首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of moderate whole body hypothermia (30 degrees C) on transient middle cerebral artery occlusion (MCAO) in the rat. Male Wistar rats were subjected to 2 h of ischemia by inserting a suture into the lumen of the internal carotid artery and occluding the origin of the MCA. Experimental groups were (a) MCAO induced at 37 degrees C body temperature (n = 15); (b) 30 degrees C body temperature induced prior to ischemia and maintained for 2 h of MCAO and 1 h of reperfusion (n = 12); and (c) MCAO with regional brain and body temperatures measured in normothermic (n = 3) and hypothermic MCAO rats (n = 2). Histopathological evaluation was performed 96 h after reperfusion. All normothermic MCAO animals exhibited ischemic infarct involving the ipsilateral cortex and basal ganglia with infiltration of neutrophils, macrophages, and microvascular proliferation. Hypothermic MCAO animals exhibited minor ischemic damage ranging from selective neuronal injury to small focal areas of infarct with minimal inflammatory response. Our data demonstrate that transient ischemia induced by using the intra-arterial suture method to occlude the MCA results in a reproducible brain lesion and that moderate hypothermia has a profound protective effect on the brain injury after transient MCAO.  相似文献   

2.
This study evaluated the utility of combinational therapy, coupling delayed posttraumatic hypothermia with delayed FK506 administration, on altered cerebral vascular reactivity, axonal injury, and blood–brain barrier (BBB) disruption seen following traumatic brain injury (TBI). Animals were injured, subjected to various combinations of hypothermic/FK506 intervention, and equipped with cranial windows to assess pial vascular reactivity to acetylcholine. Animals were then processed with antibodies to the amyloid precursor protein and immunoglobulin G to assess axonal injury and BBB disruption, respectively. Animals were assigned to five groups: (1) sham injury plus delayed FK506, (2) TBI, (3) TBI plus delayed hypothermia, (4) TBI plus delayed FK506, and (5) TBI plus delayed hypothermia with FK506. Sham injury plus FK506 had no impact on vascular reactivity, axonal injury, or BBB disruption. Traumatic brain injury induced dramatic axonal injury and altered pial vascular reactivity, while triggering local BBB disruption. Delayed hypothermia or FK506 after TBI provided limited protection. However, TBI with combinational therapy achieved significantly enhanced vascular and axonal protection, with no BBB protection. This study shows the benefits of combinational therapy, using posttraumatic hypothermia with FK506 to attenuate important features of TBI. This suggests that hypothermia not only protects but also extends the therapeutic window for improved FK506 efficacy.  相似文献   

3.
BACKGROUND AND PURPOSE: Previous studies have demonstrated that the immunosuppressant FK506 provides neuroprotection in experimental brain injury and suggest that this action may be mediated by suppression of neuronal nitric oxide synthase activation that occurs after ischemic depolarization. We sought to determine whether FK506 reduces histological injury after middle cerebral artery occlusion (MCAO) in the rat and whether the neuroprotective effect is mediated via suppression of in vivo nitric oxide (NO) production during ischemia or early reperfusion. METHODS: Under controlled conditions of normoxia, normocarbia, and normothermia, halothane-anesthetized male Wistar rats were subjected to 2 hours of MCAO by the intraluminal occlusion technique in a blinded, randomized experimental trial. Ipsilateral parietal cortical laser-Doppler flowmetry was monitored throughout ischemia. Animals were randomly assigned to 4 pretreatment groups: intravenous FK506 0.3 mg/kg or 1. 0 mg/kg, vehicle (cremaphor), or an equivalent volume of saline administered 30 minutes before MCAO. Infarction volume was assessed by a triphenyltetrazolium chloride staining at 22 hours of reperfusion. In separate experiments, microdialysis probes were placed bilaterally into the striatum. Rats were perfused with artificial cerebrospinal fluid containing 3 micromol/L [14C]- L-arginine for 3 hours and then subjected to 2 hours of right MCAO. Intravenous 0.3 mg/kg FK506 or cremaphor was given 30 minutes before right MCAO. Right-left differences between [14C]-L-citrulline in the effluent were assumed to reflect differences in NO production. RESULTS: All values are mean+/-SE. FK506 at 0.3 mg/kg reduced infarction volume in cortex: 40+/-12 mm3 compared with saline (109+/-15 mm3) and cremaphor vehicle (148+/-23) (P<0.05). Striatal infarction was also reduced by low-dose FK506: 16+/-4 mm3 versus 36+/-4 mm3 and 34+/-4 mm3 in saline and vehicle groups, respectively (P<0.05). High-dose treatment reduced infarction volume in cortex (61+/-14 mm3, P<0.05 from saline and vehicle groups) and in striatum (22+/-5 mm3, P<0.05 from saline and vehicle groups). [14C]-L-citrulline recovery via microdialysis was markedly enhanced in ischemic compared with nonischemic striatum. However, ischemia-evoked [14C]-L-citrulline recovery was not different in FK506-treated rats compared with vehicle-treated animals. CONCLUSIONS: These data demonstrate that FK506 provides robust neuroprotection against transient focal cerebral ischemia in the rat. The mechanism of protection in vivo is not through attenuation of ischemia-evoked NO production during MCAO and early reperfusion.  相似文献   

