首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leading cause of morbidity and mortality in cystic fibrosis (CF) patients stems from repeated bacterial respiratory infections. Many bacterial species have been cultured from CF specimens and so are associated with lung disease. Despite this, much remains to be determined. In the present study, we characterized without prior cultivation the total bacterial community present in specimens taken from adult CF patients, extracting DNA directly from 14 bronchoscopy or sputum samples. Bacterial 16S ribosomal DNA (rRNA) gene PCR products were amplified from extracted nucleic acids, with analyses by terminal restriction fragment length polymorphism (T-RFLP), length heterogeneity PCR (LH-PCR), and sequencing of individual cloned PCR products to characterize these communities. Using the same loading of PCR products, 12 distinct T-RFLP profiles were identified that had between 3 and 32 T-RFLP bands. Nine distinct LH-PCR profiles were identified containing between one and four bands. T-RFLP bands were detected in certain samples at positions that corresponded to pathogens cultured from CF samples, e.g., Burkholderia cepacia and Haemophilus influenzae. In every sample studied, one T-RFLP band was identified that corresponded to that produced by Pseudomonas aeruginosa. A total of 103 16S rRNA gene clones were examined from five patients. P. aeruginosa was the most commonly identified species (59% of clones). Stenotrophomonas species were also common, with eight other (typically anaerobic) bacterial species identified within the remaining 17 clones. In conclusion, T-RFLP analysis coupled with 16S rRNA gene sequencing is a powerful means of analyzing the composition and diversity of the bacterial community in specimens sampled from CF patients.  相似文献   

2.
Pseudomonas aeruginosa is the major opportunistic bacterial pathogen in persons with cystic fibrosis (CF); pulmonary infection occurs in approximately 80% of adult CF patients. Much of CF patient management depends on accurate identification of P. aeruginosa from sputum culture. However, identification of this species may be problematic due to the marked phenotypic variability demonstrated by CF sputum isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA (rDNA) sequence data to design PCR assays intended to provide genus- or species-level identification. Both assays yielded DNA fragments of the predicted size. We tested 42 culture collection strains (including 14 P. aeruginosa strains and 28 strains representing 16 other closely related Pseudomonas species) and 43 strains that had been previously identified as belonging to 28 nonpseudomonal species also recovered from CF patient sputum. Based on these 85 strains, the specificity and sensitivity of both assays were 100%. To further assess the utility of the PCR assays, we tested 66 recent CF sputum isolates. The results indicated that preliminary phenotypic testing had misidentified several isolates. The 16S rDNA sequence was determined for 38 isolates, and in all cases it confirmed the results of the PCR assays. Thus, we have designed two PCR assays: one is specific for the genus Pseudomonas, while the other is specific for P. aeruginosa. Both assays show 100% sensitivity and specificity.  相似文献   

3.
Despite recent advances in therapy, lower airway infections remain the major cause of morbidity and mortality in cystic fibrosis (CF) patients. Bacterial colonisation of the lower airways in CF is limited to a few bacterial species, commonly Staphylococcus aureus, Pseudomonas aeruginosa and Haemophilus influenzae. Burkholderia cepacia colonisation is much rarer, but it has been thought to be associated with more advanced lung disease and increased mortality. A rapid characterisation of the bacterial flora in sputum of CF patients is of great importance for proper treatment. The aim of this study was to establish bacterial profiles and to identify pathogenic bacteria in respiratory specimens by means of molecular methods including temporal temperature gradient gel electrophoresis (TTGE) and DNA sequencing of PCR amplicons derived from 16S rDNA variable V3 and V6 regions. Sputa of 13 CF patients (7 males/6 females, age 19-59 years) collected at the Stockholm CF centre were analysed. TTGE revealed the presence of complex bacterial profiles in all samples. The V3 and V6 PCR amplicons were cloned and sequenced by real-time DNA Pyrosequencing. DNA from Staphylococcus aureus, Haemophilus influenzae, and Pseudomonas aeruginosa, respectively, was identified together with sequences from normal oral cavity flora. The results were in reasonable agreement with those obtained by conventional bacterial culture, considering that only known CF pathogens are included in routine reports. However, the methodology seems too elaborate to be introduced into daily routine  相似文献   

