首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The spacer oligonucleotide typing (spoligotyping) method was evaluated for its ability to differentiate Mycobacterium bovis strains. This method detects the presence or absence of spacers of the direct repeat locus of the M. bovis genome. The spacers in the direct repeat locus are amplified by PCR and are detected by hybridization of the biotin-labelled PCR product with a membrane containing oligonucleotides derived from spacer sequences that have previously been bound to a membrane. One hundred eighty-two M. bovis isolates from domestic animals (cattle, goat, sheep, and cats) and wild animals (deer and wild boar) were spoligotyped, and the results were compared with those obtained by IS6110 restriction fragment length polymorphism analysis. Two rather homogeneous clusters of isolates containing 20 and 4 types, respectively, were identified by spoligotyping. The first cluster included isolates from cattle, cats, and feral animals. By spoligotyping, isolates from the Spanish wild boar and deer had the same pattern as some bovine isolates, suggesting transmission between these animals and cattle and highlighting the importance of the study of these reservoirs. The second cluster included all the caprine and ovine isolates. Within each cluster, the patterns of the different strains differed only slightly, suggesting that the spoligotypes may be characteristic of strains from particular animal species. Spoligotyping proved to be useful for studying the epidemiology of bovine M. bovis isolates, especially of those isolates containing only a single copy of IS6110. In view of our results, we suggest fingerprinting all M. bovis strains by the spoligotyping method initially and then by IS6110 restriction fragment length polymorphism typing of the strains belonging to the most common spoligotypes.  相似文献   

2.
In this study, the currently known typing methods for Mycobacterium tuberculosis isolates were evaluated with regard to reproducibility, discrimination, and specificity. Therefore, 90 M. tuberculosis complex strains, originating from 38 countries, were tested in five restriction fragment length polymorphism (RFLP) typing methods and in seven PCR-based assays. In all methods, one or more repetitive DNA elements were targeted. The strain typing and the DNA fingerprint analysis were performed in the laboratory most experienced in the respective method. To examine intralaboratory reproducibility, blinded duplicate samples were included. The specificities of the various methods were tested by inclusion of 10 non-M. tuberculosis complex strains. All five RFLP typing methods were highly reproducible. The reliability of the PCR-based methods was highest for the mixed-linker PCR, followed by variable numbers of tandem repeat (VNTR) typing and spoligotyping. In contrast, the double repetitive element PCR (DRE-PCR), IS6110 inverse PCR, IS6110 ampliprinting, and arbitrarily primed PCR (APPCR) typing were found to be poorly reproducible. The 90 strains were best discriminated by IS6110 RFLP typing, yielding 84 different banding patterns, followed by mixed-linker PCR (81 patterns), APPCR (71 patterns), RFLP using the polymorphic GC-rich sequence as a probe (70 patterns), DRE-PCR (63 patterns), spoligotyping (61 patterns), and VNTR typing (56 patterns). We conclude that for epidemiological investigations, strain differentiation by IS6110 RFLP or mixed-linker PCR are the methods of choice. A strong association was found between the results of different genetic markers, indicating a clonal population structure of M. tuberculosis strains. Several separate genotype families within the M. tuberculosis complex could be recognized on the basis of the genetic markers used.  相似文献   

3.
Spoligotyping (for spacer oligotyping) is an easy, economical, and rapid way of typing Mycobacterium tuberculosis complex strains with the DR spacer markers (J. Kamerbeek et al., J. Clin. Microbiol. 35:907-914, 1997; D. van Soolingen et al., 33:3234-3248, 1995). The stability of the markers was demonstrated by showing that all the Mycobacterium bovis BCG strains tested gave the same spoligotyping pattern. None of the 42 atypical mycobacterial strains tested gave a spoligotyping signal, indicating the specificity of the technique for M. tuberculosis complex. The utility of the spoligotyping method was demonstrated by analyzing 106 isolates of M. tuberculosis obtained over 1 year in three Paris hospitals. The results obtained by this technique were compared to those obtained by Torrea et al. (G. Torrea et al., J. Clin. Microbiol. 34:1043-1049, 1996) by IS6110-based restriction fragment length polymorphism (RFLP) analysis. Strains from patients with epidemiological relationships that were in the same IS6110-RFLP cluster were also in the same spoligotyping group. Spoligotyping was more discriminative than RFLP analysis for strains with one or two copies of IS6110. RFLP analysis did not discriminate between the nine strains with one or two IS6110 bands with no known epidemiological relation, whereas spoligotyping distinguished between eight different types. IS6I10-RFLP analysis split some of the spoligotyping clusters, particularly when the IS6110 copy number was high. Therefore, we propose a strategy for typing M. tuberculosis strains in which both markers are used.  相似文献   

