首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In OVA-sensitized and challenged mice, gammadelta T cells expressing Vgamma1 enhance airway hyperresponsiveness (AHR) but the underlying mechanism is unclear. These cells also reduce IL-10 levels in the airways, suggesting that they might function by inhibiting CD4(+)CD25(+) regulatory T cells (T(reg)) or other CD4(+) T cells capable of producing IL-10 and suppressing AHR. Indeed, sensitization and challenge with OVA combined with inactivation of Vgamma1(+) cells increased CD4(+)CD25(+) cells in the lung, and markedly those capable of producing IL-10. The cellular change was associated with increased IL-10 and TGF-beta levels in the airways, and a decrease of IL-13. T(reg) include naturally occurring Foxp3(+) T(reg), inducible Foxp3(-) T(reg), and antigen-specific T(reg) many of which express folate receptor 4 (FR4). Although Foxp3 gene expression in the lung was also increased pulmonary CD4(+) T cells, expressing Foxp3-protein or FR4 remained stable. Therefore, the inhibition by Vgamma1(+) gammadelta T cells might not be targeting Foxp3(+) T(reg) but rather CD4(+) T cells destined to produce IL-10.  相似文献   

3.
The hypothesis of helper T (T(h))1/T(h)2 cytokine balance proposed by Mosmann and Coffman is often invoked to explain the development of inflammatory diseases, including inflammatory bowel diseases (IBD). Recently, however, a newly identified class of T(h) cells-T(h)17 cells, which produce T(h)17 family cytokines-has been recognized as an essential subpopulation in the development of almost all kinds of human and animal inflammatory diseases, rather than T(h)1 and T(h)2 cells. A representative T(h)17 family cytokine, interleukin (IL)-17A, is produced by not only T(h)17 cells, but also by other types of cells, such as T-cell receptor γδ T cells, natural killer (NK) T cells, NK cells, myeloid cells, and innate lymphoid cells, which may also be critically involved in the initiation and persistence of IBD. Here we review recent advances in the study of such IL-17A-producing cells in the pathogenesis of IBD.  相似文献   

4.
Interleukin-17A (IL-17A)-producing γδ T cells differentiate in the fetal thymus and reside in the peripheral tissues, such as the lungs of naïve adult mice. We show here that naturally occurring γδ T cells play a protective role in the lung at a very early stage after systemic infection with Candida albicans. Selective depletion of neutrophils by in vivo administration of anti-Ly6G monoclonal antibody (MAb) impaired fungal clearance more prominently in the lung than in the kidney 24 h after intravenous infection with C. albicans. Rapid and transient production of IL-23 was detected in the lung at 12 h, preceding IL-17A production and the influx of neutrophils, which reached a peak at 24 h after infection. IL-17A knockout (KO) mice showed reduced infiltration of neutrophils concurrently with impaired fungal clearance in the lung after infection. The major source of IL-17A was the γδ T cell population in the lung, and Cδ KO mice showed little IL-17A production and reduced neutrophil infiltration after infection. Early IL-23 production in a TLR2/MyD88-dependent manner and IL-23-triggered tyrosine kinase 2 (Tyk2) signaling were essential for IL-17A production by γδ T cells. Thus, our study demonstrated a novel role of naturally occurring IL-17A-producing γδ T cells in the first line of host defense against C. albicans infection.  相似文献   

5.
6.
《Mucosal immunology》2021,14(1):242-252
γδT cells represent the majority of lymphocytes in several mucosal tissues where they contribute to tissue homoeostasis, microbial defence and wound repair. Here we characterise a population of interleukin (IL) 17-producing γδ (γδ17) T cells that seed the testis of naive C57BL/6 mice, expand at puberty and persist throughout adulthood. We show that this population is foetal-derived and displays a T-cell receptor (TCR) repertoire highly biased towards Vγ6-containing rearrangements. These γδ17 cells were the major source of IL-17 in the testis, whereas αβ T cells mostly provided interferon (IFN)-γ in situ. Importantly, testicular γδ17 cell homoeostasis was strongly dependent on the microbiota and Toll-like receptor (TLR4)/IL-1α/IL-23 signalling. We further found that γδ17 cells contributed to tissue surveillance in a model of experimental orchitis induced by intra-testicular inoculation of Listeria monocytogenes, as Tcrδ/− and Il17−/− infected mice displayed higher bacterial loads than wild-type (WT) controls and died 3 days after infection. Altogether, this study identified a previously unappreciated foetal-derived γδ17 cell subset that infiltrates the testis at steady state, expands upon puberty and plays a crucial role in local tissue immune surveillance.  相似文献   

7.
The γδ T cells play an important role in both mice and humans as a source of the cytokine IL-17, which is key for immune resistance to certain pathogens. In mice, most of these IL-17 producers, termed γδT-17 cells, actually comprise two distinct types: those expressing an invariant Vγ6Vδ1+ TCR and those expressing a Vγ4+ TCR. Murine γδT-17 cells acquire an inherent bias to produce IL-17 and other “type 17” cytokines during thymic development. The similarities and differences between the two mouse γδT-17 types are reviewed here, and the potential implications of their differences are discussed. There is some evidence that two distinct TCR-defined IL-17-producing γδ T cell subsets also exist in humans, but unlike the mouse γδT-17 cells, these cells are probably not imprinted with an IL-17 bias during thymic development, but rather acquire an IL-17 bias in the periphery.  相似文献   

