首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Adenosine has an important role in inflammation and tissue remodeling and promotes dermal fibrosis by adenosine receptor (A2AR) activation. Adenosine may be formed intracellularly from adenine nucleotides or extracellularly through sequential phosphohydrolysis of released ATP by nucleoside triphosphate diphosphohydrolase (CD39) and ecto-5′-nucleotidase (CD73). Because the role of these ecto-enzymes in fibrosis appears to be tissue specific, we determined whether these ectonucleotidases were directly involved in diffuse dermal fibrosis. Wild-type and mice globally deficient in CD39 knockout (CD39KO), CD73 (CD73KO), or both (CD39/CD73DKO) were challenged with bleomycin. Extracellular adenosine levels and dermal fibrosis were quantitated. Adenosine release from skin cultured ex vivo was increased in wild-type mice after bleomycin treatment but remained low in skin from CD39KO, CD73KO, or CD39/CD73DKO bleomycin-treated mice. Deletion of CD39 and/or CD73 decreased the collagen content, and prevented skin thickening and tensile strength increase after bleomycin challenge. Decreased dermal fibrotic features were associated with reduced expression of the profibrotic mediators, transforming growth factor-β1 and connective tissue growth factor, and diminished myofibroblast population in CD39- and/or CD73-deficient mice. Our work supports the hypothesis that extracellular adenosine, generated in tandem by ecto-enzymes CD39 and CD73, promotes dermal fibrogenesis. We suggest that biochemical or biological inhibitors of CD39 and/or CD73 may hold promise in the treatment of dermal fibrosis in diseases such as scleroderma.Tissue damage leads to the release of the signaling nucleoside adenosine, which, by engaging specific adenosine receptors (A1R, A2AR, A2BR, and A3R), exhibits both tissue-protective and tissue-destructive effects.1, 2, 3, 4 In particular, adenosine is a potent regulator of tissue repair, and we have previously reported that adenosine promotes dermal fibrosis via the A2AR receptor, as shown in vitro,5 in a bleomycin-induced dermal injury model of scleroderma,6 and in a model of elevated tissue adenosine.7 Similarly, we found that pharmacological blockade of A2AR diminishes skin scarring.8Elevations in extracellular adenosine can result from either an increase in intracellular adenosine, followed by release into the extracellular space, or the release of adenine nucleotides, followed by their extracellular catabolism into adenosine.9 The main source of extracellular adenosine stems from the enzymatic phosphohydrolysis of precursor nucleotides to adenosine.10, 11, 12, 13 This is achieved by a two-step enzymatic process involving the ecto-apyrase, CD39 (conversion of ATP/ADP to AMP) and the ecto-5′-nucleotidase, CD73 (conversion of AMP to adenosine).14 It is widely accepted that CD39 and CD73 promote anti-inflammatory effects of adenosine in the immune system,15, 16, 17 and both enzymes have been previously shown to attenuate acute injury and inflammation in models of ambient hypoxia,18, 19 cyclic mechanical stretch,20 and bleomycin-induced lung injury.2 However, CD39 and CD73 promote fibrosis in murine models of pancreatitis21 and hepatic fibrosis,22 respectively, suggesting an important role for CD39 and CD73 in the regulation of fibrogenesis in vivo.We hypothesized that limiting extracellular adenosine levels by CD39 and/or CD73 gene deletion may protect against bleomycin-induced dermal fibrosis, a model of scleroderma. CD39-deficient, CD73-deficient, and CD39/73 double-deficient mice were subjected to bleomycin-induced skin injury, and the extent of skin fibrosis was compared with the wild-type (WT) mice. Our results show that, after bleomycin injection, mice globally null for CD39 and/or CD79 released lower levels of adenosine and concurrently developed less dermal fibrosis, indicating that adenosine generation by CD39 and CD73 is highly likely to be a critical regulator of fibrogenesis in skin.  相似文献   

5.
6.
7.
Humans cannot synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) because of an inactivating deletion in the cytidine-5''-monophospho-(CMP)–N-acetylneuraminic acid hydroxylase (CMAH) gene responsible for its synthesis. Human Neu5Gc deficiency can lead to development of anti-Neu5Gc serum antibodies, the levels of which can be affected by Neu5Gc-containing diets and by disease. Metabolic incorporation of dietary Neu5Gc into human tissues in the face of circulating antibodies against Neu5Gc-bearing glycans is thought to exacerbate inflammation-driven diseases like cancer and atherosclerosis. Probing of sera with sialoglycan arrays indicated that patients with Duchenne muscular dystrophy (DMD) had a threefold increase in overall anti-Neu5Gc antibody titer compared with age-matched controls. These antibodies recognized a broad spectrum of Neu5Gc-containing glycans. Human-like inactivation of the Cmah gene in mice is known to modulate severity in a variety of mouse models of human disease, including the X chromosome–linked muscular dystrophy (mdx) model for DMD. Cmah−/−mdx mice can be induced to develop anti–Neu5Gc-glycan antibodies as humans do. The presence of anti-Neu5Gc antibodies, in concert with induced Neu5Gc expression, correlated with increased severity of disease pathology in Cmah−/−mdx mice, including increased muscle fibrosis, expression of inflammatory markers in the heart, and decreased survival. These studies suggest that patients with DMD who harbor anti-Neu5Gc serum antibodies might exacerbate disease severity when they ingest Neu5Gc-rich foods, like red meats.

