首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
BACKGROUND & AIMS: Visceral hypersensitivity in irritable bowel syndrome (IBS) patients has been documented by evaluation of perceived stimulations that can reflect abnormalities of both sensory neurocircuitry and cognitive processes. The presence of actual neurohypersensitivity in human beings has not been documented separately. Because subliminal stimulations are free from the influence of stimulus-related cognitive processes, functional magnetic resonance imaging (fMRI) cortical response to these stimuli can be considered a measure of activity of the neural circuitry alone. The aim of this study was to compare quantitatively the cerebral cortical fMRI activity response to equal subliminal stimulations between IBS patients and age-matched controls. METHODS: We studied 10 IBS patients and 10 healthy controls using a computerized barostat-controlled rectal distention device. fMRI activity volume and percent maximum signal intensity change for equal subliminal distention pressures were compared between controls and patients. RESULTS: Three levels of subliminal distention pressures (eg, 10, 15, and 20 mm Hg), were represented in both controls and patients and were analyzed for fMRI response. In all 3 distention levels the fMRI activity volume in IBS patients was significantly larger than age- and sex-matched controls (P < .05). The percent maximum signal intensity change was similar between IBS patients and controls. CONCLUSIONS: The volume of cerebral cortical activity response to equal subliminal distention pressures in IBS patients is significantly larger than in controls, documenting the existence of hypersensitivity of the neural circuitry in this patient group irrespective of stimulus-related cognitive processes.  相似文献   

2.
fMRI is the foremost technique for noninvasive measurement of human brain function. However, its utility is limited by an incomplete understanding of the relationship between neuronal activity and the hemodynamic response. Though the primary peak of the hemodynamic response is modulated by neuronal activity, the origin of the typically negative poststimulus signal is poorly understood and its amplitude assumed to covary with the primary response. We use simultaneous recordings of EEG with blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) fMRI during unilateral median nerve stimulation to show that the poststimulus fMRI signal is neuronally modulated. We observe high spatial agreement between concurrent BOLD and CBF responses to median nerve stimulation, with primary signal increases in contralateral sensorimotor cortex and primary signal decreases in ipsilateral sensorimotor cortex. During the poststimulus period, the amplitude and directionality (positive/negative) of the BOLD signal in both contralateral and ipsilateral sensorimotor cortex depends on the poststimulus synchrony of 8–13 Hz EEG neuronal activity, which is often considered to reflect cortical inhibition, along with concordant changes in CBF and metabolism. Therefore we present conclusive evidence that the fMRI time course represents a hemodynamic signature of at least two distinct temporal phases of neuronal activity, substantially improving understanding of the origin of the BOLD response and increasing the potential measurements of brain function provided by fMRI. We suggest that the poststimulus EEG and fMRI responses may be required for the resetting of the entire sensory network to enable a return to resting-state activity levels.  相似文献   

3.
The only non-general sensation that can be evoked from the gastrointestinal (GI) tract is that of pain ranging from mild discomfort to intense pain. However, in certain regions of the gut, such as the rectum and gastro-oesophagus, the feeling of pain can be preceded by non-painful sensations of distension at lower stimulus intensities. GI pain is often dull, aching, ill-defined and badly localized. In some cases, GI pain is projected to areas of the body away from the originating viscus ('referred' pain). These properties indicate that the representation of internal organs within the central nervous system is very imprecise. Behavioural, neurophysiological and clinical evidence shows that most forms of GI pain are mediated by activity in visceral afferent fibres running in sympathetic nerves and that the afferent innervation of the gut mediated by parasympathetic nerves is not primarily concerned with the signalling and transmission of GI pain. As for the encoding mechanism of the peripheral sensory receptor in the gut, there is evidence for the existence of specific visceral nociceptors in some locations (e.g. the biliary system) and for the existence of non-specific 'intensity' type receptors in other locations (e.g. the colon). In any case, the actual number of nociceptive afferent fibres in the gut is very small and this explains why large areas of the GI tract appear to be insensitive or require considerable stimulation before giving rise to painful sensations. The few nociceptive afferents contained in sympathetic nerves can excite many second order neurones in the spinal cord which in turn generate extensive divergence within the spinal cord and brain stem, sometimes involving long supraspinal loops. Such a divergent input can activate many different systems, motor and autonomic as well as sensory, and thus trigger the general reactions that are characteristic of visceral nociception: a diffuse and ill-localized pain sometimes referred to somatic areas, and autonomic and somatic reflexes that result in prolonged motor activity.  相似文献   