8.
9.
The innate immune response generated against influenza infection is critical for the inhibition of viral dissemination. The trachea contains different types of innate immune cells that protect the respiratory tract from pathogen invasion. Among them, γδ T cells have the ability to rapidly generate large amounts of pro-inflammatory cytokines to preserve mucosal barrier homeostasis during infection. However, little is known about their role during the early phase of influenza infection in the airways. In this study, we found that, early after infection, γδ T cells are recruited and activated in the trachea and outnumber αβ T cells during the course of the influenza infection that follows. We also showed that the majority of the recruited γδ T cells express the Vγ4 TCR chain and infiltrate in a process that involves the chemokine receptor CXCR3. In addition, we demonstrated that γδ T cells promote the recruitment of protective neutrophils and NK cells to the tracheal mucosa. Altogether, our results highlight the importance of the immune responses mediated by γδ T cells.  相似文献   

10.
Systemic administration of Pertussis toxin (PTX) abrogates T cell tolerance mediated by injection of neuroantigens in incomplete Freund's adjuvant (IFA) and causes experimental autoimmune encephalomyelitis (EAE). PTX concomitantly induces high frequencies of neuroantigen-specific IFN-γ- and IL-17-producing T cells. Both IL-17 and IFN-γ have been implicated as a key effector cytokines in the pathogenesis of EAE, possibly with different functions. We therefore investigated potential differences in the temporal and spatial kinetics of the PTX-induced neuroantigen-specific IFN-γ- and IL-17-producing T cell effector populations. IFN-γ- and IL-17-producing PLPp-specific T cells initially arose in comparable frequencies in the local draining lymph nodes (drLN) after immunization as measured by cytokine ELISPOT. High frequencies of both IFN-γ- and IL-17-producing T cells were present in the immune periphery before onset of EAE. The highest frequencies of PTX-induced IFN-γ- and IL-17-producing PLPp-specific cells coincided in the inflamed CNS during acute EAE. During recovery, both IFN-γ- and IL-17-producing PLPp-specific T cells simultaneously disappeared from the CNS, whereas high frequencies of these cells remained present in the immune periphery. The functional affinity of both IFN-γ- and IL-17-producing T cells did not change during EAE. Therefore, autoimmune pathology in this model did not correlate with specific PTX effects either on Th1 or Th17 cells regarding their kinetics and CNS migration.  相似文献   

11.
12.
13.
Interleukin 4 (IL-4) has a variety of immune functions, including helper T-cell (Th-cell) differentiation and innate immune-response processes. However, the impact of IL-4 on gamma delta (γδ) T cells remains unclear. In this study, we investigate the effects of IL-4 on the activation and proliferation of γδ T cells and the balance between variable delta 1 (Vδ1) and Vδ2 T cells in humans. The results show that IL-4 inhibits the activation of γδ T cells in the presence of γδ T-cell receptor (TCR) stimulation in a STAT6-dependent manner. IL-4 promoted the growth of activated γδ T cells and increased the levels of Vδ1 T cells, which in turn inhibited Vδ2 T-cell growth via significant IL-10 secretion. Vδ1 T cells secreted significantly less interferon gamma (IFNγ) and more IL-10 relative to Vδ2. Furthermore, Vδ1 T cells showed relatively low levels of Natural Killer Group 2D (NKG2D) expression in the presence of IL-4, suggesting that Vδ1 T cells weaken the γδ T cell-mediated anti-tumor immune response. For the first time, our findings demonstrate a negative regulatory role of IL-4 in γδ T cell-mediated anti-tumor immunity.  相似文献   

14.
Most effector T cells are generated in the periphery following an encounter with a foreign antigen and exposure to soluble and membrane-bound mediators. There are, however, some T cell subsets, such as γδ T cells and natural killer T cells, that acquire their effector potential in the thymus before their emigration to the periphery. This developmental preprogramming enables these cells to differentiate rapidly into cytokine-producing effectors during the host immune response. This review focuses on murine interleukin (IL)-17-producing γδ T (γδ-17) cells, which have been shown, through their early production of IL-17, to have a critical role in multiple infectious and autoimmune diseases. Specifically, we discuss what is currently known about the genetic requirements for their generation and compare it with what is known about that of the more extensively studied IL-17-producing helper T (Thl7) cells. Based on this comparison, we propose a model for murine γδ-17 development and differentiation.  相似文献   

15.
γδ T?cells are an important innate source of interleukin-17 (IL-17). In contrast to T helper 17 (Th17) cell differentiation, which occurs in the periphery, IL-17-producing γδ T?cells (γδT17 cells) are probably committed during thymic development. To study when γδT17 cells arise during ontogeny, we used TcrdH2BeGFP reporter mice to monitor T?cell receptor (TCR) rearrangement and IL-17 production in the embryonic thymus. We observed that several populations such as innate lymphoid cells and early T?cell precursors were able to produce IL-17 prior to (and thus independent of) TCR recombination. γδT17 cells were absent after transplantation of IL-17-sufficient bone marrow into mice lacking both Il17a and Il17f. Also, γδT17 cells were not generated after genetic restoration of defective Rag1 function in adult mice. Together, these data suggested that these cells developed exclusively before birth and subsequently persisted in adult mice as self-renewing, long-lived cells.  相似文献   