Sialic acids (Sias) are negatively charged monosaccharides commonly found on the outer ends of glycan chains on glycoproteins and glycolipids in mammalian cells.1 Although Sias are necessary for mammalian embryonic development,1,2 they also have much structural diversity, with N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) comprising the two most abundant Sia forms in most mammalian tissues. Neu5Gc differs from Neu5Ac by having an additional oxygen at the 5-N-acyl position.3 Neu5Gc synthesis requires the cytidine-5''-monophospho (CMP)-Neu5Ac hydroxylase gene, or CMAH, which encodes a hydroxylase that converts CMP-Neu5Ac to CMP-Neu5Gc.4,5 CMP-Neu5Ac and CMP-Neu5Gc can be utilized by the >20 sialyltransferases to attach Neu5Ac or Neu5Gc, respectively, onto glycoproteins and glycolipids.1,3Humans cannot synthesize Neu5Gc, because of an inactivating deletion in the human CMAH gene that occurred approximately 2 to 3 million years ago.6 This event fundamentally changed the biochemical nature of all human cell membranes, eliminating millions of oxygen atoms on Sias on the glycocalyx of almost every cell type in the body, which instead present as an excess of Neu5Ac. Consistent with the proposed timing of this mutation at around the emergence of the Homo lineage, mice with a human-like inactivation of CMAH have an enhanced ability for sustained aerobic exercise,7 which may have provided an evolutionary advantage. In this regard, it is also interesting that the mild phenotype of X chromosome–linked muscular dystrophy (mdx) mice with a dystrophin mutation that causes Duchenne muscular dystrophy (DMD) in humans is exacerbated and becomes more human-like on mating into a human-like CMAH null state.8Inactivation of CMAH in humans also fundamentally changed the immunologic profile of humans. Almost all humans consume Neu5Gc from dietary sources (particularly the red meats beef, pork, and lamb), which can be taken up by cells through a salvage pathway, sometimes allowing for Neu5Gc expression on human cell surfaces.9, 10, 11, 12, 13 Meanwhile, most humans have some level of anti–Neu5Gc-glycan antibodies, defining Neu5Gc-bearing glycans as xeno-autoantigens recognized by the immune system.13, 14, 15, 16 Humans develop antibodies to Neu5Gc not long after weaning, likely triggered by Neu5Gc incorporation into lipo-oligosaccharides of commensal bacteria in the human upper airways.13 The combination of xeno-autoantigens and such xeno-autoantibodies generates xenosialitis, a process that has been shown to accelerate progression of cancer and atherosclerosis in mice with a human-like CMAH deletion in the mouse Cmah gene.17,18 Inactivation of mouse Cmah also leads to priming of macrophages and monocytes19 and enhanced reactivity20 that can hyperactivate immune responses. Cmah deletion in mice also causes hearing loss via increased oxidative stress,21,22 diabetes in obese mice,23 relative infertility,24 delayed wound healing,21 mitochondrial dysfunction,22 changed metabolic state,25 and decreased muscle fatigability.7Given that Cmah deletion can hyperactivate cellular immune responses, it is perhaps not surprising that the crossing of Cmah deletion in mouse models of various human diseases, to humanize their sialic acid repertoire, can alter pathogenic disease states and disease outcomes. This is true of cancer burden from transplantation of cancer cells into mice,17 infectious burden of induced bacterial infections in mice,13,18,19 and muscle disease burden in response to Cmah deletion in the mdx model of Duchenne muscular dystrophy8 and the α sarcoglycan (Sgca) deletion model of limb girdle muscular dystrophy 2D.26 The mdx mice possess a mutation in the dystrophin (Dmd) gene that prevents dystrophin protein expression in almost all muscle cells,27 making it a good genetic model for DMD, which also arises from lack of dystrophin protein expression.28,29 These mdx mice, however, do not display the severe onset of muscle weakness and overall disease severity found in children with DMD, suggesting that additional genetic modifiers are at play to lessen mouse disease severity, some of which have been described.30, 31, 32, 33, 34, 35, 36 Cmah deletion worsens muscle inflammation, in particular recruitment of macrophages to muscle with concomitant increases in cytokines known to recruit them, increases complement deposition, increases muscle wasting, and premature death in a fraction of affected mdx mice.8 Cmah-deficient mdx mice have changed cardiac function.37 Prior studies8 show that about half of all mice display induced antibodies to Neu5Gc, which correlates well with the number of animals showing premature death in the 6- to 12-month period. Unpublished subsequent studies suggest that Cmah−/−mdx mice that lack xeno-autoimmunity often have less severe disease, which likely causes selection for more efficient breeders lacking Neu5Gc immunity over time. Current studies were designed to re-introduce Neu5Gc xeno-autoimmunity into serum-naive Cmah−/−mdx mice and describe the impact of xenosialitis on disease pathogenesis.  相似文献   

8.
Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response.Remodeling of blood vessels and lymphatics contributes to the pathophysiology of many chronic inflammatory diseases, including asthma, chronic bronchitis, chronic obstructive pulmonary disease, inflammatory bowel disease, and psoriasis.1, 2, 3 When inflammation is sustained, capillaries acquire venule-like properties that expand the sites of plasma leakage and leukocyte influx. Consistent with this transformation, the remodeled blood vessels express P-selectin, intercellular adhesion molecule 1 (ICAM-1), EphB4, and other venular markers.4, 5, 6 The changes are accompanied by remodeling of pericytes and disruption of pericyte-endothelial crosstalk involved in blood vessel quiescence.7 Remodeling of blood vessels is accompanied by plasma leakage, inflammatory cell influx, and sprouting lymphangiogenesis.6, 8, 9Mycoplasma pulmonis infection causes sustained inflammation of the respiratory tract of rodents.10 This infection has proved useful for dissecting the features and mechanisms of vascular remodeling and lymphangiogenesis.6, 9, 10 At 7 days after infection, there is widespread conversion of capillaries into venules, pericyte remodeling, inflammatory cell influx, and lymphatic vessel sprouting in the airways and lung.4, 5, 6, 7, 8, 9 Many features of chronic M. pulmonis infection in mice are similar to Mycoplasma pneumoniae infection in humans.11Angiopoietin-2 (Ang2) is a context-dependent antagonist of Tie2 receptors12, 13 that is important for prenatal and postnatal remodeling of blood vessels and lymphatic vessels.13, 14, 15 Ang2 promotes vascular remodeling,4, 5 lymphangiogenesis,15, 16, 17 and pericyte loss18 in disease models in mice. Mice genetically lacking Ang2 have less angiogenesis, lymphangiogenesis, and neutrophil recruitment in inflammatory bowel disease.3 Ang2 has proved useful as a plasma biomarker of endothelial cell activation in acute lung injury, sepsis, hypoxia, and cancer.19Like Ang2, tumor necrosis factor (TNF)-α is a mediator of remodeling of blood vessels and lymphatics.8, 9, 20, 21 TNF triggers many components of the inflammatory response, including up-regulation of expression of vascular cell adhesion molecule-1, ICAM-1, and other endothelial cell adhesion molecules.22 TNF inhibitors reduce inflammation in mouse models of inflammatory disease23, 24 and are used clinically in the treatment of rheumatoid arthritis, ankylosing spondylitis, Crohn''s disease, psoriatic arthritis, and some other inflammatory conditions.24, 25 Indicative of the complex role of TNF in disease, inhibition or deletion of TNF can increase the risk of serious infection by bacterial, mycobacterial, fungal, viral, and other opportunistic pathogens.26TNF and Ang2 interact in inflammatory responses. TNF increases Ang2 expression in endothelial cells in a time- and dose-dependent manner, both in blood vessels27 and lymphatics.16 Administration of TNF with Ang2 increases cell adhesion molecule expression more than TNF alone.16, 28 Similarly, Ang2 can promote corneal angiogenesis in the presence of TNF, but not alone.29 In mice that lack Ang2, TNF induces leukocyte rolling but not adherence to the endothelium.28 Ang2 also augments TNF production by macrophages.30, 31 Inhibition of Ang2 and TNF together with a bispecific antibody can ameliorate rheumatoid arthritis in a mouse model.32With this background, we sought to determine whether Ang2 and TNF act together to drive the remodeling of blood vessels and lymphatics in the initial inflammatory response to M. pulmonis infection. In particular, we asked whether Ang2 and TNF have synergistic actions in this setting. The approach was to compare the effects of selective inhibition of Ang2 or TNF, individually or together, and then assess the severity of vascular remodeling, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic sprouting. Functional consequences of genome-wide changes in gene expression were analyzed by Ingenuity Pathway Analysis (IPA)33, 34 and the Database for Annotation, Visualization and Integrated Discovery (DAVID).35 The studies revealed that inhibition of Ang2 and TNF together, but not individually, completely prevented the development of vascular remodeling and lymphatic sprouting and had synergistic effects in suppressing gene expression and cellular pathways activated during the initial stage of the inflammatory response.  相似文献   

