首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
2.
3.
Sister chromatid cohesion (SCC), efficient DNA repair, and the regulation of some metazoan genes require the association of cohesins with chromosomes. Cohesins are deposited by a conserved heterodimeric loading complex composed of the Scc2 and Scc4 proteins in Saccharomyces cerevisiae, but how the Scc2/Scc4 deposition complex regulates the spatiotemporal association of cohesin with chromosomes is not understood. We examined Scc2 chromatin association during the cell division cycle and found that the affinity of Scc2 for chromatin increases biphasically during the cell cycle, increasing first transiently in late G1 phase and then again later in G2/M. Inactivation of Scc2 following DNA replication reduces cellular viability, suggesting that this post S-phase increase in Scc2 chromatin binding affinity is biologically relevant. Interestingly, high and low Scc2 chromatin binding levels correlate strongly with the presence of full-length or amino-terminally cleaved forms of Scc2, respectively, and the appearance of the cleaved Scc2 species is promoted in vitro either by treatment with specific cell cycle-staged cellular extracts or by dephosphorylation. Importantly, Scc2 cleavage eliminates Scc2–Scc4 physical interactions, and an scc2 truncation mutant that mimics in vivo Scc2 cleavage is defective for cohesin deposition. These observations suggest a previously unidentified mechanism for the spatiotemporal regulation of cohesin association with chromosomes through cell cycle regulation of Scc2 cohesin deposition activity by Scc2 dephosphorylation and cleavage.Multisubunit, ring-shaped cohesin complexes play key roles in chromosome morphogenesis that are required for faithful chromosome transmission to daughter cells. Newly replicated sister chromatids become tethered together by cohesins during S phase, which promotes chromosome biorientation on mitotic spindles (1). Cohesins also mediate efficient DNA double-strand break repair by homologous recombination (2, 3) and the formation or stabilization of chromatin loops that affect various nuclear processes, such as gene expression and Ig gene rearrangements (reviewed in refs. 4 and 5). Altered gene expression resulting from defective cohesin-mediated chromatin looping is likely responsible for the pathogenesis of Cornelia de Lange Syndrome (CdLS), a dominantly inherited human developmental disorder (6).Sister chromatid cohesion (Scc) proteins form a heterodimeric cohesin deposition complex, but the complex''s activity in deposition is not understood (7). Cohesins copurify with Scc2/Scc4, suggesting that Scc2/Scc4 plays a direct role in deposition (811). In the absence of either loader complex subunit, cohesin rings assemble, but fail to be deposited (7, 12, 13). ATP hydrolysis by cohesin’s structural maintenance of chromosome (SMC) subunits is required for cohesin loading, and deposition is inhibited when SMC hinge domains, which mediate Smc1/3 interactions within cohesin, are artificially tethered (8, 14, 15). Thus, Scc2/Scc4 may activate cohesin’s ATPase activity or facilitate a conformational change in cohesin structure that promotes its loading, perhaps by permitting transient hinge opening to allow chromatin to enter cohesin rings or by promoting cohesin oligomerization (14, 16).Factors that regulate Scc2/Scc4 chromatin association are only beginning to be elucidated. Interactions of Scc2 and Scc4 orthologs from Xenopus and humans, and their stable association with chromatin, require the amino termini of both proteins (10, 13, 17, 18). In contrast, the fission yeast Scc2 ortholog alone binds nonchromatinized DNA, but does not exhibit an expected preference for sequences shown to associate with Scc2/Scc4 in vivo (19). Xenopus Scc2/Scc4 chromatin association requires prereplication complexes and Drf1-dependent kinase (DDK) activity (10, 12, 20), although this scenario is not the case in budding yeast (21). Scc2/Scc4 interactions with histone deacetylases and an ATP-dependent chromatin remodeler suggest that underlying chromatin structure also influences Scc2/Scc4 chromatin association (2226). Whether Scc2/Scc4 plays a role in chromatin remodeling or merely deposits cohesins at remodeled sites is unknown, however.The chromatin association of Scc2/Scc4 and its orthologs is also regulated temporally during the cell cycle, although the specifics of association vary across species. Scc2/Scc4 associates with chromatin in late mitosis of the previous cell cycle in metazoans (12, 13) and in late G1 in budding yeast, but in all cases, this association precedes DNA replication initiation so that cohesins are deposited in time to tether newly replicated sister chromatids together. Surprisingly, budding yeast Scc2/Scc4 chromatin association is more robust in mitotically arrested cells than in G1-staged cells. Reduced G1 Scc2/Scc4 chromatin association is not due to the absence of either loader subunit, because Scc2 and Scc4 protein levels vary little during the cell cycle, or by a lack of assembled cohesin complexes in G1, because Scc2/Scc4 chromatin association occurs independently of cohesins (18, 27, 28). Scc2/Scc4 removal from chromatin is also regulated and occurs during mitosis in Xenopus and, more specifically, during prophase in humans (12, 13). Although factors responsible for regulating Scc2/Scc4 chromatin association/dissociation during the cell cycle remain enigmatic, evidence that multiple Scc2 orthologs are phosphorylated suggests the intriguing possibility that Scc2 posttranslational modifications regulate Scc2/Scc4 chromatin association (2931).Here, we describe our efforts to understand how budding yeast Scc2/Scc4 chromatin binding is regulated during the cell cycle. Our results demonstrate the existence of multiple Scc2 protein species in vivo and that a specific cleaved form of Scc2 accumulates at cell cycle periods when Scc2 chromatin binding is weak. The appearance of this cleaved Scc2 species is strongly correlated with Scc2 dephosphorylation, suggesting that the phosphorylation state of Scc2 is critical for the regulation of its stability. Scc2 cleavage is also correlated with the loss of Scc2–Scc4 interactions, and an scc2 truncation mutant that mimics cleaved Scc2 is defective in cohesin deposition. These observations suggest that Scc2–Scc4 interactions and, therefore, the function of the complex in cohesin deposition, may be influenced by dephosphorylation-induced Scc2 cleavage.  相似文献   

4.