4.
Layer-specific neurophysiologic, hemodynamic, and metabolic measurements are needed to interpret high-resolution functional magnetic resonance imaging (fMRI) data in the cerebral cortex. We examined how neurovascular and neurometabolic couplings vary vertically in the rat’s somatosensory cortex. During sensory stimulation we measured dynamic layer-specific responses of local field potential (LFP) and multiunit activity (MUA) as well as blood oxygenation level-dependent (BOLD) signal and cerebral blood volume (CBV) and blood flow (CBF), which in turn were used to calculate changes in oxidative metabolism (CMRO2) with calibrated fMRI. Both BOLD signal and CBV decreased from superficial to deep laminae, but these responses were not well correlated with either layer-specific LFP or MUA. However, CBF changes were quite stable across laminae, similar to LFP. However, changes in CMRO2 and MUA varied across cortex in a correlated manner and both were reduced in superficial lamina. These results lay the framework for quantitative neuroimaging across cortical laminae with calibrated fMRI methods.The most recognizable features of the cerebral cortex across phyla are the layers (i.e., laminae) representing different cell types that project and connect to create networks, both in the horizontal and vertical directions of the cortex (1). Functional MRI (fMRI) with high-field magnets has been used to image this complex heterogeneous system of connections across cortical laminae. Given the complexity of the blood oxygenation level-dependent (BOLD) signal (2), quantitative assessment of neurophysiologic, hemodynamic, and metabolic responses across cortical laminae is needed to interpret high-resolution fMRI data in terms of neural activity. Because synaptic density (1) and commensurate electrical and chemical activities vary across cortical layers (3, 4), it is hypothesized that hemodynamic and metabolic responses would also vary. However, there are limited results on layer-specific variations in these parameters.High magnetic fields have improved BOLD sensitivity and specificity (5), whereas other MRI developments have allowed cerebral blood volume (CBV) and flow (CBF) measurements to calibrate fMRI signal so that changes in cerebral metabolic rate of oxygen consumption (CMRO2) can be calculated with a biophysical model of BOLD (6). These multimodal fMRI techniques in conjunction with other related magnetic resonance spectroscopy methods have allowed quantitative insights into the molecular and cellular bases of neurovascular and neurometabolic couplings (7).In vivo recordings of neural activity with metal microelectrodes depict fluctuations of extracellular voltage, where the high- and low-frequency components, respectively, reflect multiunit activity (MUA) and local field potential (LFP) in a region (8). MUA is believed to reflect the output spiking activity of an ensemble of neurons because it reveals action potentials of large pyramidal neurons, whereas LFP reflects the synaptic input of a particular region because it depicts the weighted sum of changing membrane potentials along dendritic branches and soma (9, 10).To interpret the functional organization of the mammalian cerebral cortex from high-resolution fMRI data, the relation of the BOLD signal to underlying neural activities and hemodynamic or metabolic responses is needed at the laminar level. Although many animal studies have contributed to our knowledge about fMRI and its relation to multimodal functional responses (916), these past reports have focused primarily on dynamic correlations of signals in a specific cortical region. Here we measured the degree to which neurovascular and neurometabolic couplings vary in the vertical direction of the rat’s primary somatosensory cortex. Briefly, our results show that during sensory stimulation transcortical BOLD and CBV response patterns are uncoupled with both neural activity measures across cortical laminae, whereas neurometabolic coupling of MUA vs. CMRO2 and neurovascular coupling of LFP vs. CBF have different spatial distributions in the superficial lamina.  相似文献   

