首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purpose: To study the effects of estrogen withdrawal on osteoclast number and osteoclast activity in the rat ovariectomy (OVX) model. Methods: We first cultured human CD34+ osteoclast precursor cells on bovine bone slices, allowing them to differentiate into mature resorbing osteoclasts. Secreted tartrate-resistant acid phosphatase 5b (TRACP 5b) and C-terminal cross-linked telopeptides of type I collagen (CTX) were determined from the culture medium. TRACP 5b correlated strongly with osteoclast number and CTX with osteoclast activity, facilitating their subsequent use in the rat OVX model. An 8 week OVX study was then performed including sham-operated rats receiving vehicle, OVX rats receiving vehicle, and OVX rats receiving 10 μg/kg/day 17β-estradiol (E2). Trabecular bone parameters were determined from the tibial metaphysis using peripheral quantitative computed tomography and histomorphometry. Osteoclast number was normalized with bone perimeter (N.Oc/B.Pm) and tissue area (N.Oc/T.Ar, indicating absolute number of osteoclasts). TRACP 5b and CTX were determined from fasting serum samples. Results: Trabecular bone parameters indicated substantial bone loss after OVX that was prevented by E2. N.Oc/B.Pm increased after OVX, while N.Oc/T.Ar and TRACP 5b decreased, and TRACP 5b correlated strongly with N.Oc/T.Ar. However, CTX values increased after OVX, and the “resorption index” CTX/TRACP 5b showed more substantial changes than either CTX or TRACP 5b alone. Conclusion: These results show that TRACP 5b is a reliable marker of osteoclast number, and the index CTX/TRACP 5b is a useful parameter in rat OVX model. The high elevation of CTX/TRACP 5b values by OVX demonstrates that estrogen withdrawal generates high activity of osteoclasts in the rat OVX model. Disclosure statement: Jukka Rissanen, Mari Suominen, and Zhiqi Peng have nothing to disclose; Jussi Halleen receives royalties from and works as a consultant of SBA Sciences, a company owned by IDS Ltd.  相似文献   

2.
Several cell surface markers were used to isolate monocytes as osteoclast progenitors with an immunomagnetic cell separation system. Use of this system with specific monocyte antibodies produced 99% pure monocytes. When purified monocytes were cultured on bovine bone slices in the presence of receptor activator of nuclear factor-B (RANKL), macrophage-colony stimulating factor (M-CSF), tumor necrocis factor alpha (TNF-), and dexamethasone for 14 days, CD14+ CD11b+, and CD61+ monocytes had approximately 90-, 30- and 20-fold higher osteoclast formation capacities/plated cells compared to the control culture. CD15+ monocytes generated few tartrate-resistant acid phosphatase-positive multinucleated cells (TRACP+ MNC), and CD169+ monocytes generated no TRACP+ MNC. This suggests, that there are various subsets of monocytes in the blood circulation and that they have different capacities in osteoclast formation. These results show that circulating human osteoclast progenitors can be efficiently purified by immunomagnetic cell separation system using anti-CD14, -CD11b, and -CD61 antibodies. These purified monocyte fractions had different ability to give rise to osteoclasts. CD169 was not found to be suitable for osteoclast progenitor isolation. Optimal concentration of dexamethasone for osteoclast formation and bone resorption was 10 nM. To develop a human resorption assay, osteoclasts were first induced for 7 days, whole media were replaced, cultures were continued for additional 3 days and C-terminal telopeptide of type I collagen was determined from culture media. This assay was shown to be functional, since two well-known resorption inhibitors, bafilomycin A1 and calcitonin, dose-dependently inhibited the resorption activity of osteoclasts.  相似文献   