4.
Anoxic depolarization (AD) is one of the major physiological characteristics in the ischemic core. The effect of mild hypothermia on the appearance of AD and subsequent brain injury following profound ischemia is studied to evaluate the protective mechanism of hypothermia against severe ischemia. Sprague-Dawley rats were subjected to transient ischemia by hypotension (50-20 mmHg) and bilateral carotid artery occlusion (BCA-O) for 20 min in normothermia and 30 min in hypothermia. The temperature of body and temporal muscles was maintained at 37.5 degrees C and 36.5 degrees C in normothermia and 33.0 degrees C and 31.0 degrees C in hypothermia, respectively. Recording of the DC potential shift and electrocorticogram and monitoring of the cortical blood flow (CoBF) with a laser Doppler flowmeter were done epidurally on the right parietal cortex. The right parietal cortex pathology was examined 24 h after ischemia in normothermia and after 30 days in hypothermia. AD appeared in all seven normothermic rats with a fall in the CoBF to 9%-10% of the control flow. However, in spite of CoBF reduction to 8%-9% of the control flow, it did not appear in five hypothermic rats. Intra-ischemic CoBF was not statistically different between these two groups. AD appeared with the CoBF decreasing to 4%-5% of the control flow in seven hypothermic rats. Intra-ischemic CoBF in hypothermic rats exhibiting AD was significantly lower than the other two groups. The interval between BCA-O and the appearance of AD in hypothermic rats was 5.1 +/- 0.3 min (mean +/- SE), which was significantly longer than the 2.2 +/- 0.5 min observed in normothermia (p < 0.0005). Of seven normothermic rats exhibiting AD, two died within 24 h and four revealed massive neuronal injury. Of seven hypothermic rats with AD, four died between day 2 and day 13, and one revealed diffuse cerebral infarction. However, no severe ischemic injury or ischemic death was observed in all five hypothermic rats without AD. The incidence of severe neuronal injury or ischemic death was significantly lower in hypothermic rats without AD compared with normothermic rats with AD (p < 0.02) or hypothermic rats with AD (p < 0.05). Although mild hypothermia delays AD, it is suggested that raising the cerebral blood flow threshold for AD appearance has a key role in the hypothermic protection of a severely ischemic area such as the ischemic core.  相似文献   

5.
病变侧亚低温对局部脑缺血再灌流损伤有关因素的影响   总被引:18,自引:0,他引:18  
目的 研究病变侧脑亚低温对脑缺血再灌流损伤梗塞体积、 N O 的影响确定病变侧亚低温的疗效, 探讨机理。方法 应用可反馈控温半导体致冷块对大鼠局灶脑缺血模型病变侧降温至32 ~33 ℃研究持续缺血及再灌流损伤的保护作用及有关因素的影响。结果 持续缺血10 分钟低温组及缺血40 分钟再灌流并低温组梗塞体积均小于常温对照组。亚低温组 N O 含量明显低于常温对照组。结论 病变侧亚低温对脑缺血再灌流损伤在一定时间窗内有明显保护作用, 而亚低温使 N O 产生减少可能是其脑保护作用的部分机制。  相似文献   

