首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance among dormant mycobacteria leading to multidrug‐resistant and extremely drug‐resistant tuberculosis is one of the major threats. Hence, a series of 1,2,4‐triazole‐3‐thione and 1,3,4‐oxadiazole‐2‐thione derivatives ( 4a–5c ) have been synthesized and screened for their antitubercular activity against Mycobacterium tuberculosis H37Ra (H37Ra). The triazolethiones 4b and 4v showed high antitubercular activity (both MIC and IC50) against the dormant H37Ra by in vitro and ex vivo. They were shown to have more specificity toward mycobacteria than other Gram‐negative and Gram‐positive pathogenic bacteria. The cytotoxicity was almost insignificant up to 100 μg/ml against THP‐1, A549, and PANC‐1 human cancer cell lines, and solubility was high in aqueous solution, indicating the potential of developing these compounds further as novel therapeutics against tuberculosis infection.  相似文献   

2.
A new antitubercular agents, benzo[6,7]cyclohepta[1,2‐b]pyridine‐1,3,4‐ oxadiazole hybrids ( 6a–o ), have been designed and synthesized involving oxidative cyclization of hydrazones by use of di(acetoxy)iodobenzene, characterized by IR,1H NMR,13C NMR, and HRMS, and further confirmed by X‐ray analysis. All the newly synthesized compounds 4a–o evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC27294). Among the compounds tested, the compounds 4o (MIC: 1.56  μg/ml) and 4l, 4m (MIC: 3.125  μg/ml) are promising lead analogues and have shown lower cytotoxicity.  相似文献   

3.
In the quest for new active molecules against Mycobacterium tuberculosis, a series of dihydroquinoline derivatives possessing triazolo substituents were efficiently synthesized using click chemistry. The structure of 6l was evidenced by X‐ray crystallographic study. The newly synthesized compounds were evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC27294). The compounds 6a , 6g, and 6j (MIC: 3.13 μg/ml) showed promising activity when compared to the first‐line drug such as ethambutol. In addition, the structure and antitubercular activity relationship were further supported by in silico molecular docking studies of the active compounds against 3IVX.PDB (crystal structure of pantothenate synthetase in complex with 2‐(2‐(benzofuran‐2‐ylsulfonylcarbamoyl)‐5‐methoxy‐1H‐indol‐1‐yl)acetic acid).  相似文献   

4.
A series of novel 1,4‐dihydropyridine‐3,5‐dicarbamoyl derivatives bearing an imidazole nucleus at C‐4 position were synthesized in excellent yields via multicomponent Hantzsch reaction. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopy. The synthesized compounds 3a‐p were screened for antitubercular activity. Among all the screened compounds, compounds 3j and 3m showed most prominent activity against Mycobacterium tuberculosis with minimum inhibitory concentration of 0.02 μg/mL and SI > 500, making it more potent than first‐line antitubercular drug isoniazid. In addition, these compounds displayed relatively low cytotoxicity.  相似文献   

5.
This work presents synthesis and antimicrobial evaluation of nineteen 6‐alkylamino‐N–phenylpyrazine‐2‐carboxamides. Antimycobacterial activity was determined against Mycobacterium tuberculosis H37Rv, M. kansasii and two strains of M. avium. Generally, the antimycobacterial activity increased with prolongation of simple alkyl chain and culminated in compounds with heptylamino substitution ( 3e , 4e ) with MIC = 5–10 μm against M. tuberculosis H37Rv. On the contrary, derivatives with modified alkyl chain (containing e.g. terminal methoxy or hydroxy group) as well as phenylalkylamino derivatives were mainly inactive. The most active compounds (with hexyl to octylamino substitution) were evaluated for their in vitro activity against drug‐resistant strains of M. tuberculosis and possessed activity comparable to that of the reference drug isoniazid. None of the tested compounds were active against M. avium. Some derivatives exhibited activity against Gram‐positive bacteria including methicillin‐resistant Staphylococcus aureus (best MIC = 7.8 μm ), while Gram‐negative strains as well as tested fungal strains were completely unsusceptible. Active compounds were tested for in vitro toxicity on various cell lines and in most cases were non‐toxic up to 100 μm .  相似文献   

