首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel S‐DABO derivatives with the substituted 1,2,3‐triazole moiety on the C‐2 side chain were synthesized using the simple and efficient CuAAC reaction, and biologically evaluated as inhibitors of HIV‐1. Among them, the most active HIV‐1 inhibitor was compound 4‐((4‐((4‐(2,6‐dichlorobenzyl)‐5‐methyl‐6‐oxo‐1,6‐dihydropyrimidin‐2‐ylthio)methyl)‐1H‐1,2,3‐triazol‐1‐yl)methyl)benzenesulfonamide ( B5b7) , which exhibited similar HIV‐1 inhibitory potency (EC50 = 3.22 μm ) compared with 3TC (EC50 = 2.24 μm ). None of these compounds demonstrated inhibition against HIV‐2 replication. The preliminary structure–activity relationship (SAR) of these new derivatives was discussed briefly.  相似文献   

2.
Novel pyrimidin‐4‐one derivatives have been synthesized using EDC coupling and evaluated as glycogen synthase kinase‐3β (GSK‐3β) inhibitors. Among all the synthesized compounds, compound 5 (3‐methyl‐6‐phenyl‐2‐(piperazin‐1‐yl)‐3,4‐dihydropyrimidin‐4‐one) exhibited the most potent inhibitory activity against GSK‐3β with IC50 value of 74 nm . The molecular docking studies were performed to elucidate the binding modes of the compounds with the target, and a crucial interaction involving hydrogen bond formation with Val‐135 to the active site of GSK‐3β was observed. Furthermore, the synthesized compounds were subjected to in vivo evaluation of their antidepressant activity, and compound 5 showing highest inhibition of GSK‐3β was also found to significantly reduce the duration of immobility at 50 mg/kg, when compared with fluoxetine, a known antidepressant drug. The results of our study suggest that compound 5 may serve as a valuable template for the design and development of inhibitors of GSK‐3β with antidepressant activity.  相似文献   

3.
In this study, novel acridone‐1,2,4‐oxadiazole‐1,2,3‐triazole hybrids were designed, synthesized, and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activity. Among various synthesized compounds, 10‐((1‐((3‐(4‐methoxyphenyl)‐1,2,4‐oxadiazol‐5‐yl)methyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)acridin‐9(10H)‐one 10b showed the most potent anti‐acetylcholinesterase activity (IC50 = 11.55 μm ) being as potent as rivastigmine. Also docking outcomes were in good agreement with in vitro results confirming the dual binding inhibitory activity of compound 10b .  相似文献   

4.
A series of N‐substituted‐5‐chloro‐2(3H)‐benzoxazolone derivatives were synthesized and evaluated for their acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) inhibitory, and antioxidant activities. The structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman's colorimetric method. The free radical scavenging activity was also determined by in vitro ABTS (2,2‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid)) assay. The biological activity results revealed that all of the title compounds displayed higher AChE inhibitory activity than the reference compound, rivastigmine, and were selective for AChE. Among the tested compounds, compound 7 exhibited the highest inhibition against AChE (IC50 = 7.53 ± 0.17 μM), while compound 11 was found to be the most active compound against BuChE (IC50 = 17.50 ± 0.29 μM). The molecular docking study of compound 7 showed that this compound can interact with the catalytic active site (CAS) of AChE and also has potential metal chelating ability and a proper log P value. On the other hand, compound 2 bearing a methyl substituent at the ortho position on the phenyl ring showed better radical scavenging activity (IC50 = 1.04 ± 0.04 mM) than Trolox (IC50 = 1.50 ± 0.05 mM).
  相似文献   

5.
A series of novel 4‐isochromanone compounds bearing N‐benzyl pyridinium moiety were designed and synthesized as acetylcholinesterase (AChE) inhibitors. The biological evaluation showed that most of the target compounds exhibited potent inhibitory activities against AChE. Among them, compound 1q possessed the strongest anti‐AChE activity with an IC50 value of 0.15 nm and high AChE/BuChE selectivity (SI > 5,000). Moreover, compound 1q had low toxicity in normal nerve cells and was relatively stable in rat plasma. Together, the current finding may provide a new approach for the discovery of novel anti‐Alzheimer's disease agents.  相似文献   