4.
IS6110 restriction fragment length polymorphism (RFLP) analysis is the most widely applied method for strain differentiation of Mycobacterium tuberculosis complex. We have previously described mixed-linker PCR, an IS6110-based PCR method that favorably compared with other typing methods for M. tuberculosis complex according to reproducibility and ability to differentiate between strains. Here we report the further development of this method, called fast ligation-mediated PCR (FLiP), which allows analysis of strains within one working day and starting from less than 1 ng of mycobacterial DNA or a crude cell lysate. Blinded analysis of a standard set of 131 M. tuberculosis complex and nontuberculous isolates showed the ability to differentiate 81 types among 90 M. tuberculosis complex isolates with 84 different IS6110 RFLP fingerprint patterns and detected 97% of the 31 duplicate samples. We suggest that FLiP can serve to rapidly detect chains of transmission prior to starting high-throughput analysis or standard IS6110 RFLP. It may as well serve as a secondary typing technique for other, non-IS6110-based methods.  相似文献   

5.
The direct repeat (DR) region in Mycobacterium tuberculosis complex strains is composed of multiple well-conserved 36-bp DRs interspersed with nonrepetitive DNA spacer sequences of similar size. Clinical isolates show extensive polymorphism in this DR region, and this has led to the development of a 43-spacer reversed line blot methodology: spoligotyping. Although this method has contributed significantly to the molecular epidemiology of tuberculosis in the last decade, the discriminatory power and the readability of this method were not found to be optimal. In order to improve the discriminatory power, the usefulness of 43 redesigned oligonucleotides and the usefulness of 51 new spacer oligonucleotides were evaluated. For 314 M. tuberculosis complex strains isolated in the central part of The Netherlands over a 5-year period, 264 different IS6110 RFLP types could be distinguished, and 160 different spoligotype patterns were identified by traditional spoligotyping. After the introduction of 51 new spacer oligonucleotides, 14 additional spoligotypes were recognized. This enabled us to split 11 clusters of isolates identified by the traditional spoligotyping. Furthermore, on the basis of the new spacer oligonucleotides a dichotomy was found among the Beijing genotype isolates. Among 76 Mycobacterium bovis strains, 20 patterns were found by traditional spoligotyping and 30 patterns were found by novel probe spoligotyping, respectively. Nine M. bovis subsp. caprae isolates yielded six patterns by traditional spoligotyping and eight patterns by novel probe spoligotyping. A part of the redesigned oligonucleotides slightly improved the reading of spoligotype patterns. The reproducibility of spoligotyping, based on internal control probes, invariably yielded a high score; only 4 (1%) of the 314 patient isolates gave discrepant results. Analysis of a set of 31 duplicate M. tuberculosis complex strains demonstrated a 10% error rate for the identification of blinded duplicate samples. In a redundancy analysis, 40 essential spacer oligonucleotides of the 94-spacer sequences were selected, yielding the same number of spoligotype patterns. We propose to leave the traditional commercialized first-generation membrane for spoligotyping unchanged for current applications and to introduce a second-generation spoligotyping membrane whenever extended discrimination is required, e.g., for low-copy-number IS6110 strains or for phylogenetic studies of Beijing genotype strains.  相似文献   