In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the “maternal age effect.” During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.Chromosome segregation errors during female meiosis are the leading cause of birth defects and miscarriages in humans and their incidence increases dramatically with age (1). Over 90% of Down syndrome cases are the result of an extra copy of chromosome 21 inherited from the mother (2). Although the probability of a meiotic missegregation event is relatively low during a woman’s twenties, by the time she reaches her early forties, she has a one in three chance of conceiving an aneuploid fetus (3). Work in the last decade has begun to shed light on the molecular mechanisms that underlie this phenomenon known as the “maternal age effect.”Proper chromosome segregation during both mitosis and meiosis requires that physical linkages between sister chromatids (cohesion) be formed, maintained, and released in a regulated manner (4, 5). Sister chromatid cohesion, mediated by the evolutionarily conserved cohesin complex, is established during DNA replication. During meiosis, in addition to holding sister chromatids together, cohesion is required to maintain the physical association of recombinant homologs and is therefore essential for proper segregation during the first as well as the second meiotic division (68). Normally, a crossover ensures proper segregation as long as cohesion distal to a crossover stabilizes the chiasma and keeps the four-chromatid bivalent intact (Fig. 1A). Cohesion-mediated association of homologous chromosomes promotes proper orientation and microtubule attachments on the meiosis I (MI) spindle. However, if arm cohesion is lost before spindle assembly, premature separation of homologs can result in segregation errors. In addition, centromeric cohesion must be protected during anaphase I to ensure that sisters remain associated until anaphase II.Open in a separate windowFig. 1.SOD1 or SOD2 KD during midprophase I in Drosophila oocytes causes an increase in meiotic NDJ. (A) Cohesion is depicted by black bars between pink or blue sister chromatids. Accurate segregation depends on arm cohesion to hold recombinant homologs together until anaphase I and centromeric cohesin to hold sisters together until anaphase II. Premature loss of cohesion can lead to segregation errors and aneuploid eggs. (B) Percent NDJ for each SOD KD genotype and its respective control. SI Appendix, Table S1 provides raw data. (C) Percent NDJ for SOD2GD KD and control in wild type and smc1∆/+ backgrounds. SI Appendix, Table S5 provides raw data. For both B and C, we simultaneously drove expression of a UAS-Dicer-2 transgene to maximize the efficiency of the RNAi in germline cells. *P < 0.025, using the statistical test described in ref. 72.The hypothesis that deterioration of meiotic cohesion over a woman’s lifetime contributes to the maternal age effect has gained considerable support over the last decade (9, 10). One reason this theory is attractive is that in human oocytes, cohesion is established and meiotic recombination is completed during early fetal development. Oocytes then arrest in midprophase I (dictyate) until they are recruited for ovulation starting at puberty. Therefore, to maintain the physical association of homologs and promote accurate chromosome segregation, meiotic cohesion must remain intact for decades. Several lines of investigation have uncovered age-dependent cohesion defects in human oocytes as well as those of model organisms (8, 1118). However, the mechanism(s) leading to loss of cohesion remains largely unexplored.One hallmark of the aging cell is an increase in oxidative damage caused in large part by reactive oxygen species (ROS) (1922). Produced primarily in the mitochondria as byproducts of metabolism, ROS can damage proteins, lipids, and DNA throughout the cell (2225). Whereas low levels of ROS have been implicated in signaling pathways (25), failure to tightly control ROS levels can disrupt the redox status of the cell and result in oxidative stress (23). Such stress is thought to arise in aging cells due to their diminished ability to efficiently neutralize ROS (24, 26, 27) and there is strong evidence in different organisms and cell types that oxidative damage increases with age (26, 2830). Given the extensive aging that human oocytes experience during a woman’s lifetime, accumulation of oxidative damage has been proposed as one factor that may contribute to the maternal age effect (27, 3133), but so far only correlative evidence exists to support this theory.Testing the hypothesis that oxidative stress can induce meiotic segregation errors requires an experimental system in which ROS levels can be manipulated and the effect on chromosome segregation measured. One way to increase ROS levels within the oocyte is to lower the level of ROS scavengers, which detoxify ROS and help maintain a physiologically safe redox state. The superoxide dismutase (SOD) family of enzymes provides an important defense against oxidative stress by catalyzing the reduction of superoxide to oxygen and hydrogen peroxide. Two cellular isoforms of SOD have been extensively characterized: cytoplasmic SOD1 (Cu/ZnSOD) and mitochondrial SOD2 (MnSOD). In flies and mice, a decrease in SOD activity in the whole organism can increase oxidative damage, reduce lifespan, and lower tolerance to exogenous sources of oxidative stress (3443). Furthermore, SOD levels have been shown to decline with age (29, 44).Here we test the hypothesis that elevated levels of ROS lead to chromosome segregation errors due to premature loss of cohesion. To mimic the age-dependent increase in oxidative damage that occurs naturally in the human oocyte, we performed conditional knockdown (KD) of ROS scavengers in the Drosophila oocyte. When we knock down either SOD1 or SOD2 during midprophase I, we observe a significant increase in chromosome nondisjunction (NDJ). In addition, meiotic segregation errors in SOD2 KD oocytes increase when the dosage of the cohesin subunit SMC1 is decreased. Direct analysis of cohesion using FISH revealed that arm cohesion defects are more prevalent in SOD KD oocytes than in controls. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the relative frequency at which recombinant homologs missegregate during MI is significantly higher for SOD KD oocytes than for controls. These data provide in vivo evidence that oxidative stress can cause meiotic chromosome segregation errors due to premature loss of cohesion and destabilization of chiasmata. Our findings provide support for the hypothesis that oxidative damage in the aging oocyte contributes to the maternal age effect in humans.  相似文献   

5.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

6.