3.
目的观察密骨胶囊对骨吸收参数指标血清抗酒石酸酸性磷酸酶、血清I型胶原C末端肽的影响。方法临床选择136例原发性骨质疏松症患者随机分为两组,其中对照组66例给予口服钙尔奇D片,治疗组70例在对照组基础上给予密骨胶囊口服治疗,各组均经6个月治疗。分别于患者服药前和服药后1、3、6个月抽血,用ELISA法测其血清中Ⅰ型胶原C末端肽、血清抗酒石酸酸性磷酸酶含量。结果用药1个月后,两组血清骨吸收参数值较治疗前明显下降(P<0.05);用药3个月后,治疗组骨代谢指标下降非常明显(P<0.01),基本达到正常值;患者服药6个月后,治疗组血清抗酒石酸酸性磷酸酶与对照组比较有统计学意义(P<0.05)。结论密骨胶囊能够明显降低血清中的Ⅰ型胶原C末端肽和血清抗酒石酸酸性磷酸酶的水平,阻止骨量丢失,抑制过高的骨转换,使骨的代谢达到新的平衡,提高骨质量,具有明显的抑制骨吸收的作用。  相似文献   

4.
We previously reported that osteoclast formation in vitro, by coculture of mouse bone marrow and primary osteoblastic cells, occurs in two phases: proliferation of osteoclast progenitors followed by terminal differentiation into mature osteoclasts. Using this coculture system, we examined the effects of c-fos antisense and sense phosphorothioate oligonucleotides on osteoclast development and macrophage differentiation. Treatment with c-fos antisense for the first 4 days of coculture inhibited osteoclast formation in a dosedependent fashion. However, when c fos antisense was added during the second phase of coculture (4–6 days), osteoclast formation was unaffected. In contrast, c-fos antisense treatment had no effect on the appearance of F4/80 antigen-positive cells of the macrophage lineage in these cultures or on the induction by colony stimulating factor-1 of macrophage colony formation in cultures of mouse bone marrow cells in agar. Neither osteoclast differentiation nor macrophage appearance was inhibited by adding control c-fos sense in the cocultures. When c-fos antisense was added into an assay of bone resorption by mature osteoclasts, pit formation on dentine slices was unaffected. These results indicate that c-fos plays an important role in the proliferative phase of osteoclast progenitors in osteoclast development, but not in the terminal differentiation phase or in the bone resorbing activity of mature osteoclasts. c-fos antisense specifically inhibited osteoclast formation but had no effect on macrophage development.  相似文献   

5.
Summary We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of aged bones. Introduction Osteoclasts resorb aging bone in order to repair damage and maintain the quality of bone. The mechanism behind the targeting of aged bone for remodeling is not clear. We investigated whether bones endogenously possess the ability to control osteoclastic resorption. Methods To biochemically distinguish aged and young bones; we measured the ratio between the age-isomerized βCTX fragment and the non-isomerized αCTX fragment. By measurement of TRACP activity, CTX release, number of TRACP positive cells and pit area/pit number, we evaluated osteoclastogenesis as well as osteoclast resorption on aged and young bones. Results We found that the αCTX / βCTX ratio is 3:1 in young compared to aged bones, and we found that both α and βCTX are released by osteoclasts during resorption. Osteoclastogenesis was augmented on aged compared to young bones, and the difference was enhanced under low serum conditions. We found that mature osteoclasts resorb more on aged than on young bone, despite unchanged adhesion and morphology. Conclusions These data indicate that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones. Kim Henriksen and Diana J. Leeming contributed equally. Financial disclosure: Morten A. Karsdal, Per Qvist and Claus Christiansen own stock options in Nordic Bioscience A/S  相似文献   