9.
Although ethanol causes acute pancreatitis (AP) and lipolytic fatty acid (FA) generation worsens AP, the contribution of ethanol metabolites of FAs, ie, FA ethyl esters (FAEEs), to AP outcomes is unclear. Previously, pancreata of dying alcoholics and pancreatic necrosis in severe AP, respectively, showed high FAEEs and FAs, with oleic acid (OA) and its ethyl esters being the most abundant. We thus compared the toxicities of FAEEs and their parent FAs in severe AP. Pancreatic acini and peripheral blood mononuclear cells were exposed to FAs or FAEEs in vitro. The triglyceride of OA (i.e., glyceryl tri-oleate) or OAEE was injected into the pancreatic ducts of rats, and local and systemic severities were studied. Unsaturated FAs at equimolar concentrations to FAEEs induced a larger increase in cytosolic calcium, mitochondrial depolarization, and necro-apoptotic cell death. Glyceryl tri-oleate but not OAEE resulted in 70% mortality with increased serum OA, a severe inflammatory response, worse pancreatic necrosis, and multisystem organ failure. Our data show that FAs are more likely to worsen AP than FAEEs. Our observations correlate well with the high pancreatic FAEE concentrations in alcoholics without pancreatitis and high FA concentrations in pancreatic necrosis. Thus, conversion of FAs to FAEE may ameliorate AP in alcoholics.Although fat necrosis has been associated with severe cases of pancreatitis for more than a century,1, 2 and alcohol consumption is a well-known risk factor for acute pancreatitis (AP),3 only recently have we started understanding the mechanistic basis of these observations.4, 5, 6, 7 High amounts of unsaturated fatty acids (UFAs) have been noted in the pancreatic necrosis and sera of severe AP (SAP) patients by multiple groups.8, 9, 10, 11, 12 These high UFAs seem pathogenically relevant because several studies show UFAs can cause pancreatic acinar injury or can worsen AP.11, 12, 13, 14 Ethanol may play a role in AP by distinct mechanisms,3 including a worse inflammatory response to cholecystokinin,4 increased zymogen activation,15 basolateral enzyme release,16 sensitization to stress,7 FA ethyl esters (FAEEs),17 cytosolic calcium,18 and cell death.19Because the nonoxidative ethanol metabolite of fatty acids (FAs), FAEEs, were first noted to be elevated in the pancreata of dying alcoholics, they have been thought to play a role in AP.17, 19, 20, 21, 22 Conclusive proof of the role of FAEEs in AP in comparison with their parent UFAs is lacking. Uncontrolled release of lipases into fat, whether in the pancreas or in the peritoneal cavity, may result in fat necrosis, UFA generation, which has been associated with SAP.11, 12 Pancreatic homogenates were also noted to have an ability to synthesize FAEEs from FAs and ethanol,20, 23 and the putative enzyme for this was thought to be a lipase.24, 25 It has been shown that the FAEE synthase activity of the putative enzyme exceeds its lipolytic capacity by several fold.25Triglyceride (TG) forms >80% of the adipocyte mass,26, 27, 28 oleic acid (OA) being the most enriched FA.9, 29 We recently showed that lipolysis of intrapancreatic TG worsens pancreatitis.11, 12 Therefore, after noting the ability of the pancreas to cause lipolysis of TG into FAs and also to have high FAEE synthase activity and FAEE concentrations, we decided to compare the relative ability of FAEEs and their parent FAs to initiate deleterious signaling in pancreatitis and to investigate their impact on the severity of AP.  相似文献   

10.
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1−/− mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3−/− mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1−/− mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1−/− mice also had improved protective immune responses mediated by IFN-γ and CD4+ Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1−/− mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4+ T cells and natural killer T-cell responses against ehrlichiae.Ehrlichia chaffeensis is the causative agent of human monocytotropic ehrlichiosis, a highly prevalent life-threatening tickborne disease in North America.1, 2, 3 Central to the pathogenesis of human monocytotropic ehrlichiosis is the ability of ehrlichiae to survive and replicate inside the phagosomal compartment of host macrophages and to secrete proteins via type I and type IV secretion systems into the host-cell cytosol.4 Using murine models of ehrlichiosis, we and others have demonstrated that fatal ehrlichial infection is associated with severe tissue damage caused by TNF-α–producing cytotoxic CD8+ T cells (ie, immunopathology) and the suppression of protective CD4+ Th1 immune responses.5, 6, 7, 8, 9, 10, 11, 12, 13, 14 However, neither how the Ehrlichia bacteria trigger innate immune responses nor how these responses influence the acquired immunity against ehrlichiae is entirely known.Extracellular and intracellular pattern recognition receptors recognize microbial infections.15, 16, 17, 18 Recently, members of the cytosolic nucleotide-binding domain and leucine-rich repeat family (NLRs; alias NOD-like receptors), such as NLRP3, have emerged as critical pattern recognition receptors in the host defense against intracellular pathogens. NLRs recognize intracellular bacteria and trigger innate, protective immune responses.19, 20, 21, 22, 23 NLRs respond to both microbial products and endogenous host danger signals to form multimeric protein platforms known as inflammasomes. The NLRP3 inflammasome consists of multimers of NLRP3 that bind to the adaptor molecules and apoptosis-associated speck-like protein (ASC) to recruit pro–caspase-1 and facilitate cleavage and activation of caspase-1.15, 16, 24 The canonical inflammasome pathway involves the cleavage of immature forms of IL-1β and IL-18 (pro–IL-1β and pro–IL-18) into biologically active mature IL-1β and IL-18 by active caspase-1.25, 26, 27, 28 The noncanonical inflammasome pathway marked by the activation of caspase-11 has been described recently. Active caspase-11 promotes the caspase-1–dependent secretion of IL-1β/IL-18 and mediates inflammatory lytic host-cell death via pyroptosis, a process associated with the secretion of IL-1α and HMGB1.17, 29, 30, 31 Several key regulatory checkpoints ensure the proper regulation of inflammasome activation.16, 32 For example, blocking autophagy by the genetic deletion of the autophagy regulatory protein ATG16L1 increases the sensitivity of macrophages to the inflammasome activation induced by TLRs.33 Furthermore, TIR domain-containing adaptor molecule 1 (TICAM-1; alias TRIF) has been linked to inflammasome activation via the secretion of type I interferons α and β (IFN-α and IFN-β) and the activation of caspase-11 during infections with Gram-negative bacteria.2, 34, 35, 36, 37, 38, 39We have recently demonstrated that fatal ehrlichial infection induces excess IL-1β and IL-18 production, compared with mild infection,8, 12, 13, 14 and that lack of IL-18 signaling enhances resistance of mice to fatal ehrlichiosis.12 These findings suggest that inflammasomes play a detrimental role in the host defense against ehrlichial infection. Elevated production of IL-1β and IL-18 in fatal ehrlichiosis was associated with an increase in hepatic expression of IFN-α.14 IFN-I plays a critical role in the host defense against viral and specific bacterial infections.28, 36, 37, 40, 41, 42, 43 However, the mechanism by which type I IFN contributes to fatal ehrlichial infection remains unknown. Our present results reveal, for the first time, that IFNAR1 promotes detrimental inflammasome activation, mediates immunopathology, and impairs protective immunity against ehrlichiae via mechanisms that involve caspase-11 activation, blocking of autophagy, and production of IL-10. Our novel finding that lipopolysaccharide (LPS)-negative ehrlichiae trigger IFNAR1-dependent caspase-11 activation challenges the current paradigm that implicates LPS as the major microbial ligand triggering the noncanonical inflammasome pathway during Gram-negative bacterial infection.  相似文献   