6.
Brain hypothermia has been reported to protect against ischemic damages in adult animals. Our goal in this study was to examine whether brain hypothermia attenuates ischemic neuronal damages in the hippocampus of aged animals. We also determined effects of hypothermia on ischemia-induced releases of amino acids in the hippocampus. Temperature in the hippocampus of aged rats (19-23 months) was maintained at 36 degrees C (normothermia), 33 degrees C (mild hypothermia) or 30 degrees C (moderately hypothermia) using a thermoregulator during 20 min of transient forebrain ischemia. Cerebral ischemia increased extracellular concentrations of glutamate and aspartate by 6- and 5-fold, respectively, in the normothermic group. Mild and moderate hypothermia, however, markedly inhibited the rise of these amino acids to less than 2-fold. Elevation of extracellular taurine, a putative inhibitory amino acid, was 16-fold in the normothermic rats. Mild hypothermia attenuated ischemia-induced increase in taurine (10-fold), and moderate hypothermia inhibited the increase. Ischemic damages, evaluated by histopathological grading of hippocampal CA1 area 7 days after ischemia, was significantly ameliorated in the mild (1.3+/-0.5, mean+/-S.E.M.) and moderate hypothermic rats (0.8+/-0.3) compared with the normothermic ones (3.4+/-0.4). These results suggest that brain hypothermia protects against ischemic neuronal damages even in the aged animals, and the protection is associated with inhibition of excessive effluxes of both excitatory and inhibitory amino acids.  相似文献   

7.
亚低温对大鼠短暂全脑缺血后神经元凋亡的影响   总被引:4,自引:1,他引:3  
目的 探讨亚低温对大鼠脑缺血后神经元凋亡的影响,揭示亚低温的部分神经保护机制。方法 采用“双侧颈总动脉阻断+全身低血压”方法来建立大鼠短暂性全脑缺血模型。用神经元尼氏体亚甲兰特殊染色法观察大鼠脑缺血后海马CA1区神经元损害情况;原位细胞凋亡检测法(TUNEL染色)及电镜观察脑缺血后CA1区神经元凋亡情况。结果 与假手术组、低温缺血组相比,常温缺血组海马CA1区神经元缺失明显(P<0.01)。常温及低温缺血组海马CA1区均存在神经元凋亡,但低温缺血组海马CA1区凋亡神经元数明显少于缺血组(P<0.01)。结论 经“双侧颈总动脉阻断+全身低血压”方法建立的大鼠短暂全脑缺血模型证实了亚低温的脑保护作用。全脑缺血后的迟发性神经元死亡很可能经由凋亡途径,而亚低温可通过抑制缺血性神经元凋亡而发挥一定的神经保护作用。  相似文献   

8.
Hypothermia will neuroprotect peripheral nerve from ischemia-reperfusion (IR) injury, but the therapeutic window of hypothermic neuroprotection has not been defined. Unilateral IR injury was produced by the ligation and release of nooses tied around supplying arteries to the right sciatic-tibial nerve of the rat. Using this model, 114 rats were divided into 12 groups according to the delay (0, 1, 3, and 4 h) and the depth of hypothermia (28, 32, and 35 degrees C). All rats were subjected to 3 h ischemia and 7 days reperfusion followed by behavioral, electrophysiological, and pathological evaluations. We demonstrated significant hypothermic neuroprotection with both deep (28 degrees C) and mild (32 degrees C) hypothermia initiated during ischemia (0 and 1 h delay), but not hypothermia initiated during reperfusion (3 and 4 h delay) in both behavioral and electrophysiological evaluations. In addition, the pathologically significant differences were observed between deep hypothermia (28 degrees C) and normothermia (35 degrees C) initiated during ischemia. We conclude that the therapeutic window of hypothermic neuroprotection is optimal during the intraischemic period and that mild and deep hypothermia provide neuroprotection. Prolonged delay of hypothermic treatment results in worsening of IR injury.  相似文献   

