首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The aim of this study was to explore the possible mechanisms involved in an observed decline in serum calcium levels in patients with a neuroendocrine tumour (NET) treated with [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate).

Methods

In 47 patients with NET who were normocalcaemic at baseline, serum calcium, albumin, creatinine, alkaline phosphatase, gamma glutamyl transpeptidase, magnesium, phosphate and 25-hydroxyvitamin D were prospectively analysed at baseline and up to 6 months after treatment. Parathyroid hormone (PTH), 1,25-dihydroxyvitamin D3, type 1 aminoterminal propeptide of procollagen, bone-specific alkaline phosphatase, carboxyterminal crosslinking telopeptide of bone collagen, collagen type I crosslinked N-telopeptide, and creatinine and calcium in 24-h urine samples, were evaluated at baseline and at 3 and 6 months. Another 153 patients with NET were included in a retrospective study to estimate the occurrence of hypocalcaemia in a larger patient group.

Results

In the prospectively included patients, the mean serum calcium level decreased significantly after treatment (2.31?±?0.01 to 2.26?±?0.02 mmol/l, p?=?0.02). Eight patients (17 %) showed a marked decrease in serum calcium levels with a nadir of ≤2.10 mmol/l. In five patients (11 %), calcium substitution therapy was prescribed. PTH increased significantly (5.9?±?0.6 to 6.7?±?0.8 pmol/l, p?=?0.02), presumably in response to the decreasing serum calcium levels. 25-Hydroxyvitamin D remained stable after treatment. Creatinine levels increased significantly (73?±?3 to 77?±?3 μmol/l, p?=?0.01), but not enough to explain the hypocalcaemia. Phosphate levels remained unaffected. In the retrospectively analysed patients, the mean serum calcium level decreased significantly from 2.33?±?0.01 at baseline to a nadir of 2.24?±?0.01 mmol/l at 18 months after treatment (p?<?0.001). Of the 153 patients, 33 (22 %) showed a serum calcium nadir of ≤2.10 mmol/l, and 11 (7 %) received calcium substitution therapy.

Conclusion

The mean serum calcium level decreased significantly after treatment with 177Lu-octreotate, resulting in mild hypocalcaemia in about 20 % of patients. We excluded several potential causes of this hypocalcaemia, so the cause remains unknown. Serum calcium levels should be monitored after peptide receptor radionuclide therapy, and calcium substitution therapy should be initiated if appropriate.  相似文献   

2.
The somatostatin analogue [DOTA0,Tyr3]octreotate has a nine-fold higher affinity for the somatostatin receptor subtype 2 as compared with [DOTA0,Tyr3]octreotide. Also, labelled with the beta- and gamma-emitting radionuclide lutetium-177, this compound has been shown to have a very favourable impact on tumour regression and animal survival in a rat model. Because of these reported advantages over the analogues currently used for somatostatin receptor-mediated radiotherapy, we decided to compare [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate) with [111In-DTPA0]octreotide (111In-octreotide) in six patients with somatostatin receptor-positive tumours. Plasma radioactivity after 177Lu-octreotate expressed as a percentage of the injected dose was comparable with that after 111In-octreotide. Urinary excretion of radioactivity was significantly lower than after 111In-octreotide, averaging 64% after 24 h. The uptake after 24 h, expressed as a percentage of the injected dose of 177Lu-octreotate, was comparable to that after 111In-octreotide for kidneys, spleen and liver, but was three- to fourfold higher for four of five tumours. The spleen and kidneys received the highest absorbed doses. The doses to the kidneys were reduced by a mean of 47% after co-infusion of amino acids. It is concluded that in comparison with the radionuclide-coupled somatostatin analogues that are currently available for somatostatin receptor-mediated radiotherapy, 177Lu-octreotate potentially represents an important improvement. Higher absorbed doses can be achieved to most tumours, with about equal doses to potentially dose-limiting organs; furthermore, the lower tissue penetration range of 177Lu as compared with 90Y may be especially important for small tumours.  相似文献   