11.
Cullin (CUL) 4A and 4B ubiquitin ligases are often highly accumulated in human malignant neoplasms and are believed to possess oncogenic properties. However, the underlying mechanisms by which CUL4A and CUL4B promote pulmonary tumorigenesis remain largely elusive. This study reports that CUL4A and CUL4B are highly expressed in patients with non–small cell lung cancer (NSCLC), and their high expression is associated with disease progression, chemotherapy resistance, and poor survival in adenocarcinomas. Depletion of CUL4A (CUL4Ak/d) or CUL4B (CUL4Bk/d) leads to cell cycle arrest at G1 and loss of proliferation and viability of NSCLC cells in culture and in a lung cancer xenograft model, suggesting that CUL4A and 4B are oncoproteins required for tumor maintenance of certain NSCLCs. Mechanistically, increased accumulation of the cell cycle–dependent kinase inhibitor p21/Cip1/WAF1 was observed in lung cancer cells on CUL4 silencing. Knockdown of p21 rescued the G1 arrest of CUL4Ak/d or CUL4Bk/d NSCLC cells, and allowed proliferation to resume. These findings reveal that p21 is the primary downstream effector of lung adenocarcinoma dependence on CUL4, highlight the notion that not all substrates respond equally to abrogation of the CUL4 ubiquitin ligase in NSCLCs, and imply that CUL4Ahigh/CUL4Bhigh may serve as a prognostic marker and therapeutic target for patients with NSCLC.

Lung cancer is the most common cause of cancer mortality worldwide,1 accounting for 19.4% of all cancer-related deaths and representing a significant clinical burden.2 Among the subtypes of lung cancer, non–small cell lung cancer (NSCLC) accounts for 80% to 85% of cases.3, 4, 5 Although multimodality treatments, including targeted therapies and immunotherapies, have been applied to NSCLCs, with high rates of local and distant failure, the overall cure and survival rates for NSCLC remain low.6,7 Thus, understanding the molecular mechanisms underlying NSCLC development and progression is of fundamental importance for the development of new therapeutic strategies for patients with NSCLC.Cullin (CUL) 4, a molecular scaffold of the CUL4-RING ubiquitin ligase (CRL4), plays an important role in regulating key cellular processes through modulating the ubiquitylation and degradation of various protein substrates.8 Two CUL4 proteins, CUL4A and CUL4B, share an 82% sequence homology, with similar but distinct functions.9 CUL4 has been extensively studied in the process of nucleotide excision repair (NER) after UV irradiation.10, 11, 12, 13 Loss of CUL4A, but not CUL4B, elevates global genomic NER activity and confers increased protection against UV-induced skin carcinogenesis.11 In addition to DNA repair, CUL4 also plays a significant role in a wide spectrum of physiologic processes, such as the cell cycle, cell signaling, and histone methylation, which have direct relevance to the development of human cancers.14, 15, 16 Accumulating studies have found that CUL4A is amplified or expressed at abnormally high levels in multiple cancers, including breast cancer, squamous cell carcinoma, hepatocellular carcinomas, and lung cancer.9,17, 18, 19 More importantly, CUL4A and 4B overexpression is implicated in tumor progression, metastasis, and a poorer survival rate for patients with cancer.9,20,21 CUL4A, but not CUL4B, is inversely correlated with the NER protein xeroderma pigmentosum, complementation group C and the G1/S DNA damage checkpoint protein p21 in patients with lung squamous cell carcinoma, highlighting a reduced DNA damage response9 as well as promoting cell growth and tumorigenesis.22,23 Increased expression of CUL4A caused hyperplasia as well as lung adenocarcinomas in mice.24 However, the mechanistic basis and clinical significance of CUL4A dysregulation in NSCLC remain unclear.The CUL4A paralog CUL4B shares extensive sequence homology and redundant functions with CUL4A.9 To date, research on CUL4B has been focused mainly on its genetic association with human X-linked mental retardation.25, 26, 27, 28 Recently, CUL4B was found to be overexpressed in colon cancer and correlated with tumor stage, histologic differentiation, vascular invasion, and distant metastasis.29 Patients with lung and colon cancer with high levels of CUL4B had lower overall survival (OS) and disease-free survival (DFS) rates than those with low CUL4B expression.9,29 CUL4B is also overexpressed in cervical, esophageal, and breast cancers and associated with tumor invasion and lymph node metastasis.16,30,31 Furthermore, CUL4B overexpression promotes the development of spontaneous liver tumors at a high rate and enhances diethylnitrosamine-induced hepatocarcinogenesis in transgenic mice.32The molecular mechanisms underlying the capacity of CUL4 to promote pulmonary tumorigenesis remain largely elusive. CUL4A promotes NSCLC cell growth.22 CUL4 targets a panel of cell cycle regulators for ubiquitination and degradation, including Cdc6, Cdt1, p21, cyclin E, minichromosome maintenance 10 replication initiation factor, and forkhead box M1.33 However, which of the cell cycle substrates of CUL4 play a key role in tumor dependence on dysregulated CUL4A or CUL4B remains to be defined. This study found that attenuation of CUL4, especially CUL4B, inhibited NSCLC cell proliferation and tumorigenesis through increased accumulation of p21 and cell cycle arrest in G1.  相似文献   