6.
Tartrate-resistant acid phosphatase (TRACP) is produced by macrophages and other cells of the monohistiocytic lineage. In particular, osteoclasts are characterized for a high expression of this enzyme. Yet, several data suggest that other bone cell types, such as osteocytes and osteoblasts, may also express activity of this enzyme. This is particularly obvious at sites were osteoclasts resorb bone, suggesting that osteoclasts (or their precursors) somehow induce TRACP activity in osteoblasts. In the present study, we investigated this by culturing human osteoblast-like cells with and without conditioned medium (MCM) from human blood monocytes (as a source of osteoclast precursors). High levels of TRACP activity were found in osteoblast-like cells cultured with MCM. Depletion of TRACP from this medium resulted in the absence of its activity in osteoblast-like cells, thus suggesting that the TRACP activity in these cells was the result of endocytosed TRACP that was released by the monocytes in the MCM. Osteoblast-like cells cultured in control (non-conditioned) medium contained very low levels of TRACP-like activity. However, the cells expressed TRACP mRNA and incubation of extracts of these cells with active cathepsin B did induce activity of a TRACP-like enzyme. Inhibition of the activity of cysteine proteinases in general and of cathepsin B in particular, completely blocked TRACP activity of the osteoblast-like cells. This TRACP-like enzyme but not the alleged endocytosed fraction of TRACP was inhibited by fluoride, suggesting that the fractions may be different isoenzymes.

Our data seem to indicate that osteoblast-like cells may contain two different fractions of TRACP, one that is released by monocytes and subsequently endocytosed by osteoblast-like cells and a second endogenous fraction that is present in an inactive proform. We hypothesize that the capacity of osteoblast-like cells to endocytose TRACP is important for the removal of this enzyme during or following the bone resorptive activity of the osteoclast.  相似文献   


7.
The coordination of cell cycle progression and osteoclast differentiation by RANKL signaling was studied. Experiments with mouse genetic models revealed that RANKL promoted cell cycle withdrawal of osteoclast precursors dependent on the cyclin kinase inhibitor p27-KIP1, but that both p27-KIP1 and p21-CIP1 were required for osteoclast differentiation. These cyclin inhibitors may directly regulate osteoclast differentiation in addition to regulating cell cycle withdrawal. INTRODUCTION: RANKL stimulates mononuclear precursor cells of the myeloid lineage to differentiate into multinuclear osteoclasts, thus providing a system to study the fundamental problem of coordination of cell cycle progression with cell differentiation. MATERIALS AND METHODS: Mice that lack expression of functional cyclin inhibitors p27KIP1and p21CIP1 were used to study cell cycle progression and differentiation of osteoclast precursors in vitro and in vivo. RESULTS AND CONCLUSIONS: Experiments with cells derived from p27KIP1- and p21CIP1-deficient mice indicated that p27KIP1 function alone was necessary for RANKL-mediated cell cycle withdrawal by osteoclast precursors, but osteoclasts from mice with single mutations in either of these two genes differentiated normally. In contrast, p21/p27 double knockout mice developed osteopetrosis, with fewer osteoclasts that exhibited lower TRACP activity and abnormal cell morphology present in long bone. Moreover, isolated osteoclast progenitors from p21/p27 double knockout mice were defective in RANKL-mediated differentiation in vitro, expressing low levels of osteoclast-specific genes like TRACP and cathepsin K. Taken together, these data suggest p27KIP1 and p21CIP1 play roles in osteoclast differentiation in response to RANKL signaling distinct from their roles in promoting cell cycle withdrawal.  相似文献   

8.
Numerous experimental and clinical observations suggest that overall changes in bone resorption during menopause or treatment with hormone replacement therapy (HRT) are combined effects of changes in osteoclast number and function. Moreover, due to a coupling between osteoclastic bone resorption and osteoblastic bone formation, pronounced alteration of osteoclast number will eventually lead to alteration of osteoblastic bone formation. Fragments of type I collagen, such as the C- and N-terminal telopeptides of collagen type I (CTX and NTX, respectively), are generated during bone resorption and hence can be used as surrogate markers of osteoclast function. Circulating levels of different enzymes in the serum, such as TRAP 5b and cathepsin K are proportional to the number of osteoclasts, and hence can be used as surrogate markers of osteoclast number. Since antiresorptive effects can be obtained in different ways, we felt it was timely to discuss the different scenarios, highlight differences specific to different pharmacological interventions with different mechanisms of action, and discuss how these bone markers can assist us in a deeper analysis of the pharmacodynamics and safety profile of existing and upcoming drug candidates.  相似文献   