9.
目的研究亚低温对延迟时间窗再灌注的局灶脑缺血大鼠缺血性脑水肿的治疗作用。方法 SD雄性大鼠96只,线栓法制作大脑中动脉闭塞模型后随机分为缺血3 h组、缺血6 h组、缺血9 h组(每组各30只),分别在造模3 h、6 h和9 h后拔出线栓,使大脑中动脉再灌注。各缺血组按照再灌注后是否给予亚低温治疗及亚低温持续时间分为常温、亚低温3 h和亚低温5 h三个亚组,每个亚组有10只大鼠。另设假手术组6只。缺血组大鼠在再灌注24 h后处死取脑,假手术组在术后24 h处死取脑,干-湿重法测定各组缺血侧脑组织含水量并进行比较。结果与假手术组比较,缺血组缺血侧脑组织含水量明显增高。缺血3 h组中3 h亚低温和5 h亚低温亚组的缺血侧脑组织含水量与缺血3 h常温组比较,差异有统计学意义(79.39%±2.44%vs82.16%±1.50%,P0.05;79.20%±1.55%vs 82.16%±1.50%,P0.05)。其余各缺血组中经过亚低温治疗的大鼠与常温亚组的脑组织含水量无统计学差异。结论亚低温可减轻缺血早期(3 h)再灌注的脑组织水肿,保护缺血脑组织,而对晚期(6 h和9 h)再灌注的缺血性脑水肿无论亚低温时间长短均无明显保护作用。  相似文献   

10.
The American Heart Association has endorsed the use of mild hypothermia for adults after cardiopulmonary arrest. However, there are no contemporary trials testing hypothermia in children after cardiopulmonary arrest and extrapolation from adult studies is problematic given differences in brain development and primary etiology (asphyxia in children vs. ventricular arrhythmia in adults). Accordingly, we tested the effects of mild postresuscitative hypothermia on functional and histopathological outcome after asphyxial cardiac arrest in juvenile rats. Postnatal day 17 rats were subjected to 8 min of asphyxia-induced cardiac arrest followed by resuscitation. Rats were randomized to normothermic (37 degrees C), hypothermic (32 degrees C), or unregulated temperature groups (n = 7-8/group) to begin after return of spontaneous circulation for a duration of 1 h. Brain temperature in the unregulated group dropped to 34.0 +/- 0.4 degrees C at 1 h. The hypothermic group had improved motor function assessed using beam balance and inclined plane tests vs. the normothermic group. The depth of hypothermia was associated with increased CA1 hippocampal neuron survival at 5 weeks. Neurodegeneration in the CA1 hippocampus assessed using Fluoro-Jade B labeling at 5 weeks was not detected in the 32 degrees C group, whereas 2/7 and 4/7 rats in the 34 and 37 degrees C groups, respectively, showed neurodegeneration. Brief treatment with moderate induced hypothermia improved functional outcome and prevented long-term neurodegeneration in a model that mimics the clinical and histopathological scenario of pediatric cardiac arrest. Similar to adults, infants and children may benefit from induced hypothermia after cardiopulmonary arrest, warranting further study.  相似文献   

11.
目的观察有效再灌注时间窗内实施局部亚低温对不同时间点血管再通(再灌注)的影响,并探讨其机制。方法将150只雄性大鼠随机分为大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)24h组10只;常温再灌注组50只;MCAO 2h进行亚低温再灌注组50只;MCAO 3h进行亚低温再灌注组40只。动物均于再灌注24h后处死,但MCAO 24h组大脑中动脉闭塞24h后直接处死。采用TTC染色观察梗死体积,用干-湿质量法测定脑含水量,用原位末端标记(TUNEL)观察神经细胞凋亡的变化,采用免疫组化法检测大鼠模型的Bcl-2、Bax及水通道蛋白4(aquaporin4,AQP4)的表达。结果 MCAO 24h组的梗死体积、脑含水量、TUNEL阳性细胞数、及Bcl-2、Bax、AQP4的表达相比较,常温组2~3h有统计学差异(P<0.01),4~6h没有统计学差异(P>0.05);MCAO 2h亚低温再灌注组2~5h有统计学差异(P<0.01),6h没有统计学差异(P>0.05);MCAO 3h亚低温再灌注组3~4h有统计学差异(P<0.01),5~6h没有统计学差异(P>0.05)。亚低温再灌注组各时相点的梗死体积、脑含水量、TUNEL阳性细胞数、Bax、AQP4的表达均显著低于相应常温组,Bcl-2的表达显著高于常温组(P<0.01,P<0.05)。结论实施局部亚低温可延长再灌注治疗时间窗,而且亚低温开始时间越早,其延长时间窗的效果就越显著。这为解决在时间窗内就诊的患者因检查等错过再灌注治疗这一临床难题的解决提供了重要的实验室依据。其机制可能与抑制半暗带细胞的凋亡和改善微循环有关。  相似文献   