3.
Purpose  Adequate dosimetry is mandatory for effective and safe peptide receptor radionuclide therapy (PRRT). Besides the kidneys, the bone marrow is a potentially dose-limiting organ. The radiation dose to the bone marrow is usually calculated according to the MIRD scheme, where the accumulated activity in the bone marrow is calculated from the accumulated radioactivity of the radiopharmaceutical in the blood. This may underestimate the absorbed dose since stem cells express somatostatin receptors. We verified the blood-based method by comparing the activity in the blood with the radioactivity in bone marrow aspirates. Also, we evaluated the absorbed cross-dose from the source organs (liver, spleen, kidneys and blood), tumours and the so-called “remainder of the body” to the bone marrow. Methods  Bone marrow aspirates were drawn in 15 patients after treatment with [177Lu-DOTA0,Tyr3]octreotate. Radioactivity in the bone marrow was compared with radioactivity in the blood drawn simultaneously. The nucleated cell fraction was isolated from the bone marrow aspirate and radioactivity was measured. The absorbed dose to the bone marrow was calculated. The results were correlated to the change in platelet counts 6 weeks after treatment. Results  A strong linear correlation and high agreement between the measured radioactivities in the bone marrow aspirates and in the blood was found (r=0.914, p<0.001). No correlation between the calculated absorbed dose in the bone marrow and the change in platelets was found. There was a considerable contribution from other organs and the remainder of the body to the bone marrow absorbed dose. Conclusion  (1) After PRRT with [177Lu-DOTA0,Tyr3]octreotate, the radioactivity concentration in the bone marrow is identical to that in the blood; (2) There is no significant binding of the radiopharmaceutical to bone marrow precursor stem cells; (3) The contribution of the cross dose from source organs and tumours to the bone marrow dose is significant; and (4) There is considerable variation in bone marrow absorbed dose between patients. These findings imply that for individual dose optimization, individual calculation of the bone marrow absorbed dose is necessary.  相似文献   

4.
Therapy using the radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate) (DOTA is 1,4,7,10-tetraazacyclododecane-N,N',N',N'-tetraacetic acid) has been used primarily in gastroenteropancreatic neuroendocrine tumors. Here we present the effects of this therapy in a small number of patients with metastasized or inoperable paragangliomas, meningiomas, small cell lung carcinomas (SCLCs), and melanomas. METHODS: Twelve patients with paraganglioma, 5 with meningioma, 3 with SCLC, and 2 with eye melanoma were treated. Three meningiomas were very large and exophytic and all standard treatments had failed. Patients with melanoma had rapidly progressive disease (PD). The intended cumulative dose of 177Lu-octreotate was 22.2-29.6 GBq. Effects of the treatment on tumor size were evaluated using the Southwest Oncology Group criteria. RESULTS: Two of 4 patients with progressive paraganglioma had tumor regression and 1 had stable disease (SD). Of 5 patients with stable paraganglioma, 2 had SD, 2 had PD, and in 1 patient treatment outcome could not be determined. Paraganglioma was stable in 3 patients in whom the disease status at the beginning of therapy was unknown. One of 4 patients with progressive meningioma had SD and 3 patients had PD. One patient with stable meningioma at the beginning of therapy had SD. All patients with SCLC or melanoma died within 5 mo after starting therapy because of tumor progression. Although not statistically significant, a positive trend was found between high uptake on pretherapy somatostatin receptor scintigraphy and treatment outcome. CONCLUSION: 177Lu-octreotate can be effective in patients with paraganglioma and meningioma. Response rates are lower than those in patients with gastroenteropancreatic neuroendocrine tumors. Most meningiomas were very large. Further studies are needed to confirm the treatment outcome because of the limited number of patients. 177Lu-octreotate did not have antitumor effects in patients with small lung carcinoma and melanoma.  相似文献   