9.
Bone resorption is solely mediated by osteoclasts. Therefore, a pure osteoclast population is of high interest for the investigation of biological aspects of the osteoclasts, such as the direct effect of growth factors and hormones, as well as for testing and characterizing inhibitors of bone resorption. We have established a pure, stable, and reproducible system for purification of human osteoclasts from peripheral blood. We isolated CD14-positive (CD14+) monocytes using anti-CD14-coated beads. After isolation, the monocytes are differentiated into mature osteoclasts by stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). Osteoclast formation was only observed in the CD14+ population, not in the CD14− population, and only in the presence of both M-CSF and RANKL, confirming that the CD14+ system is a pure population of osteoclast precursors. No expression of osteoclast markers was observed in the absence of RANKL, whereas RANKL dose-dependently induced the expression of cathepsin K, tartrate-resistant acid phosphatase (TRACP), and matrix metallo proteinase (MMP)-9. Furthermore, morphological characterization of the cells demonstrated that actin rings were only formed in the presence of RANKL. Moreover, the osteoclasts were capable of forming acidic resorption lacunae, and inhibitors of lysosomal acidification attenuated this process. Finally, we measured the response to known bone resorption inhibitors, and found that the osteoclasts were sensitive to these and thereby provided a robust and valid method for interpretation of the effect of antiresorptive compounds. In conclusion, we have established a robust assay for developing osteoclasts that can be used to study several biological aspects of the osteoclasts and which in combination with the resorption marker CTX-I provides a useful tool for evaluating osteoclast function in vitro.  相似文献   

10.
Previous reports indicate that mice deficient for cathepsin K (Ctsk), a key protease in osteoclastic bone resorption, develop osteopetrosis due to their inability to properly degrade organic bone matrix. Some features of the phenotype of Ctsk knockout mice, however, suggest the presence of mechanisms by which Ctsk-deficient mice compensate for the lack of cathepsin K. To study these mechanisms in detail, we generated Ctsk-deficient (Ctsk-/-) mice and analyzed them at the age of 2, 7, and 12 months using peripheral quantitative computed tomography, histomorphometry, resorption marker measurements, osteoclast and osteoblast differentiation cultures, and gene expression analyses. The present study verified the previously published osteopetrotic features of Ctsk-deficient mice. However, these changes did not exacerbate during aging indicating the absence of Ctsk to have its most severe effects during the rapid growth period. Resorption markers ICTP and CTX were decreased in the media of Ctsk-/- osteoclasts cultured on bone slices indicating impaired bone resorption. Ctsk-/- mice exhibited several mechanisms attempting to compensate for Ctsk deficiency. The number of osteoclasts in trabecular bone was significantly increased in Ctsk-/- mice compared to controls, as was the number of osteoclast precursors in bone marrow. The mRNA levels for receptor activator of nuclear factor (kappa)B ligand (RANKL) in Ctsk-/- bones were increased resulting in increased RANKL/OPG ratio favoring osteoclastogenesis. In addition, expression of mRNAs of osteoclastic enzymes (MMP-9, TRACP) and for osteoblastic proteases (MMP-13, MMP-14) were increased in Ctsk-/- mice compared to controls. Impaired osteoclastic bone resorption in Ctsk-/- mice results in activation of osteoblastic cells to produce increased amounts of other proteolytic enzymes and RANKL in vivo. We suggest that increased RANKL expression mediates enhanced osteoclastogenesis and increased protease expression by osteoclasts. These observations underline the important role of osteoblastic cells in regulation of osteoclast activity and bone turnover.  相似文献   