6.
Mycobacterium tuberculosis complex strains cultured in Denmark have been analyzed by IS6110 restriction fragment length polymorphism (RFLP) on a routine basis from 1992 and onwards. Due to the influx of immigrants with tuberculosis, the number of strains harboring only one to five copies of IS6110 has increased steadily. Since the discriminatory power of IS6110 fingerprinting for such strains is poor, we have performed additional genotyping of all low-copy-number strains by the recently described PCR-based method known as spoligotyping. A total of 311 clinical strains were typed: 14 Mycobacterium bovis BCG, 48 M. bovis, and 249 M. tuberculosis strains. Spoligotyping correctly differentiated M. bovis and M. bovis BCG from M. tuberculosis strains, but it did not differentiate M. bovis from M. bovis BCG. All M. bovis BCG strains exhibited identical spoligotype patterns. The discriminatory power of spoligotyping of low-copy-number M. tuberculosis strains was higher than that of IS6110 fingerprinting. Based on RFLP typing solely, 83% of the low-copy-number M. tuberculosis strains were found to form part of a cluster, and 75% were found to form a cluster on the basis of spoligotyping. When the two techniques were combined, the amount of clustering decreased to 55%. The combination of these two techniques might be valuable in studying the epidemiology of M. tuberculosis strains harboring few copies of the IS6110 element.  相似文献   

7.
Restriction fragment length polymorphism (RFLP) analysis of IS6110 is commonly used to DNA fingerprint Mycobacterium tuberculosis. However, low-copy (< or =5) IS6110 M. tuberculosis strains are poorly differentiated, requiring secondary typing. When spoligotyping was used as the secondary method, only 13% of Maryland culture-positive tuberculosis (TB) patients with low-copy IS6110-spoligotyped clustered strains had epidemiologic linkages to another patient, compared to 48% of those with high-copy strains clustered by IS6110 alone (P < 0.01). Spoligotyping did not improve a population-based molecular epidemiologic study of recent TB transmission.  相似文献   

8.
Restriction fragment length polymorphism (RFLP) analysis with probes derived from the insertion element IS6110, the direct repeat sequence, and the polymorphic GC-rich sequence (PGRS) and a PCR-based typing method called spacer oligonucleotide typing (spoligotyping) were used to strain type Mycobacterium bovis isolates from the Republic of Ireland. Results were assessed for 452 isolates which were obtained from 233 cattle, 173 badgers, 33 deer, 7 pigs, 5 sheep, and 1 goat. Eighty-five strains were identified by RFLP analysis, and 20 strains were identified by spoligotyping. Twenty percent of the isolates were the most prevalent RFLP type, while 52% of the isolates were the most prevalent spoligotype. Both the prevalent RFLP type and the prevalent spoligotype were identified in isolates from all animal species tested and had a wide geographic distribution. Isolates of some RFLP types and some spoligotypes were clustered in regions consisting of groups of adjoining counties. The PGRS probe gave better differentiation of strains than the IS6110 or DR probes. The majority of isolates from all species carried a single IS6110 copy. In four RFLP types IS6110 polymorphism was associated with deletion of fragments equivalent in size to one or two direct variable repeat sequences. The same range and geographic distribution of strains were found for the majority of isolates from cattle, badgers, and deer. This suggests that transmission of infection between these species is a factor in the epidemiology of M. bovis infection in Ireland.  相似文献   

9.
Spoligotyping has been suggested as a screening test in multistep genotyping of Mycobacterium tuberculosis strains. Relying on restriction fragment length polymorphism (RFLP) analysis with IS6110 (IS6110 RFLP analysis) as a "gold standard," we performed a comparative evaluation of spoligotyping and ligation-mediated PCR (LMPCR), a recently described PCR-based typing method, as rapid screening tests for fingerprinting of 158 M. tuberculosis strains collected in Verona, Italy. LMPCR seemed to be comparable to spoligotyping in terms both of feasibility with rapidly extracted DNA and of generation of software-analyzable images. Moreover, LMPCR grouped considerably fewer strains than spoligotyping (38 versus 67%) and was found to reduce the cluster overestimation rate (26.3 versus 58%) and to give a better discriminatory index (0.992 versus 0.970) compared to spoligotyping. In our geographical region, where there was no evidence of clustered strains carrying fewer than six IS6110 copies, LMPCR was found to be more discriminatory than spoligotyping. We also evaluated two models of three-step typing strategies, involving the use of spoligotyping and LMPCR as screening methods and IS6110 RFLP analysis as a further supporting test. LMPCR proved to be a more effective first-step test than spoligotyping, significantly reducing the need for subtyping. LMPCR should be considered an alternative to spoligotyping as a rapid screening method for M. tuberculosis fingerprinting, particularly in areas with a low prevalence of M. tuberculosis strains carrying few copies of IS6110.  相似文献   