6.
A variety of 5‐(2H‐tetrazol‐5‐yl)‐4‐thioxo‐2‐(substituted phenyl)‐4,5‐dihydro‐1,3‐oxazin‐6‐ones ( 3a–k ) have been synthesized from 1,3‐oxazine‐5‐carbonitriles ( 2a–k ). The protocol represents an efficient, facile, and novel route from easily available precursors to unprecedented structures that share 1,3‐oxazine and tetrazole motifs of utmost value. All the synthesized compounds ( 3a–k ) were evaluated for their inhibitory potential against mushroom tyrosinase. Results revealed that all examined 1,3‐oxazine‐tetrazole hybrids exhibited significant tyrosinase inhibitory activity while compound 3d having 2‐bromophenyl moiety was the most potent among the series with IC50 value 0.0371 ± 0.0018 μM as compared to the reference kojic acid (IC50 = 16.832 ± 0.73 μM). Inhibitory kinetics showed that compound 3d behaves as a competitive inhibitor. The molecular docking analysis was performed against target protein to investigate the binding mode. Moreover, compounds 3j and 3k displayed superior DPPH radical scavenging activity than other analogues.  相似文献   

7.
A library of substituted tetrahydroacridin‐9‐amine derivatives were designed, synthesized, and evaluated as dual cholinesterase and amyloid aggregation inhibitors. Compound 8e (N‐(3,4‐dimethoxybenzyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine) was identified as a potent inhibitor of butyrylcholinesterase (BuChE IC50 = 20 nm ; AChE IC50 = 2.2 μm ) and was able to inhibit amyloid aggregation (40% inhibition at 25 μm ). Compounds 9e (6‐chloro‐N‐(3,4‐dimethoxybenzyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine, AChE IC50 = 0.8 μm ; BuChE IC50 = 1.4 μm ; Aβ‐aggregation inhibition = 75.7% inhibition at 25 μm ) and 11b (6‐chloro‐N‐(3,4‐dimethoxyphenethyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine, AChE IC50 = 0.6 μm ; BuChE IC50 = 1.9 μm ; Aβ‐aggregation inhibition = 85.9% inhibition at 25 μm ) were identified as the best compounds with dual cholinesterase and amyloid aggregation inhibition. The picolylamine‐substituted compound 12c (6‐chloro‐N‐(pyridin‐2‐ylmethyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine) was the most potent AChE inhibitor (IC50 = 90 nm ). These investigations demonstrate the utility of 3,4‐dimethoxyphenyl substituent as a novel pharmacophore possessing dual cholinesterase inhibition and anti‐Aβ‐aggregation properties that can be used in the design and development of small molecules with multitargeting ability to treat Alzheimer's disease.  相似文献   

8.
New bis‐2(5H)‐furanone derivatives containing a benzidine core were synthesized via a one‐step transition‐metal‐free reaction of benzidine with 5‐substituted 3,4‐dihalo‐2(5H)‐furanones. Their antitumor activities against various tumor cells have been evaluated by MTT assay. Among them, compound 4e exhibits significant inhibitory activity against C6 glioma cells with an IC50 value of 12.1 μm and low toxicity toward HaCaT human normal cells. Studies on the antitumor mechanism reveal that cell cycle arrest at S‐phase in C6 cells is induced by compound 4e . Furthermore, investigations with electronic, fluorescence emission and circular dichroism spectra show that compound 4e can significantly interact with C6‐DNA. These data indicate that DNA may be one of the potential targets for bis‐2(5H)‐furanone derivatives as anticancer drugs.  相似文献   

9.
Six series of pyrrolo[2,3‐d]pyrimidine and pyrazolo[3,4‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety were designed and synthesized, and some bio‐evaluation was also carried out. As a result, four points can be summarized: Firstly, some of compounds exhibited excellent cytotoxicity activity and selectivity with the IC50 values in single‐digit μm level. In particular, the most promising compound 16d showed equal activity to lead compound foretinib against A549, HepG2, and MCF‐7 cell lines, with the IC50 values of 4.79 ± 0.82, 2.03 ± 0.39, and 2.90 ± 0.43 μm , respectively. Secondly, the SARs and docking studies indicated that the in vitro antitumor activity of pyrrolo[2,3‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety was superior to the pyrazolo[3,4‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety. Thirdly, three selected compounds ( 16d , 18d , and 20d ) were further evaluated for inhibitory activity against the c‐Met kinase, and the 16d could inhibit the c‐Met kinase selectively by experiments of enzyme‐based selectivity. What is more, 16d could induce apoptosis of HepG2 cells and inhibitor the cell cycle of HepG2 on G2/M phase by acridine orange staining and cell cycle experiments, respectively.  相似文献   