11.
Summary Little is known about the relationship between the age of the skeleton and the development of multinucleated bone-resorbing cells, osteoclasts. It has been shown that mineralized bone implanted onto the chick chorioallantoic membrane (CAM) is effective in the recruitment and differentiation of osteoclast precursors. In studies reported here we used the CAM system to examine the influence of bone matrix age on osteoclast formation. Devitalized mineralized bone particles (75–250 μm) were prepared from rats of various ages (2, 4, 9, 12, and 16 months). The particles were implanted onto the chick chorioallantoic membrane and 8 days later implants were harvested and processed for morphometric or immunohistochemical analysis. Osteoclast number, cell area, nucleocytoplasmic ratio, and the presence of a distinctive osteoclast antigen, defined by the 121F monoclonal antibody, were determined. Bone particles of each age group resulted in the formation of osteoclast-like giant cells. Compared with multinucleated cells that formed in response to bone particles obtained from 2-month-old rats, matrix from the oldest age group (16 months) elicited significantly fewer and smaller cells which contained a smaller number of nuclei. These data suggest that with aging, bone undergoes qualitative and/or quantitative changes that affect the recruitment and differentiation of osteoclast precursor cells.  相似文献   

12.
T. Kamijou  T. Nakajima  H. Ozawa 《BONE》1994,15(6):629-637
In order to clarify the influence of cell death of osteocytes on osteoinduction after bone grafting, autogenous fresh ribs, bone-marrow-removed fresh ribs, and frozen devitalized ribs were grafted after removal of the periosteum in a bridge manner in the rat mandible, and the process of bone remodeling was studied histologically, histochemically, and ultrastructurally in the central portion of the grafts. In the fresh bone group, osteocytes maintained normal morphology and grafted bones were undergoing resorption by osteoclasts with ruffled borders and strong tartrate-resistant acid phosphatase (TRACP) activity on the fifth day (Day 5). Alkalinephosphatase (ALP)-positive osteoblast-like cells were observed in close proximity of the osteoclasts. On Days 7 to 9, new bone formation occasionally accompanied by newly formed cartilage was observed in the grafted bones, and by Day 14, the majority of the grafted bones had been replaced by newly formed bone. In the marrow-removed fresh bone group, bone resorption by TRACP-positive cells and new bone formation similar to those seen in the fresh bone group were observed on Day 10, In the frozen devitalized bone group in which osteocytes had undergone necrosis, bone resorption and new bone formation were not observed even on Day 84, and grafted bones became surrounded by fibrous tissues. The TRACP activity was very weak and no ruffled border was observed ultrastructurally in multinucleated giant cells seen on Day 14. In conclusion, immediate bone resorption by osteocytes is essential for osteoinduction in the bone graft, and living osteocytes in the graft play an important roll in the differentiation and activation of osteocytes.  相似文献   

13.
Malignant infantile osteopetrosis (MIOP) is a disease characterized by failure in bone resorption, leading to dense fragile bones with a severely reduced bone marrow cavity. Normal or increased numbers of osteoclasts are present in the common variant of this disease; in such cases, the defect is likely to be inherent to the mature osteoclast and can be cured by bone marrow transplantation. However, MIOP also results from failure of osteoclast formation (osteoclast-poor MIOP). We report on two infants diagnosed with osteoclast-poor MIOP and utilize modern cell culture techniques to investigate the pathogenesis of disease. Peripheral blood mononuclear cells (PBMNCs) from these children were cultured in the presence of recombinant macrophage colony-stimulating factor and receptor activator NF-kappaB ligand for up to 3 weeks. Control cultures included PBMNCs from age-matched children, one of whom had an osteoclast-rich form of MIOP. Formation of osteoclasts (cells coexpressing vitronectin receptor and F-actin rings) occurred in all the control cultures. Significant bone resorption occurred in cultures from PBMNCs of the healthy individuals, whereas almost no bone resorption occurred in the osteoclast-rich MIOP cultures. In contrast, PBMNC cultures from the osteoclast-poor MIOP child formed only very occasional small F-actin ring-positive osteoclasts, which coexpressed vitronectin receptor and cathepsin K, and extremely rare foci of resorption. Because neither macrophage colony-stimulating factor nor receptor activator NF-kappaB ligand rescued the defect in osteoclast differentiation in the two cases of osteoclast-poor MIOP in vitro, there would be little benefit in treating these children with either of these recombinant proteins. Finally, these results demonstrate that this experimental culture model replicates the human osteopetrosis phenotype observed in vivo and should prove useful in analyzing the pathogenesis of the various forms of MIOP.  相似文献   