6.
In this study, seventeen novel quinoline‐based carboxylic hydrazides were designed as potential anti‐tubercular agents using molecular hybridization approach and evaluated in‐silico for drug‐likeness behavior. The compounds were synthesized, purified, and characterized using spectral techniques (like FTIR, 1H NMR, and Mass). The in‐vitro anti‐tubercular activity (against Mycobacterium tuberculosisH37Ra) and cytotoxicity against human lung fibroblast cells were studied. Among the tested hydrazides, four compounds ( 6h , 6j , 6l, and 6m ) exhibited significant anti‐tubercular activity with MIC values below 20 μg/mL. The two most potent compounds of the series, 6j and 6m exhibited MIC values 7.70 and 7.13 μg/mL, respectively, against M. tuberculosis with selectivity index >26. Structure–activity relationship studies were performed for the tested compounds in order to explore the effect of substitution pattern on the anti‐tubercular activity of the synthesized compounds.  相似文献   

7.
The discovery of antibiotics around the middle twentieth century led to a decrease in the interest in antimycobacterial fatty acids. In order to re‐establish the importance of naturally abundant fatty acid, a series of fatty acid‐thiadiazole derivatives were designed and synthesized based on molecular hybridization approach. In vitro antimycobacterial potential was established by a screening of synthesized compounds against Mycobacterium tuberculosis H37Rv strain. Among them, compounds 5a , 5d , 5h , and 5j were the most active, with compound 5j exhibiting minimum inhibitory concentration of 2.34 μg/ml against M.tb H37Rv. Additionally, the compounds were docked to determine the probable binding interactions and understand the mechanism of action of most active molecules on enoyl‐acyl carrier protein reductases (InhA), which is involved in the mycobacterium fatty acid biosynthetic pathway.  相似文献   

8.
We prepared fifty various 9H‐fluorenone based 1,2,3‐triazole analogues varied with NH, –S–, and –SO2– groups using click chemistry. The target compounds were characterized by routine analytical techniques, 1H, 13CNMR, mass, elemental, single‐crystal XRD ( 8a ) and screened for in vitro antitubercular activity against Mycobacterium tuberculosis (MTB) H37Rv strain and two “wild” strains Spec. 210 and Spec. 192 and MIC50 was determined. Further, the compounds were evaluated for MTB InhA inhibition study as well. The final analogues exhibited minimum inhibitory concentration (MIC) ranging from 52.35 to >295 μm . Among the –NH– analogues, one compound 5p (MIC 58.34 μm ), among –S– containing analogues four compounds 8e (MIC 66.94 μm ), 8f (MIC 74.20 μm ), 8g (MIC 57.55 μm ), and 8q (MIC 56.11 μm ), among –SO2– containing compounds one compound 10p (MIC 52.35 μm ) showed less than MTB MIC 74.20 μm : Compound 4‐(((9H‐fluoren‐9‐yl)sulfonyl)methyl)‐1‐(3,4,5‐trimethoxyphenyl)‐1H‐1,2,3‐triazole ( 10p ) was found to be the most active compound with 73% InhA inhibition at 50 μm ; it inhibited MTB with MIC 52.35 μm . Further, 10f and 10p were docked to crystal structure of InhA to know binding interaction pattern. Most active compounds were found to be non‐cytotoxic against HEK 293 cell lines at 50 μm .  相似文献   

9.
Three series of 5‐arylaminouracil derivatives, including 5‐(phenylamino)uracils, 1‐(4′‐hydroxy‐2′‐cyclopenten‐1′‐yl)‐5‐(phenylamino)uracils, and 1,3‐di‐(4′‐hydroxy‐2′‐cyclopenten‐1′‐yl)‐5‐(phenylamino)uracils, were synthesized and screened for potential antimicrobial activity. Most of compounds had a negative effect on the growth of the Mycobacterium tuberculosis H37Rv strain, with 100% inhibition observed at concentrations between 5 and 40 μg/mL. Of those, 1‐(4′‐hydroxy‐2′‐cyclopenten‐1′‐yl)‐3‐(4?‐hydroxy‐2?‐cyclopenten‐1?‐yl)‐5‐(4″‐butyloxyphenylamino)uracil proved to be the most active among tested compounds against the M. tuberculosis multidrug‐resistant strain MS‐115 (MIC90 5 μg/mL). In addition, the thymidylate kinase of M. tuberculosis was evaluated as a possible enzymatic target.  相似文献   

10.
2‐Aryl‐3‐(1H‐imidazol‐1‐yl and 1H‐1,2,4‐triazol‐1‐yl)‐1H‐indole derivatives were synthesized and tested for their in‐vitro antifungal and antimycobacterial activities. These indole derivatives were devoid of antifungal activity against the tested strains of Candida spp. Yet, they exhibited an interesting antitubercular activity against Mycobacterium tuberculosis reference strain H37Rv.  相似文献   