5.
The aim of this study was to assess the feasibility of somatostatin receptor scintigraphy (SRS) for the detection of the site of unknown primary neuroendocrine neoplasms in patients in whom clinical examination and conventional radiological imaging had failed to do so. From 1996 to 2000, 36 patients were referred with gastro-entero-pancreatic (GEP) neuroendocrine tumours. In these patients, no clinical, radiological or endoscopic diagnostic modalities had been able to identify the primary tumour. Twenty-nine patients had liver metastases. Of the others, one had skin and one had lymph node metastases, three had diffuse metastatic involvement and two had carcinoid syndrome. SRS was carried out with both whole-body and single-photon emission tomography (SPET) acquisition, 24 and 48 h after the intravenous administration of In-pentetreotide. SRS findings were suggestive of the possible site of the primary lesion in 14 patients (39%). Six patients underwent surgery on the basis of the SRS findings and, therefore, the final, i.e. pathological, diagnosis was reached. In two patients, the final diagnosis was obtained within 6 months of SRS by means of a follow-up computed tomography (CT) scan. In the remaining six patients, the final diagnosis was reached after at least 2 years of follow-up by means of clinical, radiological and/or nuclear medicine findings. In all eight patients, the primary site identified during follow-up was consistent with the SRS findings. It can be concluded that SRS modified management in the six patients who had surgery. However, the most important finding was that SRS prompted surgical management in 17% of cases.  相似文献   

6.
The somatostatin analogue [DOTA0,Tyr3]octreotate has a nine-fold higher affinity for the somatostatin receptor subtype 2 as compared with [DOTA0, Tyr3]octreotide. Also, labelled with the beta- and gamma-emitting radionuclide lutetium-177, this compound has been shown to have a very favourable impact on tumour regression and animal survival in a rat model. Because of these reported advantages over the analogues currently used for somatostatin receptor-mediated radiotherapy, we decided to compare [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate) with [111In-DTPA0]octreotide (111In-octreotide) in six patients with somatostatin receptor-positive tumours. Plasma radioactivity after 177Lu-octreotate expressed as a percentage of the injected dose was comparable with that after 111In-octreotide. Urinary excretion of radioactivity was significantly lower than after 111In-octreotide, averaging 64% after 24 h. The uptake after 24 h, expressed as a percentage of the injected dose of 177Lu-octreotate, was comparable to that after 111In-octreotide for kidneys, spleen and liver, but was three- to fourfold higher for four of five tumours. The spleen and kidneys received the highest absorbed doses. The doses to the kidneys were reduced by a mean of 47% after co-infusion of amino acids. It is concluded that in comparison with the radionuclide-coupled somatostatin analogues that are currently available for somatostatin receptor-mediated radiotherapy, 177Lu-octreotate potentially represents an important improvement. Higher absorbed doses can be achieved to most tumours, with about equal doses to potentially dose-limiting organs; furthermore, the lower tissue penetration range of 177Lu as compared with 90Y may be especially important for small tumours.  相似文献   

7.

Purpose

Somatostatin-based radiopeptide treatment is generally performed using the β-emitting radionuclides 90Y or 177Lu. The present study aimed at comparing benefits and harms of both therapeutic approaches.

Methods

In a comparative cohort study, patients with advanced neuroendocrine tumours underwent repeated cycles of [90Y-DOTA]-TOC or [177Lu-DOTA]-TOC until progression of disease or permanent adverse events. Multivariable Cox regression and competing risks regression were employed to examine predictors of survival and adverse events for both treatment groups.