5.
Emerging information on physiology and pathophysiology of gastroesophageal reflux disease raises the question of whether our thought process should go beyond mucosal injury and consider 2 parallel tracks that may cross each other at some time, but at other times they may indeed remain parallel, that is, neurally mediated effects of reflux events beyond the esophageal wall and inflammation mediated effect of reflux within the esophageal wall. In this process, intraesophageal events with and without causing mucosal injury may induce changes in the neural function on a temporary or long-term basis resulting in symptoms at different organs and various levels not completely in lock-step with esophageal mucosal injury. Emerging data also suggest the influence of liminal and subliminal esophageal acid exposure on cerebral cortical networks involved in motor function such as swallowing in addition to its effect on sensory centers. These observations suggest the existence of a more extensive influence of esophageal sensory input to the cerebral cortical processing mechanisms than previously thought and may provide new avenues for research in pathophysiology of reflux disease.  相似文献   

6.
Mast cells (MC) are pivotal elements in several physiological and immunological functions of the gastro- intestinal (GI) tract. MC translate the stress signals that has been transmitted through brain gut axis into release of proinflammatory mediators that can cause stimulation of nerve endings that could affect afferent nerve terminals and change their perception, affect intestinal motility, increase intestinal hyperpermeability and, in susceptible individuals, modulate the inflammation. Thus, it is not surprising that MC are an important element in the pathogenesis of inflammatory bowel disease and non inflammatory GI disorders such as IBS and mast cell enterocolitis.  相似文献   

7.
Sensory areas of adult cerebral cortex can reorganize in response to long-term alterations in patterns of afferent signals. This long-term plasticity is thought to play a crucial role in recovery from injury and in some forms of learning. However, the degree to which sensory representations in primary cortical areas depend on short-term (i.e., minute to minute) stimulus variations remains unclear. A traditional view is that each neuron in the mature cortex has a fixed receptive field structure. An alternative view, with fundamentally different implications for understanding cortical function, is that each cell's receptive field is highly malleable, changing according to the recent history of the sensory environment. Consistent with the latter view, it has been reported that selective stimulation of regions surrounding the receptive field induces a dramatic short-term increase in receptive field size for neurons in the visual cortex [Pettet, M. W. & Gilbert, C. D. (1992) Proc. Natl. Acad. Sci. USA 89, 8366-8370]. In contrast, we report here that there is no change in either the size or the internal structure of the receptive field following several minutes of surround stimulation. However, for some cells, overall responsiveness increases. These results suggest that dynamic alterations of receptive field structure do not underlie short-term plasticity in the mature primary visual cortex. However, some degree of short-term adaptability could be mediated by changes in responsiveness.  相似文献   

8.
Even within the early sensory areas, the majority of the input to any given cortical neuron comes from other cortical neurons. To extend our knowledge of the contextual information that is transmitted by such lateral and feedback connections, we investigated how visually nonstimulated regions in primary visual cortex (V1) and visual area V2 are influenced by the surrounding context. We used functional magnetic resonance imaging (fMRI) and pattern-classification methods to show that the cortical representation of a nonstimulated quarter-field carries information that can discriminate the surrounding visual context. We show further that the activity patterns in these regions are significantly related to those observed with feed-forward stimulation and that these effects are driven primarily by V1. These results thus demonstrate that visual context strongly influences early visual areas even in the absence of differential feed-forward thalamic stimulation.  相似文献   

9.
Accurate interpretation of functional MRI (fMRI) signals requires knowledge of the relationship between the hemodynamic response and the neuronal activity that underlies it. Here we address the question of coupling between pre- and postsynaptic neuronal activity and the hemodynamic response in rodent somatosensory (Barrel) cortex in response to single-whisker deflection. Using full-field multiwavelength optical imaging of hemoglobin oxygenation and electrophysiological recordings of spiking activity and local field potentials, we demonstrate that a point hemodynamic measure is influenced by neuronal activity across multiple cortical columns. We demonstrate that the hemodynamic response is a spatiotemporal convolution of the neuronal activation. Therefore, positive hemodynamic response in one cortical column might be explained by neuronal activity not only in that column but also in the neighboring columns. Thus, attempts at characterizing the neurovascular relationship based on point measurements of electrophysiology and hemodynamics may yield inconsistent results, depending on the spatial extent of neuronal activation. The finding that the hemodynamic signal observed at a given location is a function of electrophysiological activity over a broad spatial region helps explain a previously observed increase of local vascular response beyond the saturation of local neuronal activity. We also demonstrate that the oxy- and total-hemoglobin hemodynamic responses can be well approximated by space-time separable functions with an antagonistic center-surround spatial pattern extending over several millimeters. The surround "negative" hemodynamic activity did not correspond to observable changes in neuronal activity. The complex spatial integration of the hemodynamic response should be considered when interpreting fMRI data.  相似文献   