12.
Obliterative bronchiolitis after lung transplantation is a chronic inflammatory and fibrotic condition of small airways. The fibrosis associated with obliterative bronchiolitis might be reversible. Matrix metalloproteinases (MMPs) participate in inflammation and tissue remodeling. MMP-2 localized to myofibroblasts in post-transplant human obliterative bronchiolitis lesions and to allograft fibrosis in a rat intrapulmonary tracheal transplant model. Small numbers of infiltrating T cells were also observed within the fibrosis. To modulate inflammation and tissue remodeling, the broad-spectrum MMP inhibitor SC080 was administered after the allograft was obliterated, starting at post-transplant day 21. The allograft lumen remained obliterated after treatment. Only low-dose (2.5 mg/kg per day) SC080 significantly reduced collagen deposition, reduced the number of myofibroblasts and the infiltration of T cells in association with increased collagenolytic activity, increased MMP-2 gene expression, and decreased MMP-8, MMP-9, and MMP-13 gene expression. In in vitro experiments using cultured myofibroblasts, a relatively low concentration of SC080 increased MMP-2 activity and degradation of type I collagen. Moreover, coculture with T cells facilitated persistence of myofibroblasts, suggesting a role for T-cell infiltration in myofibroblast persistence in fibrosis. By combining low-dose SC080 with cyclosporine in vivo at post-transplant day 28, partial reversal of obliterative fibrosis was observed at day 42. Thus, modulating MMP activity might reverse established allograft airway fibrosis by regulating inflammation and tissue remodeling.Chronic allograft dysfunction after lung transplantation is manifested by obliterative bronchiolitis (OB), a fibroproliferative obstructive lesion in small airways, and its clinical correlate, bronchiolitis obliterans syndrome (BOS).1,2 Once the fibrotic process of OB is initiated, conventional immunosuppression is usually ineffective.3 The traditional pathological perspective is that fibrosis is the end result of damage: scar tissue, with no possibility of return to the pre-existing structure.4 However, increasing evidence suggests that fibrosis still undergoes dynamic remodeling and is potentially a reversible process. For example, the resolution of liver fibrosis is well documented both clinically and experimentally. In animal experiments, up-regulation or overexpression of matrix metalloproteinases (MMPs) capable of degrading interstitial type I and type III collagen (including MMP-1,5 MMP-8,6 MMP-13,7and MMP-2 and MMP-148,9) is associated with the regression of liver fibrosis. Pulmonary fibrosis has also been shown to be conditionally reversible.10One possible mechanism rendering fibrosis unlikely to resolve is the aberrant persistence of myofibroblasts, an active form of fibroblasts positive for α-smooth muscle actin (α-SMA), which leads to production of extracellular matrix (ECM) in excess of MMP-dependent ECM degradation.11 Unresolved inflammation can be an important contributor to this mechanism.10 Accumulating evidence suggests that chronic fibrotic conditions are mediated by complex interactions between immune and nonimmune cells, in which the persistence of a relatively low grade of inflammation continuously stimulates resident stromal cells12,13 and provides survival signals to myofibroblasts.14 For instance, the resolution of liver fibrosis encountered in alcohol-induced and virus-related fibrosis occurs only after remedy of the underlying cause.15,16 Moreover, in experimental models of fibrosis, reversal of fibrosis has occurred in one-hit injury models such as bleomycin-induced pulmonary fibrosis,17 in which the initial tissue injury leads to fibrosis but the tissue injury or inflammation is not continuous.8,9Along those lines, OB after lung transplantation is a fibrotic and chronic inflammatory condition18 in which myofibroblasts persist.19 The intrapulmonary tracheal transplant model of OB is a unique animal model in which persistent alloantigen from the donor trachea within the pulmonary milieu causes continuous alloantigen-induced inflammation and results in robust fibrosis in the allograft lumen.20 We have previously demonstrated that myofibroblasts expressing high levels of collagen and MMP-2 and MMP-14 play a central role in the remodeling of established allograft airway fibrosis.20 Given that MMPs also play important but complex roles in the trafficking of immune responsive cells,20 MMPs involved in both tissue remodeling and inflammation may play key roles in the reversal of fibrosis.We therefore hypothesized that allograft airway fibrosis is a potentially reversible process involving MMPs. Here, we demonstrate expression patterns of MMPs in established human OB lesions and describe the roles of MMPs in the remodeling of collagen matrix, myofibroblasts, and immune responsive cells using in vivo and in vitro models with SC080, a general MMP inhibitor. Finally, we demonstrate for the first time reversibility of allograft airway fibrosis by combining immunosuppression with a low dose of SC080.  相似文献   

13.
14.
15.
Mucolipidosis IV is a debilitating developmental lysosomal storage disorder characterized by severe neuromotor retardation and progressive loss of vision, leading to blindness by the second decade of life. Mucolipidosis IV is caused by loss-of-function mutations in the MCOLN1 gene, which encodes the transient receptor potential channel protein mucolipin-1. Ophthalmic pathology in patients includes corneal haze and progressive retinal and optic nerve atrophy. Herein, we report ocular pathology in Mcoln1−/− mouse, a good phenotypic model of the disease. Early, but non-progressive, thinning of the photoreceptor layer, reduced levels of rhodopsin, disrupted rod outer segments, and widespread accumulation of the typical storage inclusion bodies were the major histological findings in the Mcoln1−/− retina. Electroretinograms showed significantly decreased functional response (scotopic a- and b-wave amplitudes) in the Mcoln1−/− mice. At the ultrastructural level, we observed formation of axonal spheroids and decreased density of axons in the optic nerve of the aged (6-month-old) Mcoln1−/− mice, which indicates progressive axonal degeneration. Our data suggest that mucolipin-1 plays a role in postnatal development of photoreceptors and provides a set of outcome measures that can be used for ocular therapy development for mucolipidosis IV.Mucolipidosis type IV (MLIV) is an autosomal recessive disease characterized by severe psychomotor retardation and visual loss. MLIV is classified as a lysosomal storage disease because of abnormal accumulation of storage material in lysosomes of all cells and tissues of the body.1 Corneal clouding because of accumulation of lysosomal storage is an early pathological hallmark of the disease that, when present with developmental delay in infanthood, is highly suggestive of MLIV.Ophthalmic manifestations in patients generally have a progressive course and, in addition to corneal clouding, include optic nerve atrophy and outer retinal degeneration.2, 3, 4 In most of the patients, MLIV leads to blindness in the second decade of life.5Mutations in MCOLN1, which encodes the transient receptor potential cation channel TRPML1 (alias mucolipin-1) cause the disease.6, 7, 8, 9 More than 20 mutations in MCOLN1 have been identified to date.5 More than 75% of known MLIV patients are Ashkenazi Jewish, and the two founder mutations, present in 95% of Ashkenazi Jewish patients, result in complete loss of mRNA and protein.10 MLIV is a rare disease with carrier frequency of 1:100 in Ashkenazi Jewish and 1:10,000 in the general population. Many patients with MLIV remain undiagnosed or are misdiagnosed with cerebral palsy. Thus, bringing awareness of this disease to pediatric ophthalmologists and neurologists is important to improve diagnosis as new therapies are developed.Mucolipin-1 has six transmembrane domains and is permeable to Ca2+, Na+, K+, Fe2+, Mn2+, and Zn2+.11, 12, 13 Its channel activity is regulated by both calcium concentration and pH, and mucolipin-1 has been shown to have lipase activity.14 Previous studies by our group and others showed mucolipin-1 localization to the late endosomes and lysosomes.15, 16, 17, 18 The transient receptor potential channel protein mucolipin-1 is required for transport of lipids from the late endosomes-lysosomes to the trans-Golgi compartment,19, 20 Ca2+-dependent late endosome-lysosome fission-fusion events,20 reformation of lysosomes from endosome-lysosome hybrids18, 21 and autolysosomes,22, 23 and lysosomal exocytosis.24, 25 Mucolipin-1 is strongly expressed in the mouse retina, with the highest mRNA levels in the outer plexiform layer and outer nuclear layer.26The Mcoln1 knockout (KO) mouse model recapitulates the main features of the human disease, and is a good phenotypic platform for investigating MLIV disease mechanisms.27, 28, 29, 30 At the ultrastructural level, typical MLIV storage inclusions have been found in the brain during embryonic development.31 Histochemical analysis in the young adult (2 months of age) Mcoln1−/− mice has shown pronounced glial activation, reduced myelination, and no neuronal loss in the cerebrum in the regions most affected by gliosis.28In this study, we used Mcoln1−/− mice to characterize the consequences of mucolipin-1 loss on retinal morphology, optic nerve myelination, and visual function in the course of the disease. Major manifestations of ophthalmic pathology in Mcoln1−/− mice were as follows: non-progressive thinning of the photoreceptor layer; profound accumulation of storage inclusions throughout the retina and in the optic nerve, including formation of large axonal spheroids; axonal degeneration in the optic nerve in older mice; hypertrophied lysosomes in photoreceptors and other retinal cells; and reduced visual function.  相似文献   