Results

Overall, 910 patients underwent 1,804 cycles of [90Y-DOTA]-TOC and 141 patients underwent 259 cycles of [177Lu-DOTA]-TOC. The median survival after [177Lu-DOTA]-TOC and after [90Y-DOTA]-TOC was comparable (45.5 months versus 35.9 months, hazard ratio 0.91, 95 % confidence interval 0.63–1.30, p?=?0.49). Subgroup analyses revealed a significantly longer survival for [177Lu-DOTA]-TOC over [90Y-DOTA]-TOC in patients with low tumour uptake, solitary lesions and extra-hepatic lesions. The rate of severe transient haematotoxicities was lower after [177Lu-DOTA]-TOC treatment (1.4 vs 10.1 %, p?=?0.001), while the rate of severe permanent renal toxicities was similar in both treatment groups (9.2 vs 7.8 %, p?=?0.32).

Conclusion

The present results revealed no difference in median overall survival after [177Lu-DOTA]-TOC and [90Y-DOTA]-TOC. Furthermore, [177Lu-DOTA]-TOC was less haematotoxic than [90Y-DOTA]-TOC.  相似文献   

8.
9.
Radiolabelled tumour receptor-binding peptides can be used for in vivo scintigraphic imaging. Recently, the somatostatin analogue [Tyr3]octreotide (d-Phe-c(Cys-Tyr-d-Trp-Lys-Thr-Cys)-Thr(ol)) was derivatized with the chelator DOTA (tetra-azacyclododecane-tetra-acetic acid), enabling stable radiolabelling with both the high-energy beta particle-emitter yttrium-90 and the Auger electron-emitter indium-111. The thus produced radiolabelled compounds are promising for peptide receptor radionuclide therapy. Our previous in vitro and in vivo (rat) experiments with these radiolabelled compounds showed favourable binding and biodistribution characteristics with high uptake and retention in the target organs. We also demonstrated receptor-specific, time- and temperature-dependent internalization of radiolabelled [DOTA0,Tyr3]octreotide in somatostatin receptor subtype 2 (sst2)-positive rat pancreatic tumour cell lines. In this study we have investigated the effects of differences in the amount of injected peptide on tissue distribution of 111In-labelled [DOTA0,Tyr3]octreotide in normal, i.e. non-tumour-bearing, and CA20948 tumour-bearing rats. This was done in order to find the amount of peptide at which the highest uptake in target tissues is achieved, and thereby to increase the potential of radionuclide therapy while simultaneously ensuring the lowest possible radiotoxicity in normal organs. Uptake of radiolabelled [DOTA0,Tyr3]octreotide in sst2-positive organs showed different bell-shaped functions of the amount of injected peptide, being highest at 0.05 (adrenals), 0.05–0.1 (pituitary and stomach) and 0.25 (pancreas) μg. Uptake in the tumour was highest at 0.5 μg injected peptide. The highest uptake was found at peptide amounts that were lower than those reported for [111In-DTPA0]octreotide ((d-Phe-c(Cys-Phe-d-Trp-Lys-Thr-Cys)-Thr(ol), DTPA = diethylene-triamine-penta-acetic acid), consistent with the higher receptor affinity of the first compound. Our observations of mass-dependent differences in uptake of radiolabelled [DOTA0, Tyr3]octreotide, being the resultant of a positive effect of increasing amounts of peptide on, for example, receptor clustering and a negative effect of receptor saturation, are of consequence for rat radionuclide therapy studies with radiolabelled peptides and may also be of consequence for human radionuclide therapy studies with this compound. Received 6 January and in revised form 16 February 1999  相似文献   