10.
Modern functional neuroimaging methods, such as positron-emission tomography (PET), optical imaging of intrinsic signals, and functional MRI (fMRI) utilize activity-dependent hemodynamic changes to obtain indirect maps of the evoked electrical activity in the brain. Whereas PET and flow-sensitive MRI map cerebral blood flow (CBF) changes, optical imaging and blood oxygenation level-dependent MRI map areas with changes in the concentration of deoxygenated hemoglobin (HbR). However, the relationship between CBF and HbR during functional activation has never been tested experimentally. Therefore, we investigated this relationship by using imaging spectroscopy and laser-Doppler flowmetry techniques, simultaneously, in the visual cortex of anesthetized cats during sensory stimulation. We found that the earliest microcirculatory change was indeed an increase in HbR, whereas the CBF increase lagged by more than a second after the increase in HbR. The increased HbR was accompanied by a simultaneous increase in total hemoglobin concentration (Hbt), presumably reflecting an early blood volume increase. We found that the CBF changes lagged after Hbt changes by 1 to 2 sec throughout the response. These results support the notion of active neurovascular regulation of blood volume in the capillary bed and the existence of a delayed, passive process of capillary filling.  相似文献   

11.
Neurophysiology of gastrointestinal pain   总被引:1,自引:0,他引:1  
The only non-general sensation that can be elicited from the gastrointestinal (GI) tract is that of pain, which can go from slight discomfort to severe pain. However, in certain parts of the intestine, such as the rectum and gastroesophagus, the sensation of pain can be preceded by a non-painful sensation of distension at low levels of stimulation. GI pain is often dull, poorly defined and difficult to pinpoint. In some cases, GI pain is projected to areas of the body distant from the source organ ("referred" pain). These characteristics indicate that the representation of internal organs within the nervous system is very imprecise. Experimental evidence based on behavioral, neurological and clinical testing shows that most GI pain is the result of activity in afferent visceral sensory fibers contained in sympathetic nerves, and that the afferent intestinal innervation by means of parasympathetic nerves is not essentially related to GI pain signalling and transmission. As for the peripheral sensory receptor coding mechanism in the intestine, experimental tests have shown the existence of specific visceral nociceptors in certain places (e.g., the biliary system) and the existence of a king of non-specific "intensity" receptors in others (e.g. the colon). In any case, the number of afferent nociceptive fibers in the intestine is minimal, and this accounts for the fact that large areas of the GI tract appear to be insensitive or to require considerable stimulation before pain can be elicited. The few afferent nociceptive fibers contained in the sympathetic nerves can excite quite a few second order neurons in the medulla spinalis, which in turn generate an extensive divergence within the medulla spinalis and brain stem, including at times long supraspinal branches. This divergent input can activate different motor, autonomous and sensory systems, thus triggering the general reactions which characterize visceral nociception: diffuse pain which is difficult to pinpoint, referred at times to somatic areas, and autonomous and somatic reflexes resulting in prolonged motor activity.  相似文献   

12.
Mammalian cerebral cortex is composed of a multitude of different areas that are each specialized for a unique purpose. It is unclear whether the activity pattern and modality of sensory inputs to cortex play an important role in the development of cortical regionalization. The modality of sensory inputs to cerebral cortex can be altered experimentally. Neonatal diversion of retinal axons to the auditory thalamus (cross-modal rewiring) results in a primary auditory cortex (AI) that resembles the primary visual cortex in its visual response properties and topography. Functional reorganization could occur because the visual inputs use existing circuitry in AI, or because the early visual inputs promote changes in AI's circuitry that make it capable of constructing visual receptive field properties. The present study begins to distinguish between these possibilities by exploring whether the callosal connectivity of AI is altered by early visual experience. Here we show that early visual inputs to auditory thalamus can reorganize callosal connections in auditory cortex, causing both a reduction in their extent and a reorganization of the pattern. This result is distinctly different from that in deafened animals, which have widespread callosal connections, as in early postnatal development. Thus, profound changes in cortical circuitry can result simply from a change in the modality of afferent input. Similar changes may underlie cortical compensatory processes in deaf and blind humans.  相似文献   