16.
17.
Transdifferentiation (or activation) of hepatic stellate cells (HSCs) to myofibroblasts is a key event in liver fibrosis. Activated HSCs in the tumor microenvironment reportedly promote tumor progression. This study analyzed the effect of an inhibitor of HSC activation, retinol-binding protein–albumin domain III fusion protein (R-III), on protumorigenic functions of HSCs. Although conditioned medium collected from activated HSCs enhanced the migration, invasion, and proliferation of the hepatocellular carcinoma cell line Hepa-1c1c7, this effect was not observed in Hepa-1c1c7 cells treated with conditioned medium from R-III–exposed HSCs. In a subcutaneous tumor model, larger tumors with increased vascular density were formed in mice transplanted with Hepa-1c1c7+HSC than in mice transplanted with Hepa-1c1c7 cells alone. Intriguingly, when Hepa-1c1c7+HSC–transplanted mice were injected intravenously with R-III, a reduction in vascular density and extended tumor necrosis were observed. In an orthotopic tumor model, co-transplantation of HSCs enhanced tumor growth, angiogenesis, and regional metastasis accompanied by increased peritumoral lymphatic vessel density, which was abolished by R-III. In vitro study showed that R-III treatment affected the synthesis of pro-angiogenic and anti-angiogenic factors in activated HSCs, which might be the potential mechanism underlying the R-III effect. These findings suggest that the inhibition of HSC activation abrogates HSC-induced tumor angiogenesis and growth, which represents an attractive therapeutic strategy.

Cancers develop in complex tissue environments, which is essential for sustained growth, invasion, and metastasis.1 Tumor angiogenesis is an essential process for tumor progression, and lymphatic vessels provide an alternate route for tumor cell dissemination.2 The tumor microenvironment (TME) comprises a mass of heterogeneous cell types, among which the two most prominent types of protumorigenic cells are cancer-associated fibroblasts (CAFs) and tumor-associated macrophages.3 CAFs, also called myofibroblasts, are reportedly associated with the progression of several types of cancers, and can originate as a result of the activation of resident fibroblasts, bone marrow–derived fibrocytes, epithelial cells, endothelial cells, or from certain specialized cells such as stellate cells (SCs) in the pancreas and liver.4 The presence of activated SCs has been shown in the stroma surrounding cancer cells, and bidirectional interactions between SCs and cancer cells, by which tumor-derived factors activate SCs, and, in turn, activated SCs promote metastatic growth.5,6 Conditioned media from activated SCs promotes the proliferation, migration, and invasion of tumor cells in vitro, and co-transplantation of these activated SCs and tumor cells into mice resulted in an enlarged tumor mass that correlated with enhanced angiogenesis.7,8Hepatic stellate cells (HSCs) are pericytes residing in the space of Disse between the sinusoidal endothelial cells and the parenchymal cells, and constitute 5% to 10% of the total number of cells in the liver.9 In normal liver, HSCs maintain a nonproliferative, quiescent phenotype and store approximately 80% of vitamin A (retinol) in the whole body as retinyl esters in lipid droplets in the cytoplasm. In response to fibrogenic stimuli, HSCs become activated, transdifferentiating from vitamin A–storing cells to myofibroblast-like cells.10 Upon activation, HSCs lose cytoplasmic vitamin A–containing lipid droplets, proliferate vigorously, and produce a large amount of extracellular matrix proteins. When cultured on plastic, HSCs undergo spontaneous activation in vitro. Activation of HSCs is a widely accepted key event in liver fibrosis, which is characterized by excessive accumulation of extracellular matrix proteins.11 Cirrhosis is the advanced stage of liver fibrosis and is the leading risk factor for the development of hepatocellular carcinoma (HCC).12 Cells resembling HSCs were isolated from the pancreas in the late 1990s,13 and these pancreatic stellate cells also play a central role in pancreatic fibrogenesis in a manner similar to HSCs.14Albumin is the most abundant plasma protein with a mol. wt. of approximately 66 kDa produced in the liver.15 It is composed of three homologous domains (I to III) and performs a variety of functions. A previous study showed that albumin was expressed in quiescent SCs, but not in activated SCs, and that its forced expression in activated SCs induced the phenotypic reversion to fat-storing, early activated cells.16 Building on these results, a recombinant fusion protein (designated R-III; mol. wt., approximately 45 kDa) was developed as an antifibrotic agent, in which the domain III of albumin was fused to the C-terminus of retinol-binding protein.17 Retinol-binding protein was adopted for targeted delivery to SCs because the protein and its membrane receptor STRA6 coordinate the cellular uptake of retinol into HSCs.18 A follow-up study showed that R-III inhibited SC activation in vitro and reduced liver and kidney fibrosis in vivo.19, 20, 21 In this study, the effect of R-III on the protumorigenic functions of activated HSCs was examined, and R-III was found to suppress HSC-induced HCC angiogenesis and growth.  相似文献   