14.
Serotonin regulates osteoclast differentiation through its transporter.   总被引:6,自引:0,他引:6  
5-HTT mediates antidepressant-sensitive clearance of 5-HT after its release into neural synapses. We found increased expression of 5-HTT in RANKL-induced osteoclast-like cells. Fluoxetine, an inhibitor of 5-HTT, reduced osteoclast differentiation but not activation. Reserpine, an inhibitor of 5-HT intracellular transport, potentiated differentiation. These results indicate a role for 5-HTT in osteoclast function and suggest that commonly used antidepressive agents may affect bone mass. INTRODUCTION: Interactions between the serotonergic and skeletal systems are suggested by various clinical observations but are poorly understood. MATERIALS AND METHODS: Using gene microarrays, we found that the serotonin transporter (5-HTT) was strongly expressed in RANKL-induced osteoclasts. Using RANKL stimulation of RAW264.7 cells and mouse bone marrow cells as a model system for osteoclast differentiation, we studied the possible role/s of the different components of the serotonin (5-HT) system on the differentiation process. RESULTS: Osteoclast 5-HTT exhibited typical 5-HT uptake activity that was inhibitable by fluoxetine (Prozac). Fluoxetine reduced osteoclast differentiation but did not inhibit the activation of preformed osteoclasts, whereas the addition of 5-HT itself enhanced differentiation. Fluoxetine-treated osteoclast precursors had reduced NF-kappa B activation and elevated inhibitory protein kappa B alpha (I kappa B alpha) levels compared with untreated cells. 5-HT, on the other hand, resulted in activation of NF-kappa B. Reserpine inhibition of intracellular transport of 5-HT into cytoplasmic vesicles potentiated RANKL-induced osteoclast formation, suggesting the importance of intracellular 5-HT in regulating osteoclast differentiation. Reserpine also modestly enhanced the expression of the osteoclast marker TRACP in the absence of RANKL. CONCLUSIONS: Taken together, these data suggest that the 5-HT system plays an important role in bone homeostasis through effects on osteoclast differentiation and implies that commonly used antidepressive agents may affect bone mass.  相似文献   

15.
Platelet‐rich plasma is used to accelerate bone repair for the release of osteogenic growth factors from activated platelets. To date, the effects on osteoclasts have been only scarcely investigated, even though these cells are crucial for bone remodeling. The aim of this research was the evaluation of the effects of thrombin‐activated platelets (PRP) on osteoclastogenesis from human blood precursors. We evaluated both the ability to influence osteoclast differentiation induced by the receptor activator of nuclear factor‐kappaB ligand (RANKL), and the ability to induce osteoclast differentiation without RANKL. In both assays, the incubation with PRP supernatant at 10% did not significantly affect the formation of tartrate‐resistant acid phosphatase (TRACP)‐positive multinucleated cells that were able to form the F‐actin ring. However, when PRP at 25 and 50% was added to the medium without RANKL, the generation of TRACP‐positive multinucleated cells was inhibited. PRP, even at 10%, reduced the osteoclast‐mediated bone collagen degradation, suggesting inhibition of osteoclast activation. Similarly, after incubation with PRP supernatant, calcitonin receptor mRNA was lower than the untreated samples. In conclusion, PRP at 10% interfered with the complete differentiation process of human osteoclast precursors. At higher concentration it impaired osteoclast formation also at an early stage of differentiation. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:792–797, 2010  相似文献   