12.
Effects of hypothermia on thrombin-induced brain edema formation   总被引:25,自引:0,他引:25  
Recent studies have shown that thrombin plays an important role in brain edema formation after intracerebral hemorrhage (ICH). The possible mechanisms of thrombin-induced brain edema formation include blood-brain barrier (BBB) disruption and inflammatory response involving polymorphonuclear (PMN) leukocyte. Animal experiments have revealed that moderate therapeutic hypothermia improves pathological and functional outcome in various models of brain injury. In this study, we examined the effect of hypothermia on thrombin-induced brain edema formation. Effects of hypothermia on BBB permeability and the accumulation of PMN leukocytes were also determined to clarify the protective mechanism of hypothermia in this model. Anesthetized adult rats received an injection of 10 Units of thrombin into the basal ganglia. Animals were separated into the normothermic and hypothermic groups, which were housed in a room maintained at 25 degrees C and in a cold room maintained at 5 degrees C, respectively, for 24 h after the thrombin injection. The brain temperature in rats housed in a cold room reduced temporarily to approximately 30 degrees C and then gradually recovered to 35 degrees C by the end of the observation. Brain water content in the basal ganglia was significantly reduced in rats treated with hypothermia compared to the normothermic rats (84.3+/-0.2 vs. 82.4+/-0.1%; P<0.01). The decrease of brain water content was accompanied with a significant reduction in BBB permeability to Evan's blue dye and in accumulation of PMN leukocytes. This study indicates that hypothermic treatment significantly reduces thrombin-induced brain edema formation in the rat. Inhibition of thrombin-induced BBB breakdown and inflammatory response by hypothermia appear to contribute to brain protection in this model. Hypothermic treatment may provide an approach to potentially reduce ongoing edema after ICH.  相似文献   

13.
BACKGROUND AND PURPOSE: We examined the influence of concurrent moderate hypothermia (30 degrees C) and transient forebrain ischemia on the induction of 72-kDa heat-shock protein and neuronal damage in male Wistar rats. SUMMARY OF REPORT: Experimental groups included: normothermic with 8 minutes of transient forebrain ischemia (group 1, n = 7), hypothermic without ischemia (group 2, n = 9), and hypothermic (30 degrees C) with 8 minutes of transient forebrain ischemia (group 3, n = 5). Intense 72-kDa heat-shock protein immunoreactivity was demonstrated in rat forebrain 48 hours after induction of normothermic forebrain ischemia (group 1); it was not detected in the brain of animals subjected to hypothermia without ischemia (group 2), and hypothermia during ischemia (group 3) significantly inhibited its expression compared with that in normothermic ischemia animals (group 1). CONCLUSIONS: These observations suggest that 72-kDa heat-shock protein induction is not the mechanism by which moderate hypothermia protects against ischemic cell damage.  相似文献   

14.
亚低温对大鼠脑缺血再灌注后炎性反应的影响   总被引:4,自引:0,他引:4  
目的:观察亚低温的不同时程对大鼠脑缺血再灌注后炎性反应的影响。方法:24只SD大鼠随机分为4组:常温组,亚低温1/2h组,亚低温1h组和亚低温3h组。每组各6只大鼠。参照Zea Longa的方法建立脑缺血再灌注动物模型,于再灌注24h断头取脑,行HE染色,观察脑组织中自细胞浸润及神经细胞的变化情况。结果:常温组在缺血梗死灶周围区可见白细胞浸润明显及深染受损的神经元;随亚低温时间的延长,白细胞浸润逐渐减少,神经元亦表现为淡染的轻度损伤。结论:亚低温可抑制脑缺血再灌注后的白细胞浸润,具有神经保护作用。  相似文献   