11.
In our efforts to develop druggable diphenyl ethers as potential antitubercular agents, a series of novel diphenyl ether derivatives ( 5a – f , 6a – f ) were designed and synthesized. The representative compounds showed promising in vitro activity against drug‐susceptible, isoniazid‐resistant, and multidrug‐resistant strains of Mycobacterium tuberculosis with MIC values of 1.56 μg/ml ( 6b ), 6.25 μg/ml ( 6a–d ), and 3.125 μg/ml ( 6b–c ), respectively. All the synthesized compounds exhibited satisfactory safety profile (CC50 > 300 μg/ml) against Vero and HepG2 cells. Reverse phase HPLC method was used to probe the physicochemical properties of the synthesized compounds. This series of compounds demonstrated comparatively low logP values. pKa values of representative compounds indicated that they were weak acids. Additionally, in vitro human liver microsomal stability assay confirmed that the synthesized compounds possessed acceptable stability under study conditions. The present study thus establishes compound 6b as the most promising antitubercular agent with acceptable drug‐likeness.  相似文献   

12.
A series of fluorinated 1,2,4‐triazolo[1,5‐a]pyrimidine‐6‐carboxylic acid derivatives was designed and synthesized as fluoroquinolone analogues. The synthesized compounds were screened against Mycobacterium tuberculosis H37Rv strain at 6.25 μg/mL concentration. Compound 4 , the 7‐oxo‐2‐(trifluoromethyl)‐4,7‐dihydro‐1,2,4‐triazolo[5,1‐a]pyrimidine‐6‐carboxylic acid was found to be a very potent inhibitor, being able to inhibit 92% growth of M. tuberculosis H37Rv at 6.25 μg/mL concentration. At the same time, it proofed to be nontoxic to mammalian cells (IC50 > 62.5 μg/mL in VERO cells).  相似文献   

13.
A novel series of 1‐(thiophen‐2‐yl)‐9H‐pyrido [3,4‐b]indole derivatives were synthesized using DL‐tryptophan as starting material. All the compounds were characterized by spectral analysis such as 1H NMR, Mass, IR, elemental analysis and evaluated for inhibitory potency against HIV‐1 replication. Among the reported analogues, compound 7g exhibited significant anti‐HIV activity with EC50 0.53 μm and selectivity index 483; compounds 7e , 7i , and 7o displayed moderate activity with EC50 3.8, 3.8, and 2.8 μm and selectivity index >105, >105, and 3.85, respectively. Interestingly, compound 7g inhibited p24 antigen expression in acute HIV‐1IIIB infected cell line C8166 with EC50 1.1 μm . In this study, we also reported the Lipinski rule of 5 parameters, predicted toxicity profile, drug‐likeness, and drug score of the synthesized analogues.  相似文献   

14.
Coumarin‐3‐yl‐methyl‐1,2,3‐triazolyl‐1,2,4‐triazol‐3(4H)‐ones ( 8k‐z ) were synthesized via copper(I)‐catalyzed azide‐alkyne cycloaddition click chemistry. The synthesized hybrid molecules were characterized by spectral studies. Compounds 8k‐z were screened for their in vitro anti‐TB activity by using the Microplate Alamar Blue assay and for cytotoxicity using the MTT assay. Some of the compounds were found to be most potent against the tested Mycobacterium tuberculosis H37Rv strain with a MIC of 1.60 µg/ml. Further, docking the compounds into the InhA binding pocket showed strong binding interactions and effective overall docking scores were recorded. The drug‐likeness and toxicity studies were computed using Molinspiration and Protox, respectively.  相似文献   

15.
Lysine ?‐aminotransferase (LAT) is a protein involved in lysine catabolism, and it plays a significant role during the persistent/latent phase of Mycobacterium tuberculosis (MTB), as observed by its up‐regulation by ~40‐fold during this stage. We have used the crystal structure of MTB LAT in external aldimine form in complex with its substrate lysine as a template to design and identify seven lead compounds with IC50 ranging from 18.06 to > 90 μm . We have synthesized 21 compounds based on the identified lead, and compound 21 [2,2′‐oxybis(N′‐(4‐fluorobenzylidene)acetohydrazide)] was found to be the most active with MTB LAT IC50 of 0.81 ± 0.03 μm . Compound 21 also showed a 2.3 log reduction in the nutrient‐starved MTB model and was more potent than standard isoniazid and rifampicin at the same dose level of 10 μg/mL.  相似文献   