10.
Radiolabelled tumour receptor-binding peptides can be used for in vivo scintigraphic imaging. Recently, the somatostatin analogue [Tyr3]octreotide (D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr(ol)) was derivatized with the chelator DOTA (tetra-azacyclododecane-tetra-acetic acid), enabling stable radiolabelling with both the high-energy beta particle-emitter yttrium-90 and the Auger electron-emitter indium-111. The thus produced radiolabelled compounds are promising for peptide receptor radionuclide therapy. Our previous in vitro and in vivo (rat) experiments with these radiolabelled compounds showed favourable binding and biodistribution characteristics with high uptake and retention in the target organs. We also demonstrated receptor-specific, time- and temperature-dependent internalization of radiolabelled [DOTA0,Tyr3]octreotide in somatostatin receptor subtype 2 (sst2)-positive rat pancreatic tumour cell lines. In this study we have investigated the effects of differences in the amount of injected peptide on tissue distribution of 111In-labelled [DOTA0, Tyr3]octreotide in normal, i.e. non-tumour-bearing, and CA20948 tumour-bearing rats. This was done in order to find the amount of peptide at which the highest uptake in target tissues is achieved, and thereby to increase the potential of radionuclide therapy while simultaneously ensuring the lowest possible radiotoxicity in normal organs. Uptake of radiolabelled [DOTA0,Tyr3]octreotide in sst2-positive organs showed different bell-shaped functions of the amount of injected peptide, being highest at 0.05 (adrenals), 0.05-0. 1 (pituitary and stomach) and 0.25 (pancreas) microg. Uptake in the tumour was highest at 0.5 microg injected peptide. The highest uptake was found at peptide amounts that were lower than those reported for [111In-DTPA0]octreotide ((D-Phe-c(Cys-Phe-D-Trp-Lys-Thr-Cys)-Thr(ol), DTPA = diethylene-triamine-penta-acetic acid), consistent with the higher receptor affinity of the first compound. Our observations of mass-dependent differences in uptake of radiolabelled [DOTA0, Tyr3]octreotide, being the resultant of a positive effect of increasing amounts of peptide on, for example, receptor clustering and a negative effect of receptor saturation, are of consequence for rat radionuclide therapy studies with radiolabelled peptides and may also be of consequence for human radionuclide therapy studies with this compound.  相似文献   

11.
Introduction Receptor radionuclide therapy is a promising treatment modality for patients with neuroendocrine tumors for whom alternative treatments are limited. The aim of this study was to investigate the incidence of hormonal crises after therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate). Materials and methods All 177Lu-octreotate treatments between January 2000 and January 2007 were investigated. Four hundred seventy-six patients with gastroenteropancreatic neuroendocrine tumors and three patients with metastatic pheochromocytoma were included for analysis. Results Four hundred seventy-nine patients received a total of 1,693 administrations of 177Lu-octreotate. Six of 479 patients (1%) developed severe symptoms because of massive release of bioactive substances after the first cycle of 177Lu-octreotate. One patient had a metastatic hormone-producing small intestinal carcinoid; two patients had metastatic, hormone-producing bronchial carcinoids; two patients had vasoactive intestinal polypeptide-producing pancreatic endocrine tumors (VIPomas); and one patient had a metastatic pheochromocytoma. With adequate treatment, all patients eventually recovered. Conclusion Hormonal crises after 177Lu-octreotate therapy occur in 1% of patients. Generally, 177Lu-octreotate therapy is well tolerated.  相似文献   

12.
Somatostatin receptor-expressing tumours are potential targets for therapy with radiolabelled somatostatin analogues. We have synthesized a number of such analogues in the past and identified [DOTA-dPhe1, Tyr3]octreotide (SMT 487) as the most promising candidate molecule because of its advantageous properties in cellular and in vivo tumour models. In the current paper we describe the radiotherapeutic effect of yttrium-90 labelled SMT 487 in Lewis rats bearing the somatostatin receptor-positive rat pancreatic tumour CA 20948. SMT 487 binds with nanomolar affinity to both the human and the rat somatostatin receptor subtype 2 (sst2) (human sst2 IC50=0.9 nM, rat sst2 IC50=0.5 nM). In vivo, 90Y-SMT 487 distributed rapidly to the sst2 expressing CA 20948 rat pancreatic tumour, with a tumour-to-blood ratio of 49.15 at 24 h post injection. A single intravenous administration of 10 mCi/kg 90Y-SMT 487 resulted in a complete remission of the tumours in five out of seven CA 20948 tumour-bearing Lewis rats. No regrowth of the tumours occurred 8 months post injection. Control animals that were treated with 30 μg/kg of unlabelled SMT 487 had to be sacrificed 10 days post injection due to excessive growth or necrotic areas on the tumour surface. Upon re-inoculation of tumour cells into those rats that had shown complete remission, the tumours disappeared after 3–4 weeks of moderate growth without any further treatment. The present study shows for the first time the curative potential of 90Y-SMT 487-based radiotherapy for somatostatin receptor-expressing tumours. Clinical phase I studies with yttrium-labelled SMT 487 have started in September 1997. Received 14 January and in revised form 16 March 1998  相似文献   