13.
Functional magnetic resonance imaging (fMRI) has been widely used for imaging brain functions. However, the extent of the fMRI hemodynamic response around the active sites, at submillimeter resolution, remains poorly understood and controversial. With the use of perfusion-based fMRI, we evaluated the hemodynamic response in the cat visual cortex after orientation-specific stimuli. Activation maps obtained by using cerebral blood flow fMRI measurements were predominantly devoid of large draining vein contamination and reproducible at columnar resolution. Stimulus-specific cerebral blood flow responses were spatially localized to individual cortical columns, and columnar layouts were resolved. The periodic spacing of orientation columnar structures was estimated to be 1.1 +/- 0.2 mm (n = 14 orientations, five animals), consistent with previous findings. The estimated cerebral blood flow response at full width at half-maximum was 470 microm under single-stimulus conditions without differential subtraction. These results suggest that hemodynamic-based fMRI can indeed be used to map individual functional columns if large-vessel contributions can be minimized or eliminated.  相似文献   

14.
Single cortical neurons in the mammalian brain receive signals arising from multiple sensory input channels. Dendritic integration of these afferent signals is critical in determining the amplitude and time course of the neurons' output signals. As of yet, little is known about the spatial and temporal organization of converging sensory inputs. Here, we combined in vivo two-photon imaging with whole-cell recordings in layer 2 neurons of the mouse vibrissal cortex as a means to analyze the spatial pattern of subthreshold dendritic calcium signals evoked by the stimulation of different whiskers. We show that the principle whisker and the surrounding whiskers can evoke dendritic calcium transients in the same neuron. Distance-dependent attenuation of dendritic calcium transients and the corresponding subthreshold depolarization suggest feed-forward activation. We found that stimulation of different whiskers produced multiple calcium hotspots on the same dendrite. Individual hotspots were activated with low probability in a stochastic manner. We show that these hotspots are generated by calcium signals arising in dendritic spines. Some spines were activated uniquely by single whiskers, but many spines were activated by multiple whiskers. These shared spines indicate the existence of presynaptic feeder neurons that integrate and transmit activity arising from multiple whiskers. Despite the dendritic overlap of whisker-specific and shared inputs, different whiskers are represented by a unique set of activation patterns within the dendritic field of each neuron.  相似文献   

15.
The ability to compute the difference between two frequencies depends on a nonlinear operation that mixes two periodic signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the mammalian nervous system as a means to compare two rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. However, a neurological substrate for mixing has not been identified. Here we address the issue of nonlinear mixing of neuronal activity in the vibrissa primary sensory cortex of rat, a region that receives intrinsic as well as sensory-driven rhythmic input during natural whisking. In our preparation, the intrinsic signal originates from cortical oscillations that were induced by anesthetics, and the extrinsic input is introduced by periodic stimulation of vibrissae. We observed that the local extracellular current in vibrissa primary sensory cortex contained oscillatory components at the sum and difference of the intrinsic and extrinsic frequencies. In complementary experiments, we observed that the simultaneous stimulation of contralateral and ipsilateral vibrissae at different frequencies also led to current flow at the sum and difference frequencies. We show theoretically that the relative amplitudes of the observed mixture terms can be accounted for by a threshold nonlinearity in the input-output relation of the underlying neurons. In general, our results provide a neurological substrate for the modulation and demodulation of rhythmic neuronal signals for sensory coding and feedback stabilization of motor output.  相似文献   

16.
Functional MRI (fMRI) has uncovered widespread hemodynamic fluctuations in the brain during rest. Recent electroencephalographic work in humans and microelectrode recordings in anesthetized monkeys have shown this activity to be correlated with slow changes in neural activity. Here we report that the spontaneous fluctuations in the local field potential (LFP) measured from a single cortical site in monkeys at rest exhibit widespread, positive correlations with fMRI signals over nearly the entire cerebral cortex. This correlation was especially consistent in a band of upper gamma-range frequencies (40–80 Hz), for which the hemodynamic signal lagged the neural signal by 6–8 s. A strong, positive correlation was also observed in a band of lower frequencies (2–15 Hz), albeit with a lag closer to zero. The global pattern of correlation with spontaneous fMRI fluctuations was similar whether the LFP signal was measured in occipital, parietal, or frontal electrodes. This coupling was, however, dependent on the monkey''s behavioral state, being stronger and anticipatory when the animals’ eyes were closed. These results indicate that the often discarded global component of fMRI fluctuations measured during the resting state is tightly coupled with underlying neural activity.  相似文献   