10.
A group of methyl 2‐methyl‐2‐[2‐(4‐benzoyl‐5‐phenyl‐7‐halo‐2‐azabicyclo[4.1.0]hept‐3‐ene)]acetates ( 10–15 ), and the related acetamide derivative ( 16 ), that possess a variety of C‐7 substituents (Br, Cl, F, H), were designed for evaluation as analgesic‐antiinflammatory agents. The effect of the C‐7 substituent(s) and the nature of the acetic acid ester (R1 = Ome) or acetamide (R1 = NH2) moiety on analgesic activity was determined using a 4% NaCl‐induced abdominal constriction assay. Compounds 10–16 inhibited writhing by 36–82%, relative to the reference drugs aspirin (58% inhibition) and celecoxib (62% inhibition). The nature of the C‐7 substituents was a determinant of analgesic activity in the 7,7‐dihalo group of compounds where the relative activity profile was 7‐Cl2 > 7‐Br2 > 7‐F2 > 7‐Cl,7‐F, and for 7‐monohalo compounds where the potency order was 7‐Br > 7‐Cl. Elaboration of the 7,7‐dibromo methyl acetate ester ( 10 ) to the corresponding acetamide derivative ( 16 ) enhanced analgesic activity. The nature of the 7‐halo substituent(s) in the 7,7‐dihalo group of compounds was a determinant of antiinflammatory activity, determined using the carrageenan‐induced rat paw edema assay, where the relative potency order was 7‐Br2 > 7‐Cl2 > 7‐F2 > 7‐Cl,7‐F. The most potent 7,7‐dibromo compound ( 10 ) inhibited inflammation by 62%, relative to the reference drug ibuprofen (44%), and 10 inhibited COX‐2 (IC50 = 26.4 μM) and COX‐1 (IC50 = 227 μM) for a COX‐2 selectivity index of 8.6. Docking 10 in the active site of human COX‐2 showed it binds in the center of the COX‐2 binding site with the C‐5 phenyl ring oriented toward the acetylation site (Ser530), and the phenyl group of the C‐4 benzoyl moiety oriented in the vicinity of the COX‐2 secondary binding pocket near Val523. Drug Dev. Res. 49:75–84, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

11.
Cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), have a role in cholinergic deficit which evidently leads to Alzheimer's disease (AD). Inhibition of cholinesterases with small molecules is an attractive strategy in AD therapy. This study demonstrates synthesis of pyrido[2,3‐b]pyrazines ( 6a ‐ 6q ) series, their inhibitory activities against both cholinesterases, AChE and BChE, and molecular docking studies. The bioactivities data of pyrido[2,3‐b]pyrazines showed 3‐(3′‐nitrophenyl)pyrido[2,3‐b]pyrazine 6n a potent dual inhibitor among the series against both AChE and BChE with IC50 values of 0.466 ± 0.121 and 1.89 ± 0.05 μm , respectively. The analogues 3‐(3′‐methylphenyl)pyrido[2,3‐b]pyrazine 6c and 3‐(3′‐fluorophenyl)pyrido[2,3‐b]pyrazine 6f were found to be selective inhibition for BChE with IC50 values of 0.583 ± 0.052 μm and AChE with IC50 value of 0.899 ± 0.10 μm , respectively. Molecular docking studies of the active compounds suggested the putative binding modes with cholinesterases. The potent compounds among the series could potentially serves as good leads for the development of new cholinesterase inhibitors.  相似文献   

12.
A novel 2‐(piperidin‐4‐yl)‐1H‐benzo[d]imidazole derivative 5 with good anti‐inflammatory activity was identified from our in‐house library. Based on hit compound 5 , two series of 2‐(piperidin‐4‐yl)‐1H‐benzo[d]imidazole derivative 6a – g and 7a – h were designed and synthesized as novel anti‐inflammatory agents. Most of synthesized compounds exhibited good inhibitory activity on NO and TNF‐α production in LPS‐stimulated RAW 264.7 macrophages, in which the compound 6e showed most potent inhibitory activity on NO (IC50 = 0.86 μm ) and TNF‐α (IC50 = 1.87 μm ) production. Further evaluation revealed that compound 6e displayed more potent in vivo anti‐inflammatory activity than ibuprofen did on xylene‐induced ear oedema in mice. Additionally, Western blot analysis revealed that compound 6e could restore phosphorylation level of IκBα and protein expression of p65 NF‐κB in LPS‐stimulated RAW 264.7 macrophages.  相似文献   