16.
A series of 1‐(substituted‐phenyl)‐1‐[(2‐chloroquinolin‐3‐yl)methyl]thiocarbamide and 1‐(substituted‐phenyl)‐1‐[(2‐chloroquinolin‐3‐yl)methyl]methylthiocarbamide derivatives was synthesized as antitubercular agent. The structure of quinolinyl amines and their thiocarbamide derivatives were established on the basis of IR, 1H and 13C‐NMR and mass spectral data. All the compounds were tested in vitro for antimycobacterial activity against Mycobacterium tuberculosis (ATCC‐25177) in Lowenstein‐Jensen medium by well diffusion method and MIC by twofold serial dilution method. Results of the antitubercular screening revealed that compounds showed moderate to good antitubercular activity. Compound having two halogens in the phenyl rings viz. 3g , 3h , 4g, and 4h exhibited MIC of 50 μg/mL. The computational parameters relevant to absorption and permeation of target compounds were also calculated and found to be well correlated with antitubercular activity.  相似文献   

17.
A series of novel 1H‐1,2,3‐triazole tethered isatin–moxifloxacin (MXF) hybrids 5a ‐ l with greater lipophilicity compared with the parent MXF were designed, synthesized and screened for their in vitro antimycobacterial activities against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant MTB (MDR–MTB) as well as their cytotoxicity on the VERO cell line. All the synthesized hybrids (MIC: 0.025‐0.78 μg/ml) showed considerable activities against MTB H37Rv and MDR–MTB, and the most active conjugate 5c (MIC: 0.025 and 0.06 μg/ml) was 2 to >2048 times more potent in vitro than the three references MXF (MIC: 0.10 and 0.12 μg/ml), rifampicin (MIC: 0.39 and 32 μg/ml) and isoniazid (MIC: 0.05 and >128 μg/ml) against the two tested strains. All hybrids (CC50: 4‐64 μg/ml) were much more cytotoxic than the parent MXF (CC50: 128 μg/ml), but the most active hybrid 5c (CC50: 32 μg/ml) also displayed acceptable cytotoxicity, warranting further investigation.  相似文献   

18.
A series of novel thiocarbohydrazones of substituted indoles and their corresponding thiadiazole derivatives were prepared, and their structures were confirmed by different analytical and spectroscopic methods. The derivatives were prepared by a sequential synthetic strategy including substitution at N‐1 position of indole ring by various aliphatic and benzylic substituents, followed by condensation with thiocarbohydrazide, and finally cyclization by triethyl orthoformate. The derivatives were tested for their antimycobacterial activity against Mycobacterium bovis BCG, and the results revealed that among the synthesized compounds, thiadiazole derivatives 4e , 4f , 4n , 4p , 4q , and 4t exhibited the highest activity with IC50 value of 3.91 μg/mL. The results indicate that the thiadiazole moiety plays a vital role in exerting antimycobacterial activity.  相似文献   

19.
5‐Substituted‐6‐acetyl‐2‐amino‐7‐methyl‐5,8‐dihydropyrido[2,3‐d]pyrimidin‐4(3H)‐one derivatives were synthesized and evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium aurum, Escherichia coli, and Staphylococcus aureus as well as a human monocyte‐derived macrophage (THP‐1), and murine macrophage (RAW 264.7) cell lines to assess their antibacterial and cytotoxic potential, respectively. The compounds showed activity in the range of 1.95–125 µg/ml against M. tuberculosis but showed no activity against M. aurum, E. coli, and S. aureus, indicating selectivity towards slow‐growing mycobacterial pathogens. The compounds exhibited very low to no cytotoxicity up to 500 µg/ml concentration against eukaryotic cell lines. The most potent molecule, 2l , showed a minimum inhibitory concentration of 1.95 µg/ml against M. tuberculosis H37Rv and a selectivity index of >250 against both the eukaryotic cell lines. Furthermore, 2l showed moderate inhibition of whole‐cell mycobacterial drug‐efflux pumps when compared to verapamil, a known potent inhibitor of efflux pumps. Thus, derivative 2l was identified as an antituberculosis hit molecule, which could be used to yield more potent lead molecules.  相似文献   

20.
A series of novel S‐DABO derivatives with the substituted 1,2,3‐triazole moiety on the C‐2 side chain were synthesized using the simple and efficient CuAAC reaction, and biologically evaluated as inhibitors of HIV‐1. Among them, the most active HIV‐1 inhibitor was compound 4‐((4‐((4‐(2,6‐dichlorobenzyl)‐5‐methyl‐6‐oxo‐1,6‐dihydropyrimidin‐2‐ylthio)methyl)‐1H‐1,2,3‐triazol‐1‐yl)methyl)benzenesulfonamide ( B5b7) , which exhibited similar HIV‐1 inhibitory potency (EC50 = 3.22 μm ) compared with 3TC (EC50 = 2.24 μm ). None of these compounds demonstrated inhibition against HIV‐2 replication. The preliminary structure–activity relationship (SAR) of these new derivatives was discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号