13.

Purpose

Peptide receptor radionuclide therapy (PRRT) with radiolabelled somatostatin analogues has been demonstrated to be an effective therapeutic option in patients with disseminated neuroendocrine tumours (NET). Treatment with tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE may improve the efficacy of PRRT without increasing the toxicity. In a phase II study we evaluated the feasibility of combined PPRT with a high-energy beta emitter (90Y) and a medium-energy beta/gamma emitter (177Lu) in patients with metastatic NET refractory to conventional therapy.

Methods

A group of 26 patients with metastatic NET were treated with four therapeutic cycles of alternating [177Lu]DOTA-TATE (5.55 GBq) and [90Y]DOTA-TATE (2.6 GBq). A dosimetric evaluation was carried out after administration of [177Lu]DOTA-TATE to calculate the absorbed doses in healthy organs. The acute and long-term toxicities of repeated treatment were analysed. PRRT efficacy was evaluated according to RECIST.

Results

Administration of tandem [90Y]DOTA-TATE and [177Lu]DOTA-TATE induced objective responses in 42.3 % of patients with metastatic NET with a median progression-free survival longer than 24 months. Of patients with pretreatment carcinoid syndrome, 90 % showed a symptomatic response or a reduction in tumour-associated pain. The cumulative biologically effective doses (BED) were below the toxicity limit in the majority of patients, in the absence of renal function impairment

Conclusion

The results of our study indicates that combined [90Y]DOTA-TATE and [177Lu]DOTA-TATE therapy is a feasible and effective therapeutic option in NET refractory to conventional therapy. Furthermore, the absence of kidney damage and the evaluated cumulative BEDs suggest that increasing the number of tandem administrations is an interesting approach.  相似文献   

14.
In vitro octreotide receptor binding of [111In-DOTA0,d-Phe1,Tyr3]octreotide (111In-DOTATOC) and the in vivo metabolism of90Y or111In-labelled DOTATOC were investigated in rats in comparison with [111In-DTPA0]octreotide [111In-DTPAOC).111In-DOTATOC was found to have an affinity similar to octreotide itself for the octreotide receptor in rat cerebral cortex microsomes. Twenty-four hours after injection of90Y or111In-labelled DOTATOC, uptake of radioactivity in the octreotide receptor-expressing tissues pancreas, pituitary, adrenals and tumour was a factor of 2–6 that after injection of111In-DTPAOC. Uptake of labelled DOTATOC in pituitary, pancreas, adrenals and tumour was almost completely blocked by pretreatment with 0.5 mg unlabelled octreotide, indicating specific binding to the octreotide receptors. These findings strongly indicate that90Y-DOTATOC is a promising radiopharmaceutical for radiotherapy and that111In-DOTATOC is of potential value for diagnosis of patients with octreotide receptor-positive lesions, such as most neuroendocrine tumours.  相似文献   

15.
Here we present the guideline for the treatment of neuroendocrine tumors using Lu-177-DOTA-TATE on the basis of radiation safety aspects in Japan. This guideline was prepared by a study supported by Ministry of Health, Labour, and Welfare, and approved by Japanese Society of Nuclear Medicine. Lu-177-DOTA-TATE treatment in Japan should be carried out according to this guideline. Although this guideline is applied in Japan, the issues for radiation protection shown in this guideline are considered internationally useful as well. Only the original Japanese version is the formal document.  相似文献   