4.
Since nonfermenting, Gram negative bacilli recovered from patients with cystic fibrosis could be misidentified with phenotypic procedures, we used partial 16S ribosomal RNA gene (16S gene) sequencing to identify these "Pseudomonas-like" isolates. 473 isolates were recovered from 66 patients in 2003. Sequencing was used to identify 29 (from 24 patients) of the 473 isolates, showing unclear results with routine tests. PCR with specific primers was carried out to amplify a 995 bp fragment, which was then sequenced. The sequences were analyzed with GenBank database for species assignment. Phenotypic and genotypic results were concordant for 20/29 isolates (10 Pseudomonas aeruginosa, 5 Burkholderia cepacia, 3 Stenotrophomonas maltophilia, 2 Achromobacter xylosoxidans). However, 3 of the 5 B. cepacia isolates were then identified as Burkholderia multivorans with a PCR-RFLP procedure. Phenotypic misidentification was observed for 9/29 isolates: 4 A. xylosoxidans, 1 P. aeruginosa, 1 Bordetella petrii, 1 Bordetella bronchiseptica, 1 Ralstonia respiraculi and 1 Ralstonia mannitolilytica. Partial 16S gene sequencing improved the identification of "Pseudomonas-like" isolates from cystic fibrosis patients, but the accuracy to distinguish between genomovars of the B. cepacia complex was inadequate.  相似文献   

5.
PCR assays targeting rRNA genes were developed to identify species (genomovars) within the Burkholderia cepacia complex. Each assay was tested with 177 bacterial isolates that also underwent taxonomic analysis by whole-cell protein profile. These isolates were from clinical and environmental sources and included 107 B. cepacia complex strains, 23 Burkholderia gladioli strains, 20 Ralstonia pickettii strains, 10 Pseudomonas aeruginosa strains, 8 Stenotrophomonas maltophilia strains, and 9 isolates belonging to nine other species. The sensitivity and specificity of the 16S rRNA-based assay for Burkholderia multivorans (genomovar II) were 100 and 99%, respectively; for Burkholderia vietnamiensis (genomovar V), sensitivity and specificity were 87 and 92%, respectively. An assay based on 16S and 23S rRNA gene analysis of B. cepacia ATCC 25416 (genomovar I) was useful in identifying genomovars I, III, and IV as a group (sensitivity, 100%, and specificity, 99%). Another assay, designed to be specific at the genus level, identified all but one of the Burkholderia and Ralstonia isolates tested (sensitivity, 99%, and specificity, 96%). The combined use of these assays offers a significant improvement over previously published PCR assays for B. cepacia.  相似文献   

6.
We used partial 16S rRNA gene (16S DNA) sequencing for the prospective identification of nonfermenting Gram-negative bacilli recovered from patients attending our cystic fibrosis center (h?pital Necker-Enfants malades), which gave problematic results with conventional phenotypic tests. During 1999, we recovered 1093 isolates of nonfermenting Gram-negative bacilli from 702 sputum sampled from 148 patients. Forty-six of these isolates (27 patients) were not identified satisfactorily in routine laboratory tests. These isolates were identified by 16S DNA sequencing as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate) and Ralstonia mannitolilytica (3 isolates, 2 patients). Fifteen isolates (33%) were resistant to all antibiotics in routine testing. Sixteen isolates (39%) resistant to colistin were recovered on B. cepacia-selective medium: 2 P. aeruginosa, 3 A. xylosoxidans, 3 S. maltophilia and the 8 Burkholderia--Ralstonia isolates. The API 20NE system gave no identification for 35 isolates and misidentified 11 isolates (2 P. aeruginosa, 2 A. xylosoxidans and 1 S. maltophilia classified as B. cepacia ). Control measures and/or treatment were clearly improved as a result of 16S DNA sequencing in three of these cases. This study confirms the weakness of phenotypic methods for identification of atypical nonfermenting Gram-negative bacilli recovered from cystic fibrosis patients. The genotypic methods, such as 16S DNA sequencing which allows identification of strains in routine practice, appears to have a small, but significant impact on the clinical management of CF patients.  相似文献   