13.
New synthesized series of 9‐amino‐1,2,3,4‐tetrahydroacridine derivatives with iodobenzoic acid moiety were studied for their inhibitory activity toward cholinesterase and against β‐amyloid aggregation. All novel molecules 3a–3i interacted with both cholinesterases—acetylcholinesterase and butyrylcholinesterase—delivered nanomolar IC50 values. The structure–activity relationship showed that N‐butyl moiety derivatives are stronger inhibitors toward AChE and BuChE than N‐ethyl and N‐propyl moieties compounds. The most potent compound toward acetylcholinesterase was inhibitor 3f (IC50 = 31.2 nm ), and it was more active than reference drug, tacrine (IC50 = 100.2 nm ). Compound 3f showed strong inhibition of butyrylcholinesterase (IC50 = 8.0 nm ), also higher than tacrine (IC50 = 16.3 nm ). In the kinetic studies, compound 3f revealed mixed type of acetylcholinesterase inhibition. The computer modeling was carried out. The most active compound 3f was confirmed as peripheral anionic site inhibitor of acetylcholinesterase. Moreover, molecule 3f inhibited β‐amyloid aggregation (at the concentration 10 μm —24.96% of inhibition, 25 μm —72%, 50 μm —78.44%, and 100 μm —84.92%). Therefore, among all examined, compound 3f is the most promising molecule for further, more detailed research of novel multifunctional agents in the therapy of Alzheimer's disease.  相似文献   

14.
A series of novel 7‐amino‐5‐oxo‐2‐substituted‐aryl/hetero‐aryl‐5,8‐dihydro[1,2,4]triazolo[1,5‐a]pyridine‐6‐carbonitriles ( 4a–4t ) was synthesized, characterized and evaluated for their binding affinity and selectivity towards hA1, hA2A, hA2B and hA3 adenosine receptors (ARs). Compound 4a with a phenyl ring at 2‐position of the triazolo moiety of the scaffold showed high affinity and selectivity for hA1 AR (Ki hA1 = 0.076 μM, hA2A = 25.6 μM and hA3 > 100 μM). Introduction of various electron donating and withdrawing groups at different positions of the phenyl ring resulted in drastic reduction in affinity and selectivity towards all the ARs, except compound 4b with a 4‐hydroxyphenyl group at 2‐position. Interestingly, the replacement of the phenyl ring with a smaller heterocyclic thiophene ring (π excessive system) resulted in further improvement of affinity for hA1 AR of compound 4t (Ki hA1 = 0.051 μM, hA2A = 9.01 μM and hA3 > 13.9 μM) while retaining the significant selectivity against all other AR subtypes similar to compound 4a . The encouraging results for compounds 4a and 4t indicate that substitution at 2‐position of the scaffold with π‐excessive systems other than thiophene may lead to even more potent and selective hA1 AR antagonists.  相似文献   

15.
A new series derived from 4‐(2‐chloroacetyl)‐1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3H‐pyrazol‐3‐one was synthesized, characterized and its pharmacological activity toward aromatase enzyme inhibition was screened and compared to the reference native ligand letrozole. The most active compound of the series was 16 , showing IC50 value of 0.0023 ± 0.0002 μm compared to letrozole with IC50 of 0.0028 ± 0.0006 μm . In addition, compounds 26 and 36 exhibit good inhibition activities close to letrozole with IC50 values 0.0033 ± 0.0001 and 0.0032 ± 0.0003 μm , respectively. Moreover, molecular docking studies were conducted to support the findings.  相似文献   

16.
The aldehyde derivatives of 1,3‐dipropyl xanthines as described in this paper, constitutes a new series of selective adenosine ligands displaying bronchospasmolytic activity. The effect of substitution at third‐ and fourth‐position of 8‐phenyl xanthine has also been taken into consideration. The synthesized compounds showed varying binding affinities at different adenosine receptor subtypes (A1, A2A, A2B, and A3) and also good in vivo bronchospasmolytic activity against histamine aerosol‐induced asthma in guinea pigs. Most of the compounds showed maximum affinity toward the A2A receptor subtype. The monosubstituted 3‐aminoalkoxyl 8‐phenyl xanthine with a aminodiethyl moiety (compound 12e ) was found to be most potent A2Aadenosine receptor ligand (Ki = 0.036 µM) followed by disubstituted 4‐aminoalkoxyl‐3‐methoxy‐8‐phenyl xanthine (Ki = 0.050 µM) (compound 10a ).  相似文献   