7.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

8.
Background and objectives: Natriuretic peptides have been suggested to be of value in risk stratification in dialysis patients. Data in patients on peritoneal dialysis remain limited.Design, setting, participants, & measurements: Patients of the ADEMEX trial (ADEquacy of peritoneal dialysis in MEXico) were randomized to a control group [standard 4 × 2L continuous ambulatory peritoneal dialysis (CAPD); n = 484] and an intervention group (CAPD with a target creatinine clearance ≥60L/wk/1.73 m2; n = 481). Natriuretic peptides were measured at baseline and correlated with other parameters as well as evaluated for effects on patient outcomes.Results: Control group and intervention group were comparable at baseline with respect to all measured parameters. Baseline values of natriuretic peptides were elevated and correlated significantly with levels of residual renal function but not with body size or diabetes. Baseline values of N-terminal fragment of B-type natriuretic peptide (NT-proBNP) but not proANP(1–30), proANP(31–67), or proANP(1–98) were independently highly predictive of overall survival and cardiovascular mortality. Volume removal was also significantly correlated with patient survival.Conclusions. NT-proBNP have a significant predictive value for survival of CAPD patients and may be of value in guiding risk stratification and potentially targeted therapeutic interventions.Plasma levels of cardiac natriuretic peptides are elevated in patients with chronic kidney disease, owing to impairment of renal function, hypertension, hypervolemia, and/or concomitant heart disease (17). Atrial natriuretic peptide (ANP) and particularly brain natriuretic peptide (BNP) levels are linked independently to left ventricular mass (35,816) and function (3,617) and predict total and cardiovascular mortality (1,3,8,10,12,18) as well as cardiac events (12,19). ANP and BNP decrease significantly during hemodialysis treatment but increase again during the interdialytic interval (1,2,4,6,7,14,17,2023). Levels in patients on peritoneal dialysis (PD) have been found to be lower than in patients on hemodialysis (11,2426), but the correlations with left ventricular function and structure are maintained in both types of dialysis modalities (11,15,27,28).The high mortality of patients on peritoneal dialysis and the failure of dialytic interventions to alter this mortality (29,30) necessitate renewed attention into novel methods of stratification and identification of patients at highest risk to be targeted for specific interventions. Cardiac natriuretic peptides are increasingly considered to fulfill this role in nonrenal patients. Evaluations of cardiac natriuretic peptides in patients on PD have been limited by small numbers (3,9,11,12,15,2426) and only one study examined correlations between natriuretic peptide levels and outcomes (12). The PD population enrolled in the ADEMEX trial offered us the opportunity to evaluate cardiac natriuretic peptides and their value in predicting outcomes in the largest clinical trial ever performed on PD (29,30). It is hoped that such an evaluation would identify patients at risk even in the absence of overt clinical disease and hence facilitate or encourage interventions with salutary outcomes.  相似文献   

9.
Physiologically, α-synuclein chaperones soluble NSF attachment protein receptor (SNARE) complex assembly and may also perform other functions; pathologically, in contrast, α-synuclein misfolds into neurotoxic aggregates that mediate neurodegeneration and propagate between neurons. In neurons, α-synuclein exists in an equilibrium between cytosolic and membrane-bound states. Cytosolic α-synuclein appears to be natively unfolded, whereas membrane-bound α-synuclein adopts an α-helical conformation. Although the majority of studies showed that cytosolic α-synuclein is monomeric, it is unknown whether membrane-bound α-synuclein is also monomeric, and whether chaperoning of SNARE complex assembly by α-synuclein involves its cytosolic or membrane-bound state. Here, we show using chemical cross-linking and fluorescence resonance energy transfer (FRET) that α-synuclein multimerizes into large homomeric complexes upon membrane binding. The FRET experiments indicated that the multimers of membrane-bound α-synuclein exhibit defined intermolecular contacts, suggesting an ordered array. Moreover, we demonstrate that α-synuclein promotes SNARE complex assembly at the presynaptic plasma membrane in its multimeric membrane-bound state, but not in its monomeric cytosolic state. Our data delineate a folding pathway for α-synuclein that ranges from a monomeric, natively unfolded form in cytosol to a physiologically functional, multimeric form upon membrane binding, and show that only the latter but not the former acts as a SNARE complex chaperone at the presynaptic terminal, and may protect against neurodegeneration.α-Synuclein is an abundant presynaptic protein that physiologically acts to promote soluble NSF attachment protein receptor (SNARE) complex assembly in vitro and in vivo (13). Point mutations in α-synuclein (A30P, E46K, H50Q, G51D, and A53T) as well as α-synuclein gene duplications and triplications produce early-onset Parkinson''s disease (PD) (410). Moreover, α-synuclein is a major component of intracellular protein aggregates called Lewy bodies, which are pathological hallmarks of neurodegenerative disorders such as PD, Lewy body dementia, and multiple system atrophy (1114). Strikingly, neurotoxic α-synuclein aggregates propagate between neurons during neurodegeneration, suggesting that such α-synuclein aggregates are not only intrinsically neurotoxic but also nucleate additional fibrillization (1518).α-Synuclein is highly concentrated in presynaptic terminals where α-synuclein exists in an equilibrium between a soluble and a membrane-bound state, and is associated with synaptic vesicles (1922). The labile association of α-synuclein with membranes (23, 24) suggests that binding of α-synuclein to synaptic vesicles, and its dissociation from these vesicles, may regulate its physiological function. Membrane-bound α-synuclein assumes an α-helical conformation (2532), whereas cytosolic α-synuclein is natively unfolded and monomeric (refs. 25, 26, 31, and 32; however, see refs. 33 and 34 and Discussion for a divergent view). Membrane binding by α-synuclein is likely physiologically important because in in vitro experiments, α-synuclein remodels membranes (35, 36), influences lipid packing (37, 38), and induces vesicle clustering (39). Moreover, membranes were found to be important for the neuropathological effects of α-synuclein (4044).However, the relation of membrane binding to the in vivo function of α-synuclein remains unexplored, and it is unknown whether α-synuclein binds to membranes as a monomer or oligomer. Thus, in the present study we have investigated the nature of the membrane-bound state of α-synuclein and its relation to its physiological function in SNARE complex assembly. We found that soluble monomeric α-synuclein assembles into higher-order multimers upon membrane binding and that membrane binding of α-synuclein is required for its physiological activity in promoting SNARE complex assembly at the synapse.  相似文献   

10.