17.
BACKGROUND & AIMS: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. METHODS: In 16 healthy subjects (8 men; mean age, 30.2 +/- 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 +/- 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. RESULTS: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (approximately 85 ms). Significantly later activity was seen in the anterior insula (approximately 103 ms) and cingulate cortex (approximately 106 ms; P=.0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P=.16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P=.001). No sex differences were seen for psychophysical or neurophysiological measures. CONCLUSIONS: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate-brain regions that process the affective aspects of esophageal pain-occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity.  相似文献   

18.
The neural pathways that relay information from cutaneous receptors to the cortex provide the somatic sensory information needed for cortical function. The last sensory relay neurons in this pathway have cell bodies in the thalamus and axons that synapse on neurons in the somatosensory cortex. After cortical lesions that damage mature thalamocortical fibers in the somatosensory cortex, we have attempted to reestablish somatosensory cortical function by grafting embryonic neocortical cells into the lesioned area. Such grafts survive in adult host animals but are not innervated by thalamic neurons, and consequently the grafted neurons show little if any spontaneous activity and no responses to cutaneous stimuli. We have reported that transection of peripheral sensory nerves prior to grafting "conditions" or "primes" the thalamic neurons in the ventrobasal complex so that they extend axons into grafts subsequently placed in the cortical domain of the cut nerve. In this report we present evidence that the ingrowth of ventrobasal fibers leads to graft neurons that become functionally integrated into the sensory circuitry of the host brain. Specifically, the conditioning lesions made prior to grafting produce graft neurons that are spontaneously active and can be driven by natural activation of cutaneous receptors or electrical stimulation of the transected nerve after it regenerates. Furthermore, oxidative metabolism in these grafts reaches levels that are comparable to normal cortex, whereas without prior nerve cut, oxidative metabolism is abnormally low in neocortical grafts. We conclude that damage to the sensory periphery transsynaptically stimulates reorganization of sensory pathways through mechanisms that include axonal elongation and functional synaptogenesis.  相似文献   

19.
There is growing evidence that serotonin (5-hydroxtryptamine, 5-HT) has major influences on brain development in mammals. Genetic and pharmacological disruption of 5-HT signaling during early postnatal development in rodents causes neuroanatomical cortical abnormalities, including malformations in the somatosensory cortex. Possible functional consequences of this developmental perturbation by 5-HT are not yet understood. We have examined the effects of deletion of the 5-HT transporter (5-HTT) gene on somatosensory responses to sensory stimulation in mice. Local cerebral glucose utilization (lCMR(glc)) was measured by the quantitative 2-deoxy[(14)C]glucose method during unilateral whisker stimulation in awake adult mice. lCMR(glc) was increased by stimulation but to a markedly lesser extent in 5-HTT(-/-) mice than in 5-HTT(+/+) controls in each of four major stations in the whisker-to-barrel cortex pathway (the spinal and principal sensory trigeminal nuclei, the ventral posteromedial thalamic nucleus, and the barrel region of the somatosensory cortex). Lowering brain 5-HT levels by administration of the selective tryptophan hydroxylase inhibitor p-chlorophenylalanine on postnatal days 0 and 1 restored the metabolic responses to functional activation in the whisker-to-barrel cortex pathway in adult 5-HTT(-/-) mice. These results indicate that functional deficits in this pathway in 5-HTT(-/-) mice may be due to excessive postnatal 5-HT activity. With or without postnatal p-chlorophenylalanine treatment, 5-HTT(-/-) mice exhibited lower resting (unstimulated) lCMR(glc) than did 5-HTT(+/+) controls in the whisker-to-barrel cortex pathway and throughout the brain. These findings have implications for understanding the potential long-term consequences of genetic and pharmacological disruption of 5-HT neurotransmission on cerebral functions during critical periods of postnatal development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号