15.
Abstract

Anoxic depolarization (AD) is one of the major physiological characteristics in the ischemic core. The effect of mild hypothermia on the appearance of AD and subsequent brain injury following profound ischemia is studied to evaluate the protective mechanism of hypothermia against severe ischemia. Sprague-Dawley rats were subjected to transient ischemia by hypotension (50-20 mmHg) and bilateral carotid artery occlusion (BCA-O) for 20 min in normothermia and 30 min in hypothermia. The temperature of body and temporal muscles was maintained at 37.5°C and 36.5°C in normothermia and 33.0°C and 31.0°C in hypothermia, respectively. Recording of the DC potential shift and electrocorticogram and monitoring of the cortical blood flow (CoBF) with a laser Doppler flowmeter were done epidurally on the right parietal cortex. The right parietal cortex pathology was examined 24 h after ischemia in normothermia and after 30 days in hypothermia. AD appeared in all seven normothermic rats with a fall in the CoBF to 9%-10% of the control flow. However, in spite of CoBF reduction to 8%-9% of the control flow, it did not appear in five hypothermic rats. Intra-ischemic CoBF was not statistically different between these two groups. AD appeared with the CoBF decreasing to 4%-5% of the control flow in seven hypothermic rats. Intra-ischemic CoBF in hypothermic rats exhibiting AD was significantly lower than the other two groups. The interval between BCA-O and the appearance of AD in hypothermic rats was 5.1 ± 0.3 min (mean ± SE), which was significantly longer than the 2.2 ± 0.5 min observed in normothermia (p < 0.0005). Of seven normothermic rats exhibiting AD, two died within 24 h and four revealed massive neuronal injury. Of seven hypothermic rats with AD, four died between day 2 and day 13, and one revealed diffuse cerebral infarction. However, no severe ischemic injury or ischemic death was observed in all five hypothermic rats without AD. The incidence of severe neuronal injury or ischemic death was significantly lower in hypothermic rats without AD compared with normothermic rats with AD (p < 0.02) or hypothermic rats with AD (p < 0.05). Although mild hypothermia delays AD, it is suggested that raising the cerebral blood flow threshold for AD appearance has a key role in the hypothermic protection of a severely ischemic area such as the ischemic core. [Neurol Res 1999; 21: 670-676]  相似文献   

16.
We investigated the effect of moderate post-ischemic hypothermia on neuropathological outcome and cerebral high energy phosphate metabolism, intracellular pH and Mg2+ concentration in the rat. Three groups of animals were investigated: (1) Wistar rats subjected to 12 min of forebrain ischemia under normothermic conditions (n = 17), (2) rats subjected to the identical procedure of ischemia, except that 30 degrees C hypothermia was induced post-ischemia and maintained for 2 h of reperfusion (n = 6), and (3) control hypothermic rats not subjected to ischemia (n = 4). In vivo 31P NMR spectroscopy was performed prior to ischemia, and at intervals up to 168 h after ischemia. Histological analysis of brain tissues was performed 7 days after ischemia. No significant differences in cortical and hippocampal neuronal damage was detected between the two experimental groups. Significantly lower pH values were detected in the hypothermic ischemic animals at 24 h (P = 0.0001) and 48 h (P = 0.018) post-ischemia compared to the normothermic ischemic animals. Normothermic ischemic animals exhibited significantly lower [Mg2+] at 72 h (P less than 0.006) compared to the pre-ischemia level. Our data indicate that post-ischemic hypothermia modifies the profiles of post-ischemic brain tissue pH and Mg2+ concentration, and this modification is not associated with histopathological outcome 7 days after ischemia.  相似文献   

17.
Adenosine (ADO) has an important role in the ischemic brain as an endogenous neuroprotective factor. On the other hand, intraischemic hypothermia ameliorates ischemic neuronal injury. To investigate the effect of ADO during intraischemic mild hypothermia, the extracellular concentration of ADO, its metabolites, dopamine (DA), and local cerebral blood flow were measured in rat striatum during and after 20 min of global ischemia. Additionally, the histopathological outcome was estimated after 48 h of recirculation. Three experimental groups were used: (1) a normothermic group (NT) maintained at 37 degrees C during and after ischemia; (2) a hypothermic group (HT), exposed to intraischemic hypothermia (32.0 degrees C) and postischemic normothermia; and (3) a hypothermia plus theophylline group (HT+T), with the same temperature conditions as in the HT group, combined with intravenously administration of theophylline (10 mg/kg), an antagonist of adenosine receptor, which was given 10 min before ischemia. The level of ADO in HT was significantly higher than ADO levels in NT. In contrast, ischemic DA release was significantly inhibited in HT compared with NT. Theophylline administration had no effect on intraischemic hypothermia induced modulation of extracellular ADO and DA concentration. The postischemic delayed hypoperfusion was ameliorated in HT, and theophylline eliminated this effect in HT+T. A protective effect on histopathological outcome was observed in HT and HT+T. These results suggest that ADO plays an essential role in the inhibition of postischemic delayed hypoperfusion, but this effect is not crucial role in the protective effect induced by intraischemic hypothermia.  相似文献   