17.
A series of 9‐methoxy‐6H‐[1]benzothiopyrano[4,3‐b]quinolin‐10‐ols with a Mannich side chain were synthesized and evaluated for their anti‐Hepatitis B virus (HBV) activity in HepG2.2.15 cells. Some compounds showed significant anti‐HBV activity with IC50 values less than 41 μM. Among them, compound 9b was the most effective anti‐HBV agent (IC50 = 1.7 μM, SI = 60.3).  相似文献   

18.
5‐Benzyloxycarbonylaminomethylcarbonyl(N‐methyl)amino‐4‐[2‐chloro(2‐fluoro or 2‐hydrogen)benzoyl]pyrimidines (compound 14 ) in which the chlorophenyl moiety of dipeptidoaminochlorobenzophenones ( 1 ) is replaced by a pyrimido ring, and 1,3‐dihydro‐1‐methyl‐5‐[2‐chloro (2‐fluoro or 2‐hydrogen)phenyl]‐2H‐pyrimido[5,4‐e][1,4]diazepin‐2‐ones ( 16 ) in which the chlorophenyl moiety of 7‐chloro‐5‐aryl‐benzo[1,4]diazepin‐2‐one ( 3 ) is replaced by a pyrimido ring, were synthesized and evaluated as anticonvulsants by using the subcutaneous metrazol‐ (Met) and maximal electroshock– (MES) induced seizure screening tests. Structure‐activity studies showed these two classes of compounds ( 14, 16 ) are generally more potent in the Met screen relative to the MES screen. The effect which the nature of the benzoyl C‐4 ortho‐substituent (Cl, F, H) in compound 14 , or the ortho‐phenyl C‐5 substituent (Cl, F. H) in compounds 16 , has upon anticonvulsant activity was small with the potency profile generally being Cl ≅ F > H. It is proposed that 5‐benzyloxycarbonylaminocarbonyl(N‐methyl)amino‐4‐(2‐fluorobenzoyl)pyrimidine ( 14b ) may act as a prodrug, at least in part, to 1,3‐dihydro‐1‐methyl‐5‐(2‐fluorophenyl)‐2H‐pyrimido[5,4‐e][1,4]diazepin‐2‐one ( 16b ), because 14b does not bind to the benzodiazepine receptor binding site(s), yet it is approximately equipotent to 16b in the Met and MES screens. Compounds 14b and 16b are less active than clonazepam but more active than valproic acid in the Met screen, and less active than phenytoin but more active than clonazepam and valproic acid in the MES screen. Drug Dev. Res. 46:155–162, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
A new series of‐fluoro chalcones‐substituted amino‐alkyl derivatives ( 3a?3l ) were designed, synthesized, characterized and evaluated for the inhibitory activity against acetylcholinesterase and butyrylcholinesterase. The results showed that the alteration of fluorine atom position and amino‐alkyl groups markedly influenced the activity and the selectivity of chalcone derivates in inhibiting acetylcholinesterase and butyrylcholinesterase. Among them, compound 3l possesses the most potent inhibitory against acetylcholinesterase (IC50 = 0.21 ± 0.03 μmol/L), and the highest selectivity for acetylcholinesterase over butyrylcholinesterase (IC50 (BuChE)/IC50 (AChE) = 65.0). Molecular modeling and enzyme kinetic study on compound 3l supported its dual acetylcholinesterase inhibitory profile, simultaneously binding at the catalytic active and peripheral anionic site of the enzyme.  相似文献   

20.
Eighteen novel 2,3‐diphenyl acrylonitrile derivatives bearing halogens were designed, synthesized, and evaluated for biological activity. Preliminary in vitro results indicated that the majority of the compounds with a para‐substituted halogen had considerable antiproliferative activity against five human cancer cell lines, including MGC‐803, AGS, and BEL‐7402, with IC50 values in the range of 0.46–100 μm . No significant toxic effects on the non‐cancerous human liver cell line L‐02 were observed. The selective inhibitory activities against cancer cells were significantly better than that of the control lead compound CA‐4 and CA‐4P. Particularly, potent activities were found for the derivatives of 3‐(4‐halogen phenyl)‐2‐(3,4,5‐trimethoxyphenyl)acrylonitrile, such as 5c (4‐fluoro), 5f (4‐bromo), 5h (4‐chloro), and 5k (4‐trifluoro‐ methyl), for AGS with IC50 values of 0.75 ± 0.24, 0.68 ± 0.21, 0.41 ± 0.05, and 1.49 ± 0.92 μm , respectively. The antiproliferative effects of 5f were attributed to cell‐cycle arrest in the G2/M phase, induction of cellular apoptosis, suppression of cell migration, and inhibition of cell colony formation in AGS cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号