16.
IL-23 plays an important role in the development of arthritis and the IL-23 receptor (IL-23R) is expressed on different types of T cells. However, it is not fully clear which IL-23R+ T cells are critical in driving T cell-mediated synovitis. We demonstrate, using knock-in IL-23R-GFP reporter (IL-23RGFP/+) mice, that CD4+CCR6+ T cells and γδ T cells, but not CD8+ T cells, express the IL-23R(GFP). During early arthritis, IL-23R(GFP)+CD4+CCR6+ T cells, but not IL-23R(GFP)+ γδ T cells, were present in the inflamed joints. IL-23RGFP/+ mice were bred as homozygotes to obtain IL-23RGFP/GFP (IL-23R deficient/IL-23R−/−) mice, which express GFP under the IL-23R promotor. Arthritis progression and joint damage were significantly milder in IL-23R−/− mice, which revealed less IL-17A+ cells in their lymphoid tissues. Surprisingly, IL-23R−/− mice had increased numbers of IL-23R(GFP)+CD4+CCR6+ and CCR7+CD4+CCR6+ T cells in their spleen compared to WT, and IL-23 suppressed CCR7 expression in vitro. However, IL-23R(GFP)+CD4+CCR6+ T cells were present in the synovium of IL-23R−/− mice at day 4. Finally, adoptive transfer experiments revealed that CD4+CCR6+ T cells and not γδ T cells drive arthritis progression. These data suggest that IL-23R-dependent T cell-mediated synovitis is dependent on CD4+CCR6+ T cells and not on γδ T cells.  相似文献   

17.
Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.  相似文献   

18.
We examined the direct effects of IFN-α on the development of Th17 with a system using immobilized anti-CD3, which permits activation of CD4+ T cells in the complete absence of accessory cells. Highly purified CD4+ T cells obtained from healthy donors were stimulated with immobilized anti-CD3 with or without IFN-α. IFN-α suppressed the production of IL-17 of immobilized anti-CD3-stimulated CD4+ T cells in a dose–response manner. Accordingly, IFN-α inhibited IL-17 mRNA expression in immobilized anti-CD3-stimulated CD4+ T cells. IFN-α did not affect the production of TGF-β or IL-6, but inhibited RORC mRNA expression of anti-CD3-stimulated CD4+ T cells. These results indicate that IFN-α suppresses IL-17 expression and Th17 differentiation through down-regulation of RORC mRNA expression. It is therefore suggested that these effects might play a role in the mode of action of IFN-α in the treatment of various inflammatory diseases.  相似文献   

19.
Intravesical inoculation of Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been used for the treatment of bladder cancer. Recent studies implied the requirement of neutrophil infiltration for the antitumor effect. In this study, we found that IL-17 was produced in the bladder after BCG treatment, preceding the infiltration of neutrophils. Neutrophils in the bladder after BCG treatment were reduced in IL-17-deficient mice, in which BCG-induced antitumor effect against intravesically inoculated bladder cancer was abolished. Notably, the level of IL-17 production and the number of neutrophils in BCG-treated bladder was reduced in γδ T-cell-deficient mice but not in CD4-depleted mice. Survival of bladder cancer-inoculated γδ T-cell-deficient mice was not improved by BCG treatment. These results suggest that IL-17-producing γδ T cells play a key role in the BCG-induced recruitment of neutrophils to the bladder, which is essential for the antitumor activity against bladder cancer.  相似文献   

20.
The cytokine milieu is critical for orchestration of lineage development towards effector T cell (Teff) or regulatory T cell (Treg) subsets implicated in the progression of cancer and autoimmune disease. Importantly, the fitness and survival of the Treg subset is dependent on the cytokines Interleukin-2 (IL-2) and transforming growth factor beta (TGF-β). The production of these cytokines is impaired in autoimmunity increasing the probability of Treg conversion to aggressive effector cells in a proinflammatory microenvironment. Therapy using soluble TGF-β and IL-2 administration is hindered by the cytokines' toxic pleiotropic effects and hence bioavailability to CD4+ T cell targets. Thus, there is a clear need for a strategy that rectifies the cytokine milieu in autoimmunity and inflammation leading to enhanced Treg stability, frequency and number. Here we show that inert biodegradable nanoparticles (NP) loaded with TGF-β and IL-2 and targeted to CD4+ cells can induce CD4+ Tregs in-vitro and expand their number in-vivo. The stability of induced Tregs with cytokine-loaded NP was enhanced leading to retention of their suppressive phenotype even in the presence of proinflammatory cytokines. Our results highlight the importance of a nanocarrier-based approach for stabilizing and expanding Tregs essential for cell-immunotherapy of inflammation and autoimmune disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号