18.
Thrombospondin-1 (TSP1) is a multifunctional matricellular protein known to promote progression of chronic kidney disease. To gain insight into the underlying mechanisms through which TSP1 accelerates chronic kidney disease, we compared disease progression in Col4a3 knockout (KO) mice, which develop spontaneous kidney failure, with that of Col4a3;Tsp1 double-knockout (DKO) mice. Decline of excretory renal function was significantly delayed in the absence of TSP1. Although Col4a3;Tsp1 DKO mice did progress toward end-stage renal failure, their kidneys exhibited distinct histopathological lesions, compared with creatinine level–matched Col4a3 KO mice. Although kidneys of both Col4a3 KO and Col4a3;Tsp1 DKO mice exhibited a widened tubulointerstitium, predominant lesions in Col4a3 KO kidneys were collagen deposition and fibroblast accumulation, whereas in Col4a3;Tsp1 DKO kidney inflammation was predominant, with less collagen deposition. Altered disease progression correlated with impaired activation of transforming growth factor-β1 (TGF-β1) in vivo and in vitro in the absence of TSP1. In summary, our findings suggest that TSP1 contributes to progression of chronic kidney disease by catalyzing activation of latent TGF-β1, resulting in promotion of a fibroproliferative response over an inflammatory response. Furthermore, the findings suggest that fibroproliferative and inflammatory lesions are independent entities, both of which contribute to decline of renal function.Progression of chronic kidney disease (CKD) toward end-stage renal failure (ESRF) is a prominent problem in clinical nephrology.1 The incidence of CKD is rising, but effective therapies to halt progression of disease remain elusive.2 Progression of CKD results from a complex interplay of pathologies that involve all constituents of the kidney, which makes it difficult to single out targets for effective therapeutic strategies.3The extent of so-called tubulointerstitial fibrosis is often considered to be the rate-limiting step in progression of CKD.1 This idea is founded on histopathological analysis of large cohorts of kidney biopsies, which demonstrated that only tubulointerstitial fibrosis (which at the time was determined as the relative volume of the interstitium within a kidney biopsy section) correlates with and also predicts progression of CKD toward ESRF, irrespective of the underlying primary disease.4, 5, 6, 7 Widening of the tubulointerstitium, which is referred to as tubulointerstitial fibrosis, is caused by a composite of extracellular matrix (ECM) accumulation, sterile inflammation, accumulation of activated fibroblasts, and rarefaction of microvessels.1 Although the relevance of each of these events to progression of fibrosis and CKD is hotly debated, this knowledge led to the concept that tubulointerstitial fibrosis is a common pathway of all chronic progressive kidney diseases and that effective antifibrotic therapies could potentially halt progression of CKD irrespective of the underlying disease. However, such therapies are not yet available.1Our aim was to gain insight into mechanisms that underlie the contribution of thrombospondin-1 (TSP1) to progression of CKD. TSP1 is the most-studied member of the thrombospondin family of matricellular proteins.8 Previous studies have demonstrated that pharmacological suppression or genetic depletion of TSP1 attenuates disease progression in animal models of CKD.9, 10, 11, 12, 13 TSP1 is a 450-kDa trimeric ECM protein, which does not fulfill primarily structural roles in the matrix, but instead functions as an extracellular modulator of cell function.8, 14 Most prominently, TSP1 is known to inhibit angiogenesis, inhibit inflammation, activate MMP-dependent ECM turnover, and facilitate fibroblast migration and activation, all of which are considered important contributors to progression of CKD.8, 10 To delineate through which of its known biological activities TSP1 impacts progression of CKD, we compared progression of kidney disease of Col4a3 knockout (KO) mice (deficient in type IV collagen α3 chain) with that of Col4a3;Tsp1 double-knockout (DKO) mutant mice.15Here, we demonstrate that decrease of excretory renal function is delayed if TSP1 is absent. Furthermore, tissue analysis of plasma creatinine level–matched kidneys of Col4a3 KO and of Col4a3;Tsp1 DKO revealed that in Col4a3 KO mice disease progression is predominantly associated with fibrosis, whereas inflammation is the predominant interstitial pathology in Col4a3;Tsp1 DKO mice. We provide evidence that this altered disease progression is due to impaired activation of latent transforming growth factor-β1 (TGF-β1) in the absence of TSP1. Our findings provide evidence that both fibroproliferative injury and inflammation can independently cause expansion of the interstitium, leading to decline of excretory renal function.  相似文献   

19.
Hyperactivation of the CXCL12-CXCR4 axis occurs in endometriosis; the therapeutic potential of treatments aimed at global inhibition of the axis was recently reported. Because CXCR4 is predominantly expressed on epithelial cells in the uterus, this study explored the effects of targeted disruption of CXCR4 in endometriosis lesions. Uteri derived from adult female mice homozygous for a floxed allele of CXCR4 and co-expressing Cre recombinase under control of progesterone receptor promoter were sutured onto the peritoneum of cycling host mice expressing the green fluorescent protein. Four weeks after endometriosis induction, significantly lower number of lesions developed in Cxcr4-conditional knockout lesions relative to those in controls (37.5% vs. 68.8%, respectively). In lesions that developed in Cxcr4-knockout, reduced epithelial proliferation was associated with a lower ratio of epithelial to total lesion area compared with controls. Furthermore, while CD3+ lymphocytes were largely excluded from the epithelial compartment in control lesions, in Cxcr4-knockout lesions, CD3+ lymphocytes infiltrated the Cxcr4-deficient epithelium in the diestrus and proestrus stages. Current data demonstrate that local CXCR4 expression is necessary for proliferation of the epithelial compartment of endometriosis lesions, that its downregulation compromises lesion numbers, and suggest a role for epithelial CXCR4 in lesion immune evasion.