Sequential activity of multineuronal spiking can be observed during theta and high-frequency ripple oscillations in the hippocampal CA1 region and is linked to experience, but the mechanisms underlying such sequences are unknown. We compared multineuronal spiking during theta oscillations, spontaneous ripples, and focal optically induced high-frequency oscillations (“synthetic” ripples) in freely moving mice. Firing rates and rate modulations of individual neurons, and multineuronal sequences of pyramidal cell and interneuron spiking, were correlated during theta oscillations, spontaneous ripples, and synthetic ripples. Interneuron spiking was crucial for sequence consistency. These results suggest that participation of single neurons and their sequential order in population events are not strictly determined by extrinsic inputs but also influenced by local-circuit properties, including synapses between local neurons and single-neuron biophysics.A hypothesized hallmark of cognition is self-organized sequential activation of neuronal assemblies (1). Self-organized neuronal sequences have been observed in several cortical structures (25) and neuronal models (67). In the hippocampus, sequential activity of place cells (8) may be induced by external landmarks perceived by the animal during spatial navigation (9) and conveyed to CA1 by the upstream CA3 region or layer 3 of the entorhinal cortex (10). Internally generated sequences have been also described in CA1 during theta oscillations in memory tasks (4, 11), raising the possibility that a given neuronal substrate is responsible for generating sequences at multiple time scales. The extensive recurrent excitatory collateral system of the CA3 region has been postulated to be critical in this process (4, 7, 12, 13).The sequential activity of place cells is “replayed” during sharp waves (SPW) in a temporally compressed form compared with rate modulation of place cells (1420) and may arise from the CA3 recurrent excitatory networks during immobility and slow wave sleep. The SPW-related convergent depolarization of CA1 neurons gives rise to a local, fast oscillatory event in the CA1 region (“ripple,” 140–180 Hz; refs. 8 and 21). Selective elimination of ripples during or after learning impairs memory performance (2224), suggesting that SPW ripple-related replay assists memory consolidation (12, 13). Although the local origin of the ripple oscillations is well demonstrated (25, 26), it has been tacitly assumed that the ripple-associated, sequentially ordered firing of CA1 neurons is synaptically driven by the upstream CA3 cell assemblies (12, 15), largely because excitatory recurrent collaterals in the CA1 region are sparse (27). However, sequential activity may also emerge by local mechanisms, patterned by the different biophysical properties of CA1 pyramidal cells and their interactions with local interneurons, which discharge at different times during a ripple (2830). A putative function of the rich variety of interneurons is temporal organization of principal cell spiking (2932). We tested the “local-circuit” hypothesis by comparing the probability of participation and sequential firing of CA1 neurons during theta oscillations, natural spontaneous ripple events, and “synthetic” ripples induced by local optogenetic activation of pyramidal neurons.  相似文献   

11.
12.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras–GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras–GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras–GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12–induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras–GTP to stimulate Ras-induced senescence in nontransformed human cells.ASPP2, also known as 53BP2L, is a tumor suppressor whose expression is altered in human cancers (1). Importantly, targeting of the ASPP2 allele in two different mouse models reveals that ASPP2 heterozygous mice are prone to spontaneous and γ-irradiation–induced tumors, which rigorously demonstrates the role of ASPP2 as a tumor suppressor (2, 3). ASPP2 binds p53 via the C-terminal ankyrin-repeat and SH3 domain (46), is damage-inducible, and can enhance damage-induced apoptosis in part through a p53-mediated pathway (1, 2, 710). However, it remains unclear what biologic pathways and mechanisms mediate ASPP2 tumor suppressor function (1). Indeed, accumulating evidence demonstrates that ASPP2 also mediates nonapoptotic p53-independent pathways (1, 3, 1115).The induction of cellular senescence forms an important barrier to tumorigenesis in vivo (1621). It is well known that oncogenic Ras signaling induces senescence in normal nontransformed cells to prevent tumor initiation and maintain complex growth arrest pathways (16, 18, 2124). The level of oncogenic Ras activation influences its capacity to activate senescence; high levels of oncogenic H-RasV12 signaling leads to low grade tumors with senescence markers, which progress to invasive cancers upon senescence inactivation (25). Thus, tight control of Ras signaling is critical to ensure the proper biologic outcome in the correct cellular context (2628).The ASPP2 C terminus is important for promoting p53-dependent apoptosis (7). The ASPP2 N terminus may also suppress cell growth (1, 7, 2933). Alternative splicing can generate the ASPP2 N-terminal truncated protein BBP (also known as 53BP2S) that is less potent in suppressing cell growth (7, 34, 35). Although the ASPP2 C terminus mediates nuclear localization, full-length ASPP2 also localizes to the cytoplasm and plasma membrane to mediate extranuclear functions (7, 11, 12, 36). Structural studies of the ASPP2 N terminus reveal a β–Grasp ubiquitin-like fold as well as a potential Ras-binding (RB)/Ras-association (RA) domain (32). Moreover, ASPP2 can promote H-RasV12–induced senescence (13, 15). However, the molecular mechanism(s) of how ASPP2 directly promotes Ras signaling are complex and remain to be completely elucidated.Here, we explore the molecular mechanisms of how Ras-signaling is enhanced by ASPP2. We demonstrate that ASPP2: (i) binds Ras-GTP and stimulates Ras-induced ERK signaling via its N-terminal domain at the plasma membrane; (ii) enhances Ras-GTP loading and B-Raf/C-Raf dimerization and forms a ASPP2/Raf complex; (iii) stimulates Ras-induced C-Raf phosphorylation and activation; and (iv) potentiates H-RasV12–induced senescence in both primary human fibroblasts and neonatal human epidermal keratinocytes. These data provide mechanistic insight into ASPP2 function(s) and opens important avenues for investigation into its role as a tumor suppressor in human cancer.  相似文献   