16.
Somatostatin receptors are over-expressed in many tumours, mainly of neuroendocrine origin, thus enabling treatment with somatostatin analogues. Almost a decade of clinical experience of receptor radionuclide therapy with the analogue 90Y-[DOTA]0-Tyr3-octreotide [90Y-DOTATOC] has now been obtained at a few centres of excellence. This review reports on the present state of the art of receptor radionuclide therapy and discusses new perspectives.  相似文献   

17.
We have evaluated the potential usefulness of indium-111 labelled [DTPA-D-Phe1]RC-160, derived from the octapeptide somatostatin analogue RC-160, as a radiopharmaceutical for the in vivo detection of somatostatin receptor-positive tumours. For this purpose 111In-and 111In-labelled [DTPA-D-Phe1]RC-160 was tested for its biological activity, and applied for somatostatin receptor scintigraphy in vivo to rats bearing the transplantable rat pancreatic tumour CA20948, which expresses somatostatin receptors. We previously described the development of the 111In-labelled somatostatin analogue [DTPA-D-Phe1]octreotide and its use in the in vivo visualization of somatostatin receptor-positive tumours in rats and in humans. Like [111In-DTPA-D-Phe1]octreotide, [111In-DTPA-D-Phe1]RC-160 showed uptake in and specific binding in vivo to somatostatin receptor-positive organs and tumours, and the tumours were clearly visualized by gamma camera scintigraphy. However, as compared to [111In-DTPA-D-Phe1]octreotide, blood radioactivity (background) was higher, resulting in a lower tumour to blood (background) ratio. Using this animal model we therefore conclude that [111In-DTPA-DPhe1]RC-160 has no advantage over [111In-DTPA-DPhe1]octreotide as a radiopharmaceutical in the visualization of somatostatin receptors which bind both analogues. However, recent reports suggest the existence of different somatostatin receptor subtypes on some human cancers, which differentially bind RC-160 and not octreotide. These tumours include cancers of the breast, ovary, exocrine pancreas, prostate and colon. [111In-DTPA-D-Phe1]RC-160 might be of interest for future use in such cancer patients as a radiopharmaceutical for imaging somatostatin receptor-positive tumours, which do not bind octreotide.  相似文献   

18.
Demotate is a new tetraamine-functionalised [Tyr3]octreotate derivative that binds technetium-99m with a high efficiency under mild conditions. The resulting radioligand, [99mTc]Demotate, forms in a high purity and is stable for at least 6 h after labelling. The affinity of the unlabelled peptide for somatostatin receptors is high (IC(50)=0.13 n M) and comparable to that of [Tyr3]octreotate or [Tyr3]octreotide, as demonstrated by competition binding experiments in rat brain cortex or AR42J cell membrane preparations. An equally very high affinity ( K(d)=0.07 n M) was exhibited by [99mTc/99gTc]Demotate during saturation binding experiments using rat brain cortex membrane homogenates. The radioligand resisted hydrolytic degradation in mouse plasma and was excreted intact in mouse urine. In vivo, [99mTc]Demotate cleared very rapidly from non-target tissues into the bladder via the kidneys, while radioactivity uptake in target organs was very high. In mice bearing the experimental AR42J tumour, [99mTc]Demotate demonstrated a very high tumour uptake at 1 h p.i. (25%ID/g) that remained high (20%ID/g) at 4 h p.i. This uptake could be effectively blocked by co-injection of a high dose of [Tyr3]octreotate together with the radioligand. High-quality planar and single-photon emission tomographic images were acquired 1 h after injection of [99mTc]Demotate in tumour-bearing mice, illustrating the excellent properties of this agent for somatostatin receptor tumour imaging.  相似文献   