Endometriosis is one of the most common gynecologic diseases in women of reproductive age, with a prevalence rate of approximately 10%.1 Various theories have been proposed for the origin of endometriosis, including the most widely accepted theory of retrograde menstruation, in which shed endometrial tissue is refluxed through the fallopian tubes and proliferates within the pelvis.2,3 Because the majority of women have retrograde menstruation, yet only about one in 10 develops endometriosis, it has been proposed that factors promoting survival, invasiveness, and growth of endometrial fragments in the peritoneal cavity play a role in their persistence at ectopic sites in women with endometriosis. Such predisposing factors include somatic mutations in the highly proliferative endometrial epithelium (ie, KRAS, ARID1A4), aberrant progenitor/stem cell populations (endometrial or bone marrow (BM) derived5, 6, 7, 8, 9) at ectopic sites, and/or an immune-tolerant microenvironment permissive to proliferation and neoangiogenesis of ectopic endometrial fragments. This immunosuppressive microenvironment is characterized by elevated levels of activated peritoneal macrophages, reduced natural killer cell activity, and abnormally high levels of T-regulatory cells,10 which suppress immune mechanisms aimed at eliminating implantation of misplaced autologous cells.The chemokine-receptor CXCL12-CXCR4 axis is up-regulated in endometriosis.11, 12, 13, 14 The axis has roles in promoting cell survival, proliferation, chemotaxis, invasion, and angiogenesis. In cancer, hyperactivation of the axis is associated with disease progression and correlates with poor clinical outcome.15, 16, 17, 18, 19 This axis was also proposed to function in immune modulation: CXCL12 binding to CXCR4-expressing intratumoral (epithelial) cells was suggested to be a mechanism mediating cancer evasion of immune surveillance.20,21 Therapeutic blockade of the axis with the CXCR4 antagonist AMD3100 exhibited antitumor effects, including reduced tumor proliferation and increased apoptosis, both associated with T-cell accumulation within the tumor epithelium.20,22, 23, 24Endometrial CXCR4 is predominantly expressed on luminal and glandular epithelia, whereas the stroma is the principal source of the ligand CXCL12.13,25 Stromal-derived CXCL12 exerts its proliferative effect on the epithelium through paracrine interactions with its cognate receptor CXCR4.26 Estradiol stimulates CXCL12 production and progesterone to inhibit this stimulation.27,28 In vitro, AMD3100 blocked the CXCL12-mediated proliferative effects on epithelial cells.29 Acute treatment of experimental endometriosis in mice with AMD3100 significantly decreases lesion volume and reduces BM cell trafficking to lesions.30 AMD3100 was also shown to reduce recruitment of BM-derived endothelial progenitor cells into lesions and compromise their vascularization.31 Based on these studies, whether the inhibitory action of AMD3100 on lesion growth is mediated via local effects (ie, inhibiting lesion-endogenous CXCR4) or systemic effects (ie, inhibiting exogenous CXCR4-expressing cells, which infiltrate lesions with endometriosis induction) was explored. Moreover, in a manner similar to cancer, lesion-derived CXCR4 may have a role in immune evasion.To achieve these goals, endometriosis was induced using uteri derived from 8- to 10- week–old PgrCre/+ Cxcr4−/− female mice homozygous for a floxed CXCR4 allele and harboring a progesterone receptor promoter–driven Cre recombinase. Endometriosis was induced in syngeneic green fluorescent protein (GFP) transgenic host mice, allowing discrimination of host-derived populations from endometrial cells within uterine explants. A significant reduction in the number of lesions was found in mice harboring Cxcr4-conditional knockout lesions. In lesions that did develop, epithelial thinning was observed concomitant with the appearance of intraepithelial lymphocytes. At the proliferative stage, Ki-67 staining was absent from the epithelium of lesions, suggesting that diminished lesion numbers may be attributed to loss of epithelial proliferation, ultimately undermining lesion integrity.  相似文献   

20.
Amyloid-β (Aβ) and hyperphosphorylated tau (p-tau) aggregates form the two discrete pathologies of Alzheimer disease (AD), and oligomeric assemblies of each protein are localized to synapses. To determine the sequence by which pathology appears in synapses, Aβ and p-tau were quantified across AD disease stages in parietal cortex. Nondemented cases with high levels of AD-related pathology were included to determine factors that confer protection from clinical symptoms. Flow cytometric analysis of synaptosome preparations was used to quantify Aβ and p-tau in large populations of individual synaptic terminals. Soluble Aβ oligomers were assayed by a single antibody sandwich enzyme-linked immunosorbent assay. Total in situ Aβ was elevated in patients with early- and late-stage AD dementia, but not in high pathology nondemented controls compared with age-matched normal controls. However, soluble Aβ oligomers were highest in early AD synapses, and this assay distinguished early AD cases from high pathology controls. Overall, synapse-associated p-tau did not increase until late-stage disease in human and transgenic rat cortex, and p-tau was elevated in individual Aβ-positive synaptosomes in early AD. These results suggest that soluble oligomers in surviving neocortical synaptic terminals are associated with dementia onset and suggest an amyloid cascade hypothesis in which oligomeric Aβ drives phosphorylated tau accumulation and synaptic spread. These results indicate that antiamyloid therapies will be less effective once p-tau pathology is developed.A large body of evidence indicates that soluble oligomers of amyloid-β (Aβ) are the primary toxic peptides that initiate downstream tau pathology in the amyloid cascade hypothesis of Alzheimer disease (AD).1, 2 However, the time course and severity of AD dementia have been generally found to correlate with neurofibrillary tangle development rather than plaque appearance,3, 4, 5, 6, 7, 8 although a few studies have linked plaques with early cognitive decline.9, 10, 11, 12 Soluble oligomeric Aβ has been highlighted as the primary toxin for loss of dendritic spines and synaptic function13 and has also been directly linked to downstream tau pathology. For example, suppression of a tau kinase pathway can prevent Aβ42 oligomer-induced dendritic spine loss,14 and injection of Aβ42 fibrils into mutant tau mice induces neurofibrillary tangles in cell bodies retrograde to the injections.15 In vivo, effects of Aβ oligomers versus fibrils are harder to separate; however, lowering soluble Aβ oligomers by halving β–site amyloid precursor protein (APP) cleaving enzyme reduces accumulation and phosphorylation of wild-type tau in a mouse model.16 Evidence for Aβ and tau association is particularly strong in the dendritic compartment, where tau was shown to mediate Aβ toxicity via linkage of fyn to downstream N-methyl-d-aspartate receptor toxicity.17The earliest cognitive losses in AD have long been thought to correlate with synapse loss.8, 18, 19, 20, 21 In humans, electron microscopic studies have documented synapse-associated Aβ and tau,22, 23 and much work documents activity-dependent release of synaptic Aβ into interstitial fluid, which drives local Aβ deposition in human subjects and in rodents.4, 24, 25 Of importance, most synapse-associated Aβ in cortical synapses of AD patients consists of soluble oligomeric species,26 and synaptic tau pathology in AD also includes accumulations of SDS-stable tau oligomers.27, 28, 29, 30, 31 With the use of synaptosomes (resealed nerve terminals) from the cortex of postmortem human subjects and a transgenic rat model of AD, the present experiments were aimed at determining the sequence of appearance of Aβ and hyperphosphorylated tau (p-tau) pathology in synaptic terminals. In addition to early- and late-stage disease, the AD samples included nondemented high pathology controls (HPCs) with substantial AD-related pathology. Synaptic accumulation of Aβ occurred in the earliest plaque stages, before the appearance of synaptic p-tau, which did not appear until late-stage disease. Soluble Aβ oligomers in synaptic terminals were elevated in early AD cases compared with HPCs, indicating an association with the onset of a dementia diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号