13.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling. Here, by using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs), we report a third mechanism, where FOP-ACVR1 abnormally transduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling but not BMP signaling. Activin-A enhanced the chondrogenesis of induced mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs) via aberrant activation of BMP signaling in addition to the normal activation of TGF-β signaling in vitro, and induced endochondral ossification of FOP-iMSCs in vivo. These results uncover a novel mechanism of extraskeletal bone formation in FOP and provide a potential new therapeutic strategy for FOP.Heterotopic ossification (HO) is defined as bone formation in soft tissue where bone normally does not exist. It can be the result of surgical operations, trauma, or genetic conditions, one of which is fibrodysplasia ossificans progressiva (FOP). FOP is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification (16). The responsive mutation for classic FOP is 617G > A (R206H) in the intracellular glycine- and serine-rich (GS) domain (7) of ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP) (810). ACVR1 mutations in atypical FOP patients have been found also in other amino acids of the GS domain or protein kinase domain (11, 12). Regardless of the mutation site, mutated ACVR1 (FOP-ACVR1) has been shown to activate BMP signaling without exogenous BMP ligands (constitutive activity) and transmit much stronger BMP signaling after ligand stimulation (hyperactivity) (1225).To reveal the molecular nature of how FOP-ACVR1 activates BMP signaling, cells overexpressing FOP-ACVR1 (1220), mouse embryonic fibroblasts derived from Alk2R206H/+ mice (21, 22), and cells from FOP patients, such as stem cells from human exfoliated deciduous teeth (23), FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) (24, 25) and induced mesenchymal stromal cells (iMSCs) from FOP-iPSCs (FOP-iMSCs) (26) have been used as models. Among these cells, Alk2R206H/+ mouse embryonic fibroblasts and FOP-iMSCs are preferred because of their accessibility and expression level of FOP-ACVR1 using an endogenous promoter. In these cells, however, the constitutive activity and hyperactivity is not strong (within twofold normal levels) (22, 26). In addition, despite the essential role of BMP signaling in development (2731), the pre- and postnatal development and growth of FOP patients are almost normal, and HO is induced in FOP patients after physical trauma and inflammatory response postnatally, not at birth (16). These observations led us to hypothesize that FOP-ACVR1 abnormally responds to noncanonical BMP ligands induced by trauma or inflammation.Here we show that FOP-ACVR1 transduced BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling (10, 3234) and contributes to inflammatory responses (35, 36). Our in vitro and in vivo data indicate that activation of TGF-β and aberrant BMP signaling by Activin-A in FOP-cells is one cause of HO in FOP. These results suggest a possible application of anti–Activin-A reagents as a new therapeutic tool for FOP.  相似文献   

14.
A problem in understanding eukaryotic DNA mismatch repair (MMR) mechanisms is linking insights into MMR mechanisms from genetics and cell-biology studies with those from biochemical studies of MMR proteins and reconstituted MMR reactions. This type of analysis has proven difficult because reconstitution approaches have been most successful for human MMR whereas analysis of MMR in vivo has been most advanced in the yeast Saccharomyces cerevisiae. Here, we describe the reconstitution of MMR reactions using purified S. cerevisiae proteins and mispair-containing DNA substrates. A mixture of MutS homolog 2 (Msh2)–MutS homolog 6, Exonuclease 1, replication protein A, replication factor C-Δ1N, proliferating cell nuclear antigen and DNA polymerase δ was found to repair substrates containing TG, CC, +1 (+T), +2 (+GC), and +4 (+ACGA) mispairs and either a 5′ or 3′ strand interruption with different efficiencies. The Msh2–MutS homolog 3 mispair recognition protein could substitute for the Msh2–Msh6 mispair recognition protein and showed a different specificity of repair of the different mispairs whereas addition of MutL homolog 1–postmeiotic segregation 1 had no affect on MMR. Repair was catalytic, with as many as 11 substrates repaired per molecule of Exo1. Repair of the substrates containing either a 5′ or 3′ strand interruption occurred by mispair binding-dependent 5′ excision and subsequent resynthesis with excision tracts of up to ∼2.9 kb occurring during the repair of the substrate with a 3′ strand interruption. The availability of this reconstituted MMR reaction now makes possible detailed biochemical studies of the wealth of mutations identified that affect S. cerevisiae MMR.DNA mismatch repair (MMR) is a critical DNA repair pathway that is coupled to DNA replication in eukaryotes where it corrects misincorporation errors made during DNA replication (19). This pathway prevents mutations and acts to prevent the development of cancer (10, 11). MMR also contributes to gene conversion by repairing mispaired bases that occur during the formation of recombination intermediates (3, 4, 12). Finally, MMR acts to suppress recombination between divergent but homologous DNA sequences, thereby preventing the formation of genome rearrangements that can result from nonallelic homologous recombination (4, 1315).Our knowledge of the mechanism of eukaryotic MMR comes from several general lines of investigation (39). Studies of bacterial MMR have provided a basic mechanistic framework for comparative studies (5). Genetic and cell-biology studies, primarily in Saccharomyces cerevisiae, have identified eukaryotic MMR genes, provided models for how their gene products define MMR pathways, and elucidated some of the details of how MMR pathways interact with replication (14). Reconstitution studies, primarily in human systems, have identified some of the catalytic features of eukaryotic MMR (79, 16, 17). Biochemical and structural studies of S. cerevisiae and human MMR proteins have provided information about the function of individual MMR proteins (69).In eukaryotic MMR, mispairs are bound by MutS homolog 2 (Msh2)–MutS homolog 6 (Msh6) and Msh2–MutS homolog 3 (Msh3), two partially redundant complexes of MutS-related proteins (3, 4, 18, 19). These complexes recruit a MutL-related complex, called MutL homoloh 1 (Mlh1)–postmeiotic segregation 1 (Pms1) in S. cerevisiae and Mlh1–postmeiotic segregation 2 (Pms2) in human and mouse (3, 4, 2023). The Mlh1–Pms1/Pms2 complex has an endonuclease activity suggested to play a role in the initiation of the excision step of MMR (24, 25). Downstream of mismatch recognition is a mispair excision step that can be catalyzed by Exonuclease 1 (Exo1) (2628); however, defects in both S. cerevisiae and mouse Exo1 result in only a partial MMR deficiency, suggesting the existence of additional excision mechanisms (26, 27, 29). DNA polymerase δ, the single-strand DNA binding protein replication protein A (RPA), the sliding clamp proliferating cell nuclear antigen (PCNA), and the clamp loader replication factor C (RFC) are also required for MMR at different steps, including activation of Mlh1–Pms1/Pms2, stimulation of Exo1, potentially in Exo1-independent mispair excision, and in the gap-filling resynthesis steps of MMR (3, 16, 17, 24, 27, 3036). Although much is known about these core MMR proteins, it is not well understood how eukaryotic MMR is coupled to DNA replication (1, 2), how excision is targeted to the newly replicated strand (1, 25, 3739), or how different MMR mechanisms such as Exo1-dependent and -independent subpathways are selected or how many such subpathways exist (1, 24, 27, 29).S. cerevisiae has provided a number of tools for studying MMR, including forward genetic screens for mutations affecting MMR, including dominant and separation-of-function mutations, the ability to evaluate structure-based mutations in vivo, cell biological tools for visualizing and analyzing MMR proteins in vivo, and overproduction of individual MMR proteins for biochemical analysis. However, linking these tools with biochemical systems that catalyze MMR reactions in vitro for mechanistic studies has not yet been possible. Here, we describe the development of MMR reactions reconstituted using purified proteins for the analysis of MMR mechanisms.  相似文献   

15.
To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state. The chemical transitions underlying these structural transitions were identified by varying nucleotide conditions and carrying out parallel stopped-flow kinetics assays. At saturating ATP, kinesin-1 spends half of each stepping cycle with one head bound, specifying a structural state for each of two rate-limiting transitions. Analysis of stepping kinetics in varying nucleotides shows that ATP binding is required to properly enter the one-head–bound state, and hydrolysis is necessary to exit it at a physiological rate. These transitions differ from the standard model in which ATP binding drives full docking of the flexible neck linker domain of the motor. Thus, this work defines a consensus sequence of mechanochemical transitions that can be used to understand functional diversity across the kinesin superfamily.Kinesin-1 is a motor protein that steps processively toward microtubule plus-ends, tracking single protofilaments and hydrolyzing one ATP molecule per step (16). Step sizes corresponding to the tubulin dimer spacing of 8.2 nm are observed when the molecule is labeled by its C-terminal tail (710) and to a two-dimer spacing of 16.4 nm when a single motor domain is labeled (4, 11, 12), consistent with the motor walking in a hand-over-hand fashion. Kinesin has served as an important model system for advancing single-molecule techniques (710) and is clinically relevant for its role in neurodegenerative diseases (13), making dissection of its step a popular ongoing target of study.Despite decades of work, many essential components of the mechanochemical cycle remain disputed, including (i) how much time kinesin-1 spends in a one-head–bound (1HB) state when stepping at physiological ATP concentrations, (ii) whether the motor waits for ATP in a 1HB or two-heads–bound (2HB) state, and (iii) whether ATP hydrolysis occurs before or after tethered head attachment (4, 11, 1420). These questions are important because they are fundamental to the mechanism by which kinesins harness nucleotide-dependent structural changes to generate mechanical force in a manner optimized for their specific cellular tasks. Addressing these questions requires characterizing a transient 1HB state in the stepping cycle in which the unattached head is located between successive binding sites on the microtubule. This 1HB intermediate is associated with the force-generating powerstroke of the motor and underlies the detachment pathway that limits motor processivity. Optical trapping (7, 19, 21, 22) and single-molecule tracking studies (4, 811) have failed to detect this 1HB state during stepping. Single-molecule fluorescence approaches have detected a 1HB intermediate at limiting ATP concentrations (11, 12, 14, 15), but apart from one study that used autocorrelation analysis to detect a 3-ms intermediate (17), the 1HB state has been undetectable at physiological ATP concentrations.Single-molecule microscopy is a powerful tool for studying the kinetics of structural changes in macromolecules (23). Tracking steps and potential substeps for kinesin-1 at saturating ATP has until now been hampered by the high stepping rates of the motor (up to 100 s−1), which necessitates high frame rates, and the small step size (8.2 nm), which necessitates high spatial precision (7). Here, we apply interferometric scattering microscopy (iSCAT), a recently established single-molecule tool with high spatiotemporal resolution (2427) to directly visualize the structural changes underlying kinesin stepping. By labeling one motor domain in a dimeric motor, we detect a 1HB intermediate state in which the tethered head resides over the bound head for half the duration of the stepping cycle at saturating ATP. We further show that at physiological stepping rates, ATP binding is required to enter this 1HB state and that ATP hydrolysis is required to exit it. This work leads to a significant revision of the sequence and kinetics of mechanochemical transitions that make up the kinesin-1 stepping cycle and provides a framework for understanding functional diversity across the kinesin superfamily.  相似文献   

16.
17.
