further study.  相似文献   

8.
G-protein activation by different 5-HT receptor ligands was investigated in h5-HT1A receptor-transfected C6-glial and HeLa cells using agonist-stimulated [35S]GTPγS binding to membranes in the presence of excess GDP. 5-HT (10 μM) stimulated [35S]GTPγS binding in the C6-glial membrane preparation to a larger extent than in the HeLa preparation; maximal responses with 30 μM GDP were 490 ± 99 and 68 ± 12%, respectively. With the 5-HT receptor agonists that were being investigated, the two preparations displayed the same rank order of potency for stimulation of [35S]GTPγS binding. In the C6-glial preparation at 0.3 μM GDP, the rank order of maximal effects was: 5-HT (1.00) > 8-OH-DPAT (0.90) = R(+)-8-OH-DPAT (0.87) = 5-CT (0.86) = L694247 (0.84) > S(–)8-OH-DPAT (0.68) = buspirone (0.67) = spiroxatrine (0.67) = flesinoxan (0.64) > ipsapirone (0.53) = (–)-pindolol (0.50) > SDZ216525 (0.25). However, differences in maximal response in the C6-glial preparation were magnified by increasing the GDP concentrations, indicating that the activity state of G-proteins can affect the maximal response. With the exception of 5-CT and L694247, increasing the amount of GDP to 30 μM and higher concentrations resulted in an attenuation of both the ligand’s maximal effect (24 to 56%) and apparent potency (6 to 24-fold). Each of the [35S]GTPγS binding responses was mediated by a 5-HT1A receptor as indicated by the competitive blockade by WAY100635 and spiperone. Only 5-CT and L694247 in some conditions displayed an efficacy similar to that of 5-HT at the h5-HT1A receptor; the other agents with intrinsic activity are partial agonists at this receptor. The data also suggest that the activity state of the G-proteins is involved in the maximal effects that can be produced by activating the h5-HT1A receptor. Received: 5 May 1997 / Accepted: 20 July 1997  相似文献   

9.
Functional consequences of receptor stimulation by quinpirole, a dopamine D(2)-like receptor agonist, were assessed using agonist-stimulated [35S]GTPgammaS binding in rat striatal membranes. Dopamine receptor antagonists inhibited quinpirole-stimulated [35SCH 23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine), consistent with a dopamine D(2)-like profile. In contrast, the monoamine oxidase inhibitors Ro 41-1049 (N-(2-aminoethyl)-5-(3-fluorophenyl)-4-thiazolecarboxemide), and (+)- and (-)-deprenyl, which inhibit [3H]quinpirole binding, had no effect on agonist-independent or quinpirole-stimulated [35S]GTPgammaS binding. Clorgyline inhibited [35S]GTPgammaS binding by a non-dopamine D(2) receptor-mediated mechanism. These findings demonstrate a notable discrepancy between the pharmacological profile of [3H]quinpirole binding and quinpirole-stimulated [35S]GTPgammaS binding.  相似文献   

10.
The role of nucleoside diphosphate kinase (NDKP), which converts GDP to GTP, in the coupling of mu-opioid receptors to G protein was investigated in membranes of Chinese hamster ovary cells stably transfected with the cloned rat mu-opioid receptor (rmor). Endogenous NDPK activity in membranes was determined to be 0.60+/-0.02 micromol/mg protein/30 min UDP (at 10 mM), a competitive substrate of NDPK for GDP with no effect on guanine nucleotide binding to G proteins, reduced basal [35S]GTPgammaS binding and unmasked morphine-stimulated [35S]GTPgammaS binding to pertussis toxin-sensitive G proteins, indicating that [35S]GTPgammaS binding to NDPK accounts for part of its high basal binding. UDP increased the extent of morphine-induced increase in [35S]GTPgammaS binding in the presence of GDP, most likely by reducing basal binding and inhibiting conversion of GDP to GTP. ATP greatly reduced morphine-induced increase in [35S]GTPgammaS binding, whereas AMP-PCP (adenylyl-(beta,gamma-methylene)-diphosphoate tetralithium salt), which cannot serve as the phosphate donor for NDPK, did not, demonstrating that effects of ATP is mediated by the NDPK product GTP. In addition, GDP and ATP increased the Kd and lowered the Bmax of the agonist [3H]DAMGO ([D-Ala2,N-Me-Phe4,Gly5ol]-Enkephalin) for the mu-opioid receptor and GDP alone increased Kd, most likely through their conversion to GTP by NDPK. Addition of exogenous NDPK enhanced the inhibitory effects of GDP and combined GDP and ATP on [3H]DAMGO binding. Thus, NDPK appears to play a role in modulating signal transduction of and agonist binding to mu-opioid receptors.  相似文献   