18.
Brain hypothermia has been reported to protect against ischemic damages in adult animals. Our goal in this study was to examine whether brain hypothermia attenuates ischemic neuronal damages in the hippocampus of aged animals. We also determined effects of hypothermia on ischemia-induced releases of amino acids in the hippocampus. Temperature in the hippocampus of aged rats (19–23 months) was maintained at 36°C (normothermia), 33°C (mild hypothermia) or 30°C (moderately hypothermia) using a thermoregulator during 20 min of transient forebrain ischemia. Cerebral ischemia increased extracellular concentrations of glutamate and aspartate by 6- and 5-fold, respectively, in the normothermic group. Mild and moderate hypothermia, however, markedly inhibited the rise of these amino acids to less than 2-fold. Elevation of extracellular taurine, a putative inhibitory amino acid, was 16-fold in the normothermic rats. Mild hypothermia attenuated ischemia-induced increase in taurine (10-fold), and moderate hypothermia inhibited the increase. Ischemic damages, evaluated by histopathological grading of hippocampal CA1 area 7 days after ischemia, was significantly ameliorated in the mild (1.3±0.5, mean±S.E.M.) and moderate hypothermic rats (0.8±0.3) compared with the normothermic ones (3.4±0.4). These results suggest that brain hypothermia protects against ischemic neuronal damages even in the aged animals, and the protection is associated with inhibition of excessive effluxes of both excitatory and inhibitory amino acids.  相似文献   

19.
Transient forebrain ischemia was induced in rats whose brain temperature was 31, 33, 35, 38, or 40 degrees C. The development of regional injury was followed using magnetic resonance (MR) imaging, with the ultimate extent of neuronal injury quantified histopathologically. Animals in the hypothermic groups showed minimal changes in MR images over 4 days; normothermic animals showed intensity enhancement attributed to progressive edema developing in the striatum and, later, in the hippocampus. Ischemia at 40 degrees C resulted in widespread edema formation by 1 day post-ischemia; animals in this group did not survive beyond 30 hours. Histopathological analysis at 4 days (1 day for the hyperthermic group) post-ischemia showed that neuronal damage in the normothermic group was confined to the hippocampus and striatum. Minimal damage was found in the hypothermic groups; damage in the hyperthermic group was severe throughout the forebrain. There were no differences in the pre-ischemia 31P MR spectra for the different groups. During ischemia, the increase in intensity of the Pi peak and the fall in tissue pH increased with temperature in the order hypothermic less than normothermic less than hyperthermic group of animals. Post-ischemia energy recovery was similar in all groups, while pH recovered more rapidly in hypothermic animals.  相似文献   

20.
Prolonged hypothermia reduces ischemic brain injury, but its efficacy after intracerebral hemorrhagic (ICH) stroke is unresolved. Rats were implanted with core temperature telemetry probes and subsequently subjected to an ICH, which was produced by infusing bacterial collagenase into the striatum. Animals were kept normothermic (NORMO), or were made mildly hypothermic (33-35 degrees C) for over 2 days starting 1 hour (HYP-1), 6 hours (HYP-6), or 12 hours (HYP-12) after collagenase infusion. Others were cooled for 7 hours beginning 1 hour after infusion (BRIEF). Skilled reaching, walking, and spontaneous forelimb use were assessed. Normothermic ICH rats sustained, on average, a 36.9-mm3 loss of tissue at 1 month. Only the HYP-12 group had a significantly smaller lesion (25.5 mm3). Some functional improvements were found with this and other hypothermia treatments. Cerebral edema was observed in NORMO rats, and was not lessened significantly by hypothermia (HYP-12). Blood pressure measurements, as determined by telemetry, in BRIEF rats showed that hypothermia increased blood pressure. This BRIEF treatment also resulted in significantly more bleeding at 12 hours after ICH (79.2 microL) versus NORMO-treated rats (58.4 microL) as determined by a spectrophotometric hemoglobin assay. Accordingly, these findings suggest that early hypothermia may fail to lessen lesion size owing to complications, such as elevated blood pressure, whereas much-delayed hypothermia is beneficial after ICH. Future experiments should assess whether counteracting the side effects of early hypothermia enhances protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号