19.
Because the role of chemotherapy, interferon, or somatostatin analogs as antiproliferative agents is uncertain, currently few treatment options exist for patients with metastatic or inoperable gastroenteropancreatic neuroendocrine tumors (GEP-NET). Fifty-eight patients with somatostatin receptor-positive GEP-NET were treated in a phase I dose-escalating study with cumulative doses of 47 mCi to 886 mCi of the radiolabeled somatostatin analog [(90)Y-DOTA(0),Tyr(3)]-octreotide. At baseline, 47 patients had progressive disease, and 36 were symptomatic. The extent of disease was: 4 patients without liver metastases and 52 patients with liver metastases, including 16 patients with very advanced disease, qualified as "end-stage," and 2 end-stage patients without liver metastases. The objective responses were 5 partial response (PR), 7 minor response (MR), 29 stable disease (SD), and 17 PD. Overall, 33 patients (57%) experienced some improvement in their disease status, including conversion from PD into SD and improvement from SD into MR. Accordingly, 21 of 36 patients (58%) had improvement in Karnofsky performance score or symptoms. The median overall survival (OS) was 36.7 months (95% confidence interval [CI] 19.4-54.1 months). The median progression-free survival in 41 patients who had at least stable disease at the end of the treatment period was 29.3 months (95% CI 19.3-39.3 months). Patients who had SD at baseline had a significantly better OS than patients who had PD at baseline. The extent of disease at baseline also was a significant predictive factor for OS. The OS after therapy with [(90)Y-DOTA(0),Tyr(3)]-octreotide was significantly better than in a historic control group of 32 comparable patients with GEP-NET who had been treated with another radiolabeled somatostatin analog, [(111)In-DTPA(0)]-octreotide (median OS 12.0 months, 95% CI 6.2-17.8 months). The difference in OS for both therapies remained highly significant in a multivariate Cox proportional hazard model including progression status and extent of disease at baseline as covariates. Although the objective response after therapy with [(90)Y-DOTA(0),Tyr(3)]-octreotide by standard criteria seems modest, the significantly longer OS compared with historic controls is most encouraging.  相似文献   

20.
[90Y]DOTA-DPhe1-Tyr3-octreotide ([90Y]-SMT487) has been suggested as a promising radiotherapeutic agent for somatostatin receptor-expressing tumours. In order to quantify the in vivo parameters of this compound and the radiation doses delivered to healthy organs, the analogue [86Y]DOTA-DPhe1-Tyr3-octreotide was synthesised and its uptake measured in baboons using positron emission tomography (PET). [86Y]DOTA-DPhe1-Tyr3-octreotide was administered at two different peptide concentrations, namely 2 and 100 microg peptide per m2 body surface. The latter concentration corresponded to a radiotherapeutic dose. In a third protocol [86Y]DOTA-DPhe1-Tyr3-octreotide was injected in conjunction with a simultaneous infusion of an amino acid solution that was high in l-lysine in order to lower the renal uptake of radioyttrium. Quantitative whole-body PET scans were recorded to measure the uptake kinetics for kidneys, liver, lung and bone. The individual absolute uptake kinetics were used to calculate the radiation doses for [90Y]DOTA-DPhe1-Tyr3-octreotide according to the MIRD recommendations extrapolated to a 70-kg human. The highest radiation dose was received by the kidneys, with 2.1-3.3 mGy per MBq [90Y]DOTA-DPhe1-Tyr3-octreotide injected. For the 100 microg/m2 SMT487 protocol with amino acid co-infusion this dose was about 20%-40% lower than for the other two treatment protocols. The liver and the red bone marrow received doses ranging from 0.32 to 0.53 mGy and 0.03 to 0.07 mGy per MBq [90Y]DOTA-DPhe1-Tyr3-octreotide, respectively. The average effective dose equivalent amounted to 0. 23-0.32 mSv/MBq. The comparatively low estimated radiation doses to normal organs support the initiation of clinical phase I trials with [90Y]DOTA-DPhe1-Tyr3-octreotide in patients with somatostatin receptor-expressing tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号