11.
In this study, we have demonstrated that the technique of agonist-stimulated guanosine-5'-O-(3-[35S]thio)-triphosphate (GTPgamma[35S]) binding can be successfully used to study the functional activity of the human 5-HT(1A) receptor in post-mortem tissue. Full agonist and antagonist actions of ligands specific for this site have been shown. Utilising 4-(2'-methoxy-phenyl)-1-[2'-(n-2'-pyridinyl)-p-fluorobenzamido]- ethyl-piperazine ([3H]MPPF), the affinity of several antipsychotics for the 5-HT(1A) receptor was determined; clozapine and quetiapine were found to have K(i) values at this receptor that, relative to their dopamine D(2) receptor affinities, indicated at least partial receptor occupancy at clinical doses. The agonist/antagonist activity of these two antipsychotics was studied using GTPgamma[35S] binding. Both compounds show partial agonism, and in addition, clozapine exhibited a larger degree of antagonism against 5-HT-stimulated binding than did quetiapine.  相似文献   

12.
BACKGROUND AND PURPOSE: We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. EXPERIMENTAL APPROACH: Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. KEY RESULTS :Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. CONCLUSIONS AND IMPLICATIONS: Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.  相似文献   

13.
Although many G-protein-coupled receptors (GPCRs) may display constitutive activity, their detection has, to date, depended on the use of inverse agonists. The present study exploited a novel procedure to investigate constitutive activity at recombinant human (h) serotonin (5-HT) 5-HT(1D) receptors stably expressed in Chinese hamster ovary (CHO) cells. 5-HT modestly stimulated guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]-GTPgammaS) binding to CHO-h5-HT(1D) membranes whereas methiothepin and the 5-HT(1B/1D)-selective ligand, SB224,289, exerted robust inhibition of basal [(35)S]-GTPgammaS binding (inverse agonism). These actions were specific inasmuch as they were reversed by the novel, selective 5-HT(1B/1D) ligand, S18127. Constitutive activity was investigated by homologous inhibition of [(35)S]-GTPgammaS binding to CHO-h5-HT(1D) membranes with unlabelled GTPgammaS. Under 'basal' conditions (absence of receptor ligand), biphasic isotherms were observed. Most (80%) [(35)S]-GTPgammaS binding sites were in the high affinity (HA) versus low affinity (LA) component of the isotherms. HA binding was augmented by 5-HT (to 155%; relative to basal values=100%), but decreased by methiothepin (to 23%) and by SB224,289 (to 67%). In contrast, LA binding was not altered. Further, membranes of untransfected CHO cells exhibited only LA binding sites, indicating that the latter are not related to h5-HT(1D) receptor-G-protein coupling. Thus, at 5-HT(1D) receptors expressed in this CHO cell line, HA binding detected in homologous inhibition experiments (GTPgammaS versus [(35)S]-GTPgammaS) under basal conditions provides a measure of constitutive G-protein activation. Thus, it is suggested that for h5-HT(1D) receptors and, possibly, other GPCRs, inverse agonists will be detectable by [(35)S]-GTPgammaS binding if a HA component is present under basal conditions.  相似文献   