16.
Drug repositioning is a rational approach for expanding the use of existing drugs or candidate drugs to treat additional disorders. Here we investigated the possibility of using the anticancer p21‐activated kinase 4 (PAK4)‐targeted inhibitor PF‐3758309 to treat osteoclast‐mediated disorders. PAK4 was highly expressed in bone marrow cells and was phosphorylated during their differentiation into osteoclasts, and osteoclast differentiation was significantly inhibited by the dominant negative form of PAK4 and by PF‐3758309. Specifically, PF‐3758309 significantly inhibited the fusion of preosteoclasts, the podosome formation, and the migration of preosteoclasts. PF‐3758309 also had in vivo antiresorptive activity in a lipopolysaccharide‐induced bone erosion model and in vitro antiosteoclastogenic activity in the differentiation of human bone marrow–derived cells and peripheral blood mononuclear cells into osteoclasts. These data demonstrate the relevance of PAK4 in osteoclast differentiation and the potential of PAK4 inhibitors for treating osteoclast‐related disorders. © 2015 American Society for Bone and Mineral Research © 2015 American Society for Bone and Mineral Research.  相似文献   

17.
18.
19.
Insulin-like growth factor binding protein-5 (IGFBP-5) stimulates osteoblast proliferation directly or indirectly through IGF-I action, but its effects on osteoclast formation and osteoclastic activity are unknown. We tested the effects of IGFBP-5 on osteoclastic activity and osteoclast formation. IGFBP-5 significantly stimulated pit formation by pre-existent osteoclasts in mouse bone cell cultures and its stimulatory effect was completely blocked by IGF-I antibody (Ab). However, IGFBP-5 did not affect the bone-resorbing activity of isolated rabbit osteoclasts. When IGFBP-5 was added to unfractionated bone cells after degeneration of pre-existent osteoclasts, IGFBP-5 (77 pM-7.7 nM) dose-dependently stimulated osteoclast-like cell formation, irrespective of the presence of IGF-I Ab. Moreover, osteoclast-like cells newly formed by IGFBP-5 from unfractionated bone cells possessed the ability to form pits on dentine slices. We next examined the direct effect of IGFBP-5 on osteoclast precursors in the absence of stromal cells, using hemopoietic blast cells derived from spleen cells. IGFBP-5 dose-dependently stimulated osteoclast-like cell formation from osteoclast precursors, irrespective of the presence of IGF-I Ab. Growth hormone (GH) as well as IGF-I significantly stimulated bone resorption by pre-existent osteoclasts in mouse bone cell cultures and these stimulatory effects were completely blocked by IGF-I Ab. GH as well as IGF-I stimulated osteoclast-like cell formation from unfractionated bone cells and this stimulatory effect of GH was significantly but partially blocked by IGF-I Ab. The direct stimulatory effect of GH on osteoclast-like cell formation from hemopoietic blast cells was not affected by IGF-I Ab. The present data indicate that IGFBP-5 stimulates bone resorption both by stimulation of osteoclast formation in an IGF-I-independent fashion and by IGF-I-dependent activation of mature osteoclasts, possibly via osteoblasts, in vitro.  相似文献   

20.
Giant cell tumor (GCT) of bone is a unique bone lesion that is characterized by an excessive number of multinucleated osteoclasts. GCT consists of neoplastic stromal cells, multinucleated osteoclasts and their precursors, thus serving as a naturally occurring human disease model for the study of osteoclastogenesis. It still remains unclear how stromal cells of GCT recruit osteoclast precursors. In the present study, we characterized the cellular components of GCT and confirmed the presence of CD14(+)-monocytes/CD68(+)-macrophages and CD34(+)-hematopoetic stem cells that express CXCR4, a specific receptor for SDF-1; SDF-1 gene expression and presence of SDF-1 protein were confirmed by real time RT-PCR, in situ hybridization, and immunohistochemistry in the GCT tissue and cultured cells. SDF-1 was present at 25-50 ng/ml in the conditioned media from the GCT cultures, which is in the range of physiological chemotactic concentration. Migration of osteoclast precursors was 2.5-fold higher in response to GCT conditioned media compared to the control media; and migration was inhibited by an average of 36% with anti-SDF-1 neutralizing antibody or competing recombinant SDF-1. These results suggest that SDF-1 is one of the significant chemoattractant factors involved in the recruitment of hematopoietic osteoclast precursor cells during tumor-induced osteoclastogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号