7.
Inhalation of aerosols contaminated with gram-negative bacteria generated from home-use nebulizers used by cystic fibrosis (CF) patients may be a primary route for bacterial colonization of the lung. Burkholderia cepacia was isolated from 3 of [corrected] 35 home-use nebulizers, and Stenotrophomonas maltophilia was isolated from 4 of 35 home-use nebulizers. Sputum cultures for two patients whose nebulizers were contaminated with B. cepacia did not yield the organism. However, DNA macrorestriction analysis by pulsed-field gel electrophoresis confirmed that one of two strains of B. cepacia recovered from the nebulizer of a third patient was also present in the sputum of that patient. Although Pseudomonas aeruginosa was isolated from 34 patients, none of the nebulizers were positive for the organism. Sixty-nine percent of nebulizers were contaminated, and up to 16 different environmental colistin-resistant, gram-negative species were identified. The heaviest contamination was found beneath the chamber atomizer. A questionnaire survey showed that the majority of patients (28 of 34) were receiving nebulized colistin and/or gentamicin. Patients who followed recommended instructions for good nebulizer hygienic practice and paid particular attention to drying had minimal or no contamination of their nebulizers.  相似文献   

8.
The recently described genus Pandoraea contains five named species (Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis) and four unnamed genomospecies. Pandoraea spp. have mainly been recovered from the respiratory tracts of cystic fibrosis (CF) patients. Accurate genus- and species-level identification by routine clinical microbiology methods is difficult, and differentiation from Burkholderia cepacia complex organisms may be especially problematic. This can have important consequences for the management of CF patients. On the basis of 16S ribosomal DNA sequences, PCR assays for the identification of Pandoraea spp. were developed. A first PCR assay was developed for the identification of Pandoraea isolates to the genus level. PCR assays for the identification of P. apista and P. pulmonicola as a group, P. pnomenusa, P. sputorum, and P. norimbergensis were also developed. All five assays were evaluated with a panel of 123 bacterial isolates that included 69 Pandoraea sp. strains, 24 B. cepacia complex strains, 6 Burkholderia gladioli strains, 9 Ralstonia sp. strains, 5 Alcaligenes xylosoxidans strains, 5 Stenotrophomonas maltophilia strains, and 5 Pseudomonas aeruginosa strains. The use of these PCR assays facilitates the identification of Pandoraea spp. and avoids the misidentification of a Pandoraea sp. as a B. cepacia complex isolate.  相似文献   

9.
This report describes a PCR primer pair that targets the algD GDP mannose gene of Pseudomonas aeruginosa and produces a specific 520-bp PCR product useful for P. aeruginosa identification. This PCR assay was tested with 182 isolates of P. aeruginosa and 20 isolates of other bacterial species, and demonstrated 100% specificity and sensitivity. The test was also able to detect P. aeruginosa directly in clinical samples such as sputum or throat swabs obtained from cystic fibrosis patients. The combination of this primer with a universal bacterial primer, acting as a control to assess DNA quality in the sample, resulted in a robust PCR method that can be used for rapid P. aeruginosa detection.  相似文献   