14.
GTP hydrolyzing activity was assayed by measuring the amount of 32Pi released from 0.3 μM [γ-32P]GTP in the membranes prepared from rat brain. 5-Hydroxytryptamine (5-HT) stimulated the high-affinity GTPase activity in hippocampus, but not in striatum, in a concentration-dependent manner with an EC50 value of 18 nM and maximal percent stimulation of 13.9%. This response was mimicked by (±)-8-hydroxy-2-(di-n-propyl)tetralin [(±)-8-OH-DPAT], but not by (±)-1-(2,5-dimethoxy-4-iodophyenyl)-2-aminopropane [(±)-DOI]. These results suggest that 5-HT-stimulated high-affinity GTPase activity of the GTP-binding protein(s) is mediated via 5-HT1A receptor subtype in the rat hippocampus.  相似文献   

15.
Isoniazid, administered to rats one hour before killing produced a dose-dependent enhancement of [35S]t-butylbiciclophosphorothionate ([35S]TBPS, 2 nM) measured ex vivo in unwashed membrane preparation of the cerebral cortex. Saturation experiments revealed that the effect of isoniazid was due to an increase (+36%) in the total number of [35S]TBPS binding sites. Diazepam (3 mg/kg i.p.) administered 15 min after isoniazid antagonized the enhancement of [35S]TBPS binding elicited by isoniazid. Moreover, diazepam itself induced a significant decrease (-30%) in the total number of [35S]TBPS binding sites. These results provide the first direct evidence that 'in vivo' alterations in the function of the GABA-dependent chloride channel can be detected in vitro by studying the binding of [35S]TBPS to its recognition sites in the GABAA receptor complex. Our finding suggests a new model suitable to study biochemically the function of GABAergic synapses under various physiological and pharmacological conditions.  相似文献   

16.
4-(Benzodioxan-5-yl)1-(indan-2-yl)piperazine (S15535) is a highly selective ligand at 5-HT(1A) receptors. The present study compared its autoradiographic labelling of rat brain sections with its functional actions, visualised by guanylyl-5'-[gamma-thio]-triphosphate ([35S]GTPgammaS) autoradiography, which affords a measure of G-protein activation. [3H]S15535 binding was highest in hippocampus, frontal cortex, entorhinal cortex, lateral septum, interpeduncular nucleus and dorsal raphe, consistent with specific labelling of 5-HT(1A) receptors. In functional studies, S15535 (10 microM) did not markedly stimulate G-protein activation in any brain region, but abolished the activation induced by the selective 5-HT(1A) agonist, (+)-8-hydroxy-dipropyl-aminotetralin ((+)-8-OH-DPAT, 1 microM), in structures enriched in [3H]S15535 labelling. S15535 did not block 5-HT-stimulated activation in caudate nucleus or substantia nigra, regions where (+)-8-OH-DPAT was ineffective and [3H]S15535 binding was absent. Interestingly, S15535 attenuated (+)-8-OH-DPAT and 5-HT-stimulated G-protein activation in dorsal raphe, a region in which S15535 is known to exhibit agonist properties in vivo [Lejeune, F., Millan, M.J., 1998. Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)(1A) receptors: WAY100,635-reversible actions of the highly selective ligands, flesinoxan and S15535. Synapse 30, 172-180.].The present data show that (i) [3H]S15535 labels pre- and post-synaptic populations of 5-HT(1A) sites in rat brain sections, (ii) S15535 exhibits antagonist properties at post-synaptic 5-HT(1A) receptors in corticolimbic regions, and (iii) S15535 also attenuates agonist-stimulated G-protein activation at raphe-localised 5-HT(1A) receptors.  相似文献   