Kinesin-1 is a dimeric motor protein, central to intracellular transport, that steps hand-over-hand toward the microtubule (MT) plus-end, hydrolyzing one ATP molecule per step. Its remarkable processivity is critical for ferrying cargo within the cell: over 100 successive steps are taken, on average, before dissociation from the MT. Despite considerable work, it is not understood which features coordinate, or “gate,” the mechanochemical cycles of the two motor heads. Here, we show that kinesin dissociation occurs subsequent to, or concomitant with, phosphate (Pi) release following ATP hydrolysis. In optical trapping experiments, we found that increasing the steady-state population of the posthydrolysis ADP·Pi state (by adding free Pi) nearly doubled the kinesin run length, whereas reducing either the ATP binding rate or hydrolysis rate had no effect. The data suggest that, during processive movement, tethered-head binding occurs subsequent to hydrolysis, rather than immediately after ATP binding, as commonly suggested. The structural change driving motility, thought to be neck linker docking, is therefore completed only upon hydrolysis, and not ATP binding. Our results offer additional insights into gating mechanisms and suggest revisions to prevailing models of the kinesin reaction cycle.Since its discovery nearly 30 years ago (1), kinesin-1—the founding member of the kinesin protein superfamily—has emerged as an important model system for studying biological motors (2, 3). During “hand-over-hand” stepping, kinesin dimers alternate between a two–heads-bound (2-HB) state, with both heads attached to the microtubule (MT), and a one–head-bound (1-HB) state, where a single head, termed the tethered head, remains free of the MT (4, 5). The catalytic cycles of the two heads are maintained out of phase by a series of gating mechanisms, thereby enabling the dimer to complete, on average, over 100 steps before dissociating from the MT (68). A key structural element for this coordination is the neck linker (NL), a ∼14-aa segment that connects each catalytic head to a common stalk (9). In the 1-HB state, nucleotide binding is thought to induce a structural reconfiguration of the NL, immobilizing it against the MT-bound catalytic domain (2, 3, 1017). This transition, called “NL docking,” is believed to promote unidirectional motility by biasing the position of the tethered head toward the next MT binding site (2, 3, 1017). The completion of an 8.2-nm step (18) entails the binding of this tethered head to the MT, ATP hydrolysis, and detachment of the trailing head, thereby returning the motor to the ATP-waiting state (2, 3, 1017). Prevailing models of the kinesin mechanochemical cycle (2, 3, 10, 14, 15, 17), which invoke NL docking upon ATP binding, explain the highly directional nature of kinesin motility and offer a compelling outline of the sequence of events following ATP binding. Nevertheless, these abstractions do not speak directly to the branching transitions that determine whether kinesin dissociates from the MT (off-pathway) or continues its processive reaction cycle (on-pathway). The distance moved by an individual motor before dissociating—the run length—is limited by unbinding from the MT. The propensity for a dimer to unbind involves a competition among multiple, force-dependent transitions in the two heads, which are not readily characterized by traditional structural or bulk biochemical approaches. Here, we implemented high-resolution single-molecule optical trapping techniques to determine transitions in the kinesin cycle that govern processivity.  相似文献   

18.
Antiretroviral therapy (ART) reduces the infectiousness of HIV-infected persons, but only after testing, linkage to care, and successful viral suppression. Thus, a large proportion of HIV transmission during a period of high infectiousness in the first few months after infection (“early transmission”) is perceived as a threat to the impact of HIV “treatment-as-prevention” strategies. We created a mathematical model of a heterosexual HIV epidemic to investigate how the proportion of early transmission affects the impact of ART on reducing HIV incidence. The model includes stages of HIV infection, flexible sexual mixing, and changes in risk behavior over the epidemic. The model was calibrated to HIV prevalence data from South Africa using a Bayesian framework. Immediately after ART was introduced, more early transmission was associated with a smaller reduction in HIV incidence rate—consistent with the concern that a large amount of early transmission reduces the impact of treatment on incidence. However, the proportion of early transmission was not strongly related to the long-term reduction in incidence. This was because more early transmission resulted in a shorter generation time, in which case lower values for the basic reproductive number (R0) are consistent with observed epidemic growth, and R0 was negatively correlated with long-term intervention impact. The fraction of early transmission depends on biological factors, behavioral patterns, and epidemic stage and alone does not predict long-term intervention impacts. However, early transmission may be an important determinant in the outcome of short-term trials and evaluation of programs.Recent studies have confirmed that effective antiretroviral therapy (ART) reduces the transmission of HIV among stable heterosexual couples (13). This finding has generated interest in understanding the population-level impact of HIV treatment on reducing the rate of new HIV infections in generalized epidemic settings (4). Research, including mathematical modeling (510), implementation research (11), and major randomized controlled trials (1214), are focused on how ART provision might be expanded strategically to maximize its public health benefits (15, 16).One concern is that if a large fraction of HIV transmission occurs shortly after a person becomes infected, before the person can be diagnosed and initiated on ART, this will limit the potential impact of HIV treatment on reducing HIV incidence (9, 17, 18). Data suggest that persons are more infectious during a short period of “early infection” after becoming infected with HIV (1922), although there is debate about the extent, duration, and determinants of elevated infectiousness (18, 23). The amount of transmission that occurs also will depend on patterns of sexual behavior and sexual networks (17, 2427). There have been estimates for the contribution of early infection to transmission from mathematical models (7, 17, 21, 2426) and phylogenetic analyses (2831), but these vary widely, from 5% to above 50% (23).In this study, we use a mathematical model to quantify how the proportion of transmission that comes from persons who have been infected recently affects the impact of treatment scale-up on HIV incidence. The model is calibrated to longitudinal HIV prevalence data from South Africa using a Bayesian framework. Thus, the model accounts for not only the early epidemic growth rate highlighted in previous research (5, 9, 18), but also the heterogeneity and sexual behavior change to explain the peak and decline in HIV incidence observed in sub-Saharan African HIV epidemics (32, 33).The model calibration allows uncertainty about factors that determine the amount of early transmission, including the relative infectiousness during early infection, heterogeneity in propensity for sexual risk behavior, assortativity in sexual partner selection, reduction in risk propensity over the life course, and population-wide reductions in risk behavior in response to the epidemic (32, 33). This results in multiple combinations of parameter values that are consistent with the observed epidemic and variation in the amount of early transmission. We simulated the impact of a treatment intervention and report how the proportion of early transmission correlates with the reduction in HIV incidence from the intervention over the short- and long-term.  相似文献   

19.