10.
Lung infections due to Burkholderia cepacia and Pseudomonas aeruginosa in patients with cystic fibrosis (CF) are common, are associated with respiratory morbidity and are a cause of mortality. Respiratory mucin in CF patients is highly sulphated, which increases its resistance to bacterial degradation. Desulphation increases the susceptibility of mucin to degradation by bacterial glycosidases and proteinases, and subsequent deglycosylation may facilitate bacterial colonisation by increasing available substrates and binding sites. This study determined whether clinical and environmental strains of B. cepacia and P. aeruginosa had the ability to desulphate mucin. Mucin-sulphatase activity was tested by incubating bacterial cell suspensions with 35S-sulphated mucins purified from LS174T and HT29-MTX human colon carcinoma cell lines. These mucins were also used to test for differences in substrate specificities. Mucin-sulphatase activity was detected in all nine B. cepacia strains and in four of six P. aeruginosa strains. There was strain variability in the level of mucin-sulphatase activity. Aryl-sulphatase activities of Pseudomonas isolates (determined with methylumbelliferyl sulphate) were c. 20-fold higher than those of B. cepacia strains, and were independent of mucin-sulphatase activity. This is the first report to demonstrate desulphation of mucin by B. cepacia and P. aeruginosa. It is concluded that B. cepacia and P. aeruginosa produce one or more cell-bound glycosulphatase(s), in addition to aryl-sulphatase activity. Mucin-sulphatase activity of B. cepacia and P. aeruginosa may contribute to their association with airway infections in patients with cystic fibrosis.  相似文献   

11.
Burkholderia gladioli colonizes the respiratory tracts of patients with cystic fibrosis and chronic granulomatous disease. However, due to the high degree of phenotypic similarity between this species and closely related species in the Burkholderia cepacia complex, accurate identification is difficult. Incorrect identification of these species may have serious repercussions for the management of patients with cystic fibrosis. To develop an accurate procedure for the identification of B. gladioli, a molecular method to discriminate between this species and other species commonly isolated from the sputa of patients with cystic fibrosis was investigated. The 23S ribosomal DNA was cloned from several clinical isolates of B. gladioli, and the nucleotide sequence was determined. Computer-assisted sequence comparisons indicated four regions of the 23S rRNA specific for this species; these regions were used to design three primer pairs for species-specific PCR. Two of the primer pairs showed 100% sensitivity and specificity for B. gladioli when tested against a panel of 47 isolates comprising 19 B. gladioli isolates and 28 isolates of 16 other bacterial species. One of the primer pairs was further assessed for species specificity by using a panel of 102 isolates obtained from the Burkholderia cepacia Research Laboratory and Repository. The species-specific PCR was positive for 70 of 74 isolates of B. gladioli and was negative for all other bacterial species examined. Overall, this primer pair displayed a sensitivity and specificity of 96% (89 of 93) and 100%, respectively. These data demonstrate the potential of species-specific PCR for the identification of B. gladioli.  相似文献   

12.
Traditional ribotyping detects genomic restriction fragment length polymorphisms by probing chromosomal DNA with rRNA. Although it is a powerful method for determining the molecular epidemiology of bacterial pathogens, technical difficulties limit its application. As an alternative, polymorphisms were sought in the 16S-23S spacer regions of bacterial rRNA genes by use of the polymerase chain reaction (PCR). Chromosomal DNA from isolates of Pseudomonas cepacia was used as a template in the PCR with oligonucleotide primers complementary to highly conserved sequences flanking the spacer regions of the rRNA genes. Length polymorphisms in the amplified DNA distinguished unrelated isolates of P. cepacia. Isolates of P. cepacia previously implicated in person-to-person transmission were shown to have identical amplification patterns. These data demonstrate the utility of this new PCR ribotyping method for determining the molecular epidemiology of bacterial species.  相似文献   

13.
Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR amplification of the small-subunit rRNA gene followed by RFLP analysis with various enzymes is recommended.  相似文献   