17.
We constructed a reproducible, simple, and small-scale determination method of the psychoactive drugs that acted directly on the monoamine receptor by measuring the activation of [(35)S]guanosine-5'-O-(3-thio)-triphosphate binding to guanine nucleotide-binding proteins (G proteins). This method can simultaneously measure the effects of three monoamines, namely dopamine (DA), serotonin (5-HT), and norepinephrine (NE), in rat brain membranes using a 96-well microplate. Activation of D(1) and D(2) receptors in striatal membranes by DA as well as 5-HT and NEalpha(2) receptors in cortical membranes could be measured. Of 12 tested phenethylamines, 2,5-dimethoxy-4-chlorophenethylamine (2C-C), 2,5-dimethoxy-4-ethylphenethylamine (2C-E), and 2,5-dimethoxy-4-iodophenethylamine (2C-I) stimulated G protein binding. The other phenethylamines did not affect G protein binding. All 7 tryptamines tested stimulated G protein binding with the following rank order of potency; 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT)>5-methoxy-N,N-diallyltryptamine (5-MeO-DALT)>5-methoxy-alpha-methyltryptamine (5-MeO-AMT)>or=5-methoxy-N,N-methylisopropyltryptamine (5-MeO-MIPT)>5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT)>N,N-dipropyltryptamine (DPT)>or=alpha-methyltryptamine (AMT). This assay system was able to designate psychoactive drugs as prohibited substances in accordance with criteria set forth by the Tokyo Metropolitan government.  相似文献   

18.
The use of compounds with high selectivity for each opioid receptor (mu, delta and kappa) is crucial for understanding the mechanisms of opioid actions. Until recently non-peptide mu-opioid receptor selective antagonists were not available. However, N-cyclopropylmethyl-4,14-dimethoxy-morphinan-6-one (cyprodime) has shown a very high selectivity for mu-opioid receptor in in vivo bioassays. This compound also exhibited a higher affinity for mu-opioid receptor than for delta- and kappa-opioid receptors in binding assays in brain membranes, although the degree of selectivity was lower than in in vitro bioassays. Cyprodime has recently been radiolabelled with tritium resulting in high specific radioactivity (36.1 Ci/mmol). We found in in vitro binding experiments that this radioligand bound with high affinity (K(d) 3. 8+/-0.18 nM) to membranes of rat brain affording a B(max) of 87. 1+/-4.83 fmol/mg. Competition studies using mu, delta and kappa tritiated specific ligands confirmed the selective labelling of cyprodime to a mu-opioid receptor population. The mu-opioid receptor selective agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) was readily displaced by cyprodime (K(i) values in the low nanomolar range) while the competition for delta- ([D-Pen(2), D-Pen(5)]enkephalin (DPDPE)) and kappa- (5alpha,7alpha, 8beta-(-)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro(4, 5)dec-8-yl]-benzene-acetamide (U69,593)) opioid receptor selective compounds was several orders of magnitude less. We also found that cyprodime inhibits morphine-stimulated [35S]GTPgammaS binding. The EC(50) value of morphine increased about 500-fold in the presence of 10 microM cyprodime. These findings clearly indicate that cyprodime is a useful selective antagonist for mu-opioid receptor characterization.  相似文献   

19.
We examined the effects of [D-Pen(2),D-Pen(5)]enkephalin (DPDPE), [D-Ala(2),Glu(4)]deltorphin (DELT), and (+)-4-[(alphaR)-alpha((2S, 5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide (SNC80) on [35S]GTPgammaS binding in brain membranes prepared from micro-opioid receptor knockout (-/-) mice. The potency and maximal response (E(max)) of these agonists were unchanged compared to control mice. In contrast, while the potency of [D-Pen(2),pCl-Phe(4),D-Pen(5)]enkephalin (pCl-DPDPE) was not significantly different, the E(max) was reduced as compared to controls. In the tail-flick test, intracerebroventricular (i.c.v.) or intrathecal (i.th.) DELT produced antinociceptive effects in -/- mice with potency that did not differ significantly from controls. In contrast, the antinociceptive potency of i.c.v. and i.th. DPDPE was displaced to the right by 4- and 9-fold in -/- compared to control mice, respectively. Reduced DPDPE antinociceptive potency in -/- mice, taken together with reduced DPDPE- and pCl-DPDPE- stimulated G protein activity in membranes prepared from -/- mice, demonstrate that these agonists require mu-opioid receptors for full activity. However, because DELT mediated G protein activation and antinociception were both comparable between -/- and wild type mice, we conclude that the mu-opioid receptor is not a critical component of delta-opioid receptor function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号