Vesicle recycling is pivotal for maintaining reliable synaptic signaling, but its basic properties remain poorly understood. Here, we developed an approach to quantitatively analyze the kinetics of vesicle recycling with exquisite signal and temporal resolution at the calyx of Held synapse. The combination of this electrophysiological approach with electron microscopy revealed that ∼80% of vesicles (∼270,000 out of ∼330,000) in the nerve terminal are involved in recycling. Under sustained stimulation, recycled vesicles start to be reused in tens of seconds when ∼47% of the preserved vesicles in the recycling pool (RP) are depleted. The heterogeneity of vesicle recycling as well as two kinetic components of RP depletion revealed the existence of a replenishable pool of vesicles before the priming stage and led to a realistic kinetic model that assesses the size of the subpools of the RP. Thus, our study quantified the kinetics of vesicle recycling and kinetically dissected the whole vesicle pool in the calyceal terminal into the readily releasable pool (∼0.6%), the readily priming pool (∼46%), the premature pool (∼33%), and the resting pool (∼20%).Synaptic vesicle recycling ensures synaptic transmission during sustained neuronal activity (13). Despite its crucial role, the cycle is poorly understood. In contrast to vesicle exocytosis and endocytosis, which can be directly assayed by presynaptic capacitance measurements and postsynaptic current recordings, vesicle recycling is usually investigated by fluorescence imaging and electron microscopy (EM) with limited signal or temporal resolution (47). Likely owing to technical difficulties, the basic properties of vesicle recycling, such as the size of the recycling pool (RP) (3, 6, 811), the kinetics of vesicle recycling (6, 812), and how the RP supports synaptic transmission (1, 1315) remain to be elucidated. Classically, presynaptic vesicles can be functionally divided into three populations: the readily releasable pool (RRP), the reserve pool, and the resting pool (3, 16, 17). The RRP is defined as being composed of docked and immediately releasable vesicles (17), which are usually depleted by high-frequency stimulation, prolonged presynaptic depolarization, or the application of hypertonic solution (1821). The reserve pool functions as a reservoir and serves to maintain vesicle refilling into the RRP (2, 3). These two pools together are commonly referred to as the RP. The resting pool serves as a depot of vesicles for backup use (16, 22). However, it has been debated for a decade whether nerve terminals use the majority (∼100%, from electrophysiology) or only a small fraction (5–40%, from fluorescence imaging and EM) of vesicles in recycling, and whether the RP size undergoes dynamic changes during varied neuronal activity (6, 7, 2328).The use of vesicles in recycling is a critical determinant of synaptic transmission (1, 1315). However, it has never been rigorously determined how fast recently recaptured vesicles are organized to recycle and whether vesicles in the RP are homogeneously ready for use (25). Two forms of vesicle retrieval, “kiss-and-run” and full collapse, have been reported for many years. It is still ambiguous whether the rapidly recaptured vesicles in the kiss-and-run mode can be rapidly reused (2931).Here, we addressed the above issues by developing a new approach to quantify the basic properties of vesicle recycling with unparalleled precision. Different from previous studies in cultured cell systems, the present work combined electrophysiological measurements and EM observations at the calyx of Held synapse in acute brain slices, quantitatively analyzed synaptic vesicle recycling, and kinetically dissected the recycling vesicle pool. We propose a realistic kinetic model and provide new insights into the mechanism that ensures rate-limited but sustainable synaptic transmission.  相似文献   

20.
In humans, spontaneous movements are often preceded by early brain signals. One such signal is the readiness potential (RP) that gradually arises within the last second preceding a movement. An important question is whether people are able to cancel movements after the elicitation of such RPs, and if so until which point in time. Here, subjects played a game where they tried to press a button to earn points in a challenge with a brain–computer interface (BCI) that had been trained to detect their RPs in real time and to emit stop signals. Our data suggest that subjects can still veto a movement even after the onset of the RP. Cancellation of movements was possible if stop signals occurred earlier than 200 ms before movement onset, thus constituting a point of no return.It has been repeatedly shown that spontaneous movements are preceded by early brain signals (18). As early as a second before a simple voluntary movement, a so-called readiness potential (RP) is observed over motor-related brain regions (13, 5). The RP was found to precede the self-reported time of the “‘decision’ to act” (ref. 3, p. 623). Similar preparatory signals have been observed using invasive electrophysiology (8, 9) and functional MRI (7, 10), and have been demonstrated also for choices between multiple-response options (6, 7, 10), for abstract decisions (10), for perceptual choices (11), and for value-based decisions (12). To date, the exact nature and causal role of such early signals in decision making is debated (1220).One important question is whether a person can still exert a veto by inhibiting the movement after onset of the RP (13, 18, 21, 22). One possibility is that the onset of the RP triggers a causal chain of events that unfolds in time and cannot be cancelled. The onset of the RP in this case would be akin to tipping the first stone in a row of dominoes. If there is no chance of intervening, the dominoes will gradually fall one-by-one until the last one is reached. This has been coined a ballistic stage of processing (23, 24). A different possibility is that participants can still terminate the process, akin to taking out a domino at some later stage in the chain and thus preventing the process from completing. Here, we directly tested this in a real-time experiment that required subjects to terminate their decision to move once a RP had been detected by a brain–computer interface (BCI) (2531).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号