14.
We used capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) analysis of PCR-amplified 16S rRNA gene fragments for rapid identification of Pseudomonas aeruginosa and other gram-negative nonfermenting bacilli isolated from patients with cystic fibrosis (CF). Target sequences were amplified by using forward and reverse primers labeled with various fluorescent dyes. The labeled PCR products were denatured by heating and separated by capillary gel electrophoresis with an automated DNA sequencer. Data were analyzed with GeneScan 672 software. This program made it possible to control lane-to-lane variability by standardizing the peak positions relative to internal DNA size markers. Thirty-four reference strains belonging to the genera Pseudomonas, Brevundimonas, Burkholderia, Comamonas, Ralstonia, Stenotrophomonas, and Alcaligenes were tested with primer sets spanning 16S rRNA gene regions with various degrees of polymorphism. The best results were obtained with the primer set P11P-P13P, which spans a moderately polymorphic region (Escherichia coli 16S rRNA positions 1173 to 1389 [M. N. Widjojoatmodjo, A. C. Fluit, and J. Verhoef, J. Clin. Microbiol. 32:3002-3007, 1994]). This primer set differentiated the main CF pathogens from closely related species but did not distinguish P. aeruginosa from Pseudomonas alcaligenes-Pseudomonas pseudoalcaligenes and Alcaligenes xylosoxidans from Alcaligenes denitrificans. Two hundred seven CF clinical isolates (153 of P. aeruginosa, 26 of Stenotrophomonas maltophilia, 15 of Burkholderia spp., and 13 of A. xylosoxidans) were tested with P11P-P13P. The CE-SSCP patterns obtained were identical to those for the corresponding reference strains. Fluorescence-based CE-SSCP analysis is simple to use, gives highly reproducible results, and makes it possible to analyze a large number of strains. This approach is suited for the rapid identification of the main gram-negative nonfermenting bacilli encountered in CF.  相似文献   

15.
During 1999, we used partial 16S rRNA gene sequencing for the prospective identification of atypical nonfermenting gram-negative bacilli isolated from patients attending our cystic fibrosis center. Of 1,093 isolates of nonfermenting gram-negative bacilli recovered from 148 patients, 46 (4.2%) gave problematic results with conventional phenotypic tests. These 46 isolates were genotypically identified as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate), and Ralstonia mannitolilytica (3 isolates, 2 patients), a recently recognized species.  相似文献   

16.
Ribotyping, a method of genotyping bacterial isolates for epidemiologic study, uses rRNA as a probe to detect chromosomal restriction fragment length polymorphisms. Although ribotyping is accurate, its utility is limited by the labor and time necessary for Southern blot analysis. PCR-ribotyping uses PCR to amplify the 16S-23S intergenic spacer region of the bacterial rRNA operon. Length heterogeneity in the spacer region has previously been found to be useful as an alternative to standard ribotyping in a study of Burkholderia (Pseudomonas) cepacia. To further analyze the accuracy of PCR-ribotyping, three groups of previously characterized isolates of B. cepacia were investigated. PCR-ribotyping grouped 90 isolates recovered from seven well-defined epidemics into the correct outbreak group with a mean concordance of 93%. Both standard ribotyping and PCR-ribotyping separated 15 unrelated isolates into 14 types. In an analysis of 83 B. cepacia isolates from chronically colonized cystic fibrosis patients, the concordance of PCR-ribotyping with standard ribotyping ranged from 83 to 100%, with a mean of 98%. One isolate from a chronically colonized patient had a different type by standard ribotyping but was identical to the other isolates from this patient by PCR-ribotyping. Thus, PCR-ribotyping is a rapid and accurate method for typing B. cepacia and is less labor intensive than standard ribotyping.  相似文献   

17.
Patients with cystic fibrosis (CF) have repeated bacterial infection of the airways, which can lead to chronic infection. There is evidence that disease severity is determined by the genetic mutations present. This study aims to establish if CF genotype is related to the frequency and types of airway bacterial infection. Adult patients attending the regional CF unit are followed for two years and assigned to one of three groups depending on whether they are chronically infected with Burkholderia cepacia complex (BCC) organisms, Pseudomonas aeruginosa, or neither of these organisms. Genotype analysis is performed on all patients to determine which of the cystic fibrosis transmembrane regulator (CFTR) gene mutations are present. The numbers and types of organism with the CFTR mutations isolated from sputum are identified. Data are available on 59 patients: 15 colonised with BCC, 24 colonised with P. aeruginosa, and 20 not colonised with either organism. Twenty patients were homozygous for deltaF508, 25 were heterozygous, and the deltaF508 mutation was not present in the remaining 14 patients. Patients homozygous or heterozygous for the deltaF508 mutation had an increased likelihood of colonisation with BCC or P. aeruginosa, an increased number of positive sputum cultures and a higher frequency of multiple infecting organisms. Cystic fibrosis mutational analysis identified seven patients who had the R117H mutation. These patients were less likely to be colonised with BCC or P. aeruginosa. In conclusion, patients homozygous or heterozygous for the deltaF508 deletion are more likely to suffer airway colonisation with BCC or P. aeruginosa, with increased numbers of positive sputum cultures and infecting organisms. Those with the R117H mutation are less likely to be colonised by Gram-negative organisms.  相似文献   

18.
AIMS: To evaluate three oligonucleotide primer pairs--two specific for 16S and 23S rRNA sequences of Burkholderia cepacia, and the third specific for internal transcribed spacer region of 16S-23S sequences of B gladioli--for the identification and differentiation of reference and clinical strains of these and other species. METHODS: The three primers sets were applied in polymerase chain reaction (PCR) to a collection of 177 clinical isolates submitted for identification from diagnostic laboratories as presumed B cepacia. RESULTS: At an annealing temperature of 63 degrees C, all eight B cepacia and four B gladioli reference strains reacted with their specific primers. B vandii was the only other species that was positive with both B cepacia primers but five Burkholderia or Ralstonia species reacted with one of these primers. Seventy eight isolates were typical of B cepacia in biochemical tests and 75 of these reacted with specific primers; three, however, were positive with the B gladioli primers. Fifteen asaccharolytic isolates were confirmed as B cepacia by PCR but other non-fermenting Gram negative species were negative with each of the primers. CONCLUSIONS: PCR using 16S rRNA sequences is recommended for identification of B cepacia that give atypical results in biochemical tests.  相似文献   

19.
Cystic fibrosis is the most common autosomal recessive disorder in western countries. The disease is characterized by recurrent and chronic infections of the lung in particular with Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia, and Haemophilus influenzae. Albeit intensive research in the last years, the molecular mechanisms causing the high susceptibility of cystic fibrosis patients to bacterial infections are still unknown. Animal models provided important novel information on the pathophysiology of cystic fibrosis and mimicked many of the pathological findings in humans, for instance chronic inflammation and increased infection susceptibility. These animal models were recently employed to identify several proteins and lipids that are critically involved in the pathophysiology of cystic fibrosis. Thus, several studies identified death receptors, caveolin proteins, membrane rafts, and alterations of the ceramide metabolism with an accumulation of ceramide in cystic fibrosis lungs to be critically involved in the infection susceptibility, the chronic inflammation, and the reduced mucociliary clearance in cystic fibrosis.  相似文献   

20.
We report on the rapid and specific detection of bacteria commonly isolated from clinical specimens from cystic fibrosis (CF) patients by fluorescent in situ hybridization (FISH). On the basis of comparative sequence analysis, we designed oligonucleotide probes complementary to species-specific 16S rRNA regions of these microorganisms and demonstrated the specificities of the probes by hybridization of different remotely related as well as closely related reference strains. Furthermore, in a pilot project we investigated 75 sputum samples and 10 throat swab specimens from CF patients by FISH and detected Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, Haemophilus influenzae, and Staphylococcus aureus within these specimens. The specificity of FISH was 100% in comparison to the results of conventional microbial culture. In contrast, the sensitivity of standard laboratory cultivation was moderately higher, since the limit for microscopic detection of bacteria within sputum samples by FISH was approximately 4 x 10(5) CFU/ml of sputum (resulting in a 90% sensitivity for FISH). Moreover, we demonstrated that FISH will be useful for the rapid detection of bacteria that cause acute pulmonary exacerbations in CF patients, as demonstrated in patients with H. influenzae, S. aureus, and P. aeruginosa exacerbations. Therefore, FISH is a valuable additional method for the rapid and specific detection of bacteria in clinical samples from CF patients, in particular, patients with pulmonary exacerbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号