10.
The Mycobacterium tuberculosis Beijing family isolates may cause more than a quarter of all tuberculosis cases worldwide, are emerging in some areas, and are often associated with drug resistance. Early recognition of transmission of this genotype is therefore important. To evaluate the usefulness of variable-number tandem-repeat (VNTR) typing to discriminate and recognize strains of the Beijing family, M. tuberculosis isolates from Hong Kong were subjected to VNTR analysis, spoligotyping, and IS6110 restriction fragment length polymorphism (RFLP) typing. The allelic diversity of the 14 VNTR loci included in the analysis varied from 0 to 0.618 among Beijing strains. The discriminatory power of VNTR analysis was slightly lower than that of IS6110 RFLP. Our analysis shows that VNTR typing, which has many practical advantages over RFLP typing, can be used for epidemiological studies of Beijing strains. However, VNTR-defined clusters should be subtyped with IS6110 RFLP for maximal resolution.  相似文献   

11.
Mycobacterial interspersed repetitive unit (MIRU) typing has been found to allow rapid, reliable, high-throughput genotyping of Mycobacterium tuberculosis and may represent a feasible approach to study global M. tuberculosis molecular epidemiology. To evaluate the use of MIRU typing in discriminating drug-resistant M. tuberculosis strains of the Beijing genotype family, 102 multidrug-resistant (MDR) clinical isolates and 253 randomly selected non-MDR isolates collected from 2000 to 2003 in Hong Kong were subjected to 12-locus MIRU typing, spoligotyping, and IS6110 restriction fragment length polymorphism (RFLP) typing. Spoligotyping showed that 243 (68.5%) of 355 isolates belonged to Beijing family genotype. MIRU typing showed lower discrimination in differentiating between the Beijing family strains (Hunter-Gaston discriminative index [HGI] of 0.8827) compared with the IS6110 RFLP method (HGI = 0.9979). For non-Beijing strains, MIRU typing provided discrimination (HGI = 0.9929) comparable to that of the RFLP method (HGI = 0.9961). There was no remarkable difference in discrimination power between the two methods in differentiating both within and between MDR and non-MDR strains of M. tuberculosis. Dendrograms constructed with the MIRU typing data showed a clear segregation between the Beijing and non-Beijing genotype. Addition of RFLP to MIRU typing offered a higher discrimination ability (92.6%) than did addition of MIRU typing to RFLP (40.0%). This supported the potential use of this method to analyze the global genetic diversity of MDR M. tuberculosis strains that may be at different levels of evolutionary divergence.  相似文献   

12.
The population structure of 234 Mycobacterium tuberculosis complex strains obtained during 1995 and 1997 from tuberculosis patients living in Kampala, Uganda (East Africa), was analyzed by routine laboratory procedures, spoligotyping, and IS6110 restriction fragment length polymorphism (RFLP) typing. According to biochemical test results, 157 isolates (67%) were classified as M. africanum subtype II (resistant to thiophen-2-carboxylic acid hydrazide), 76 isolates (32%) were classified as M. tuberculosis, and 1 isolate was classified as classical M. bovis. Spoligotyping did not lead to clear differentiation of M. tuberculosis and M. africanum, but all M. africanum subtype II isolates lacked spacers 33 to 36, differentiating them from M. africanum subtype I. Moreover, spoligotyping was not sufficient for differentiation of isolates on the strain level, since 193 (82%) were grouped into clusters. In contrast, in the IS6110-based dendrogram, M. africanum strains were clustered into two closely related strain families (Uganda I and II) and clearly separated from the M. tuberculosis isolates. A further characteristic of both M. africanum subtype II families was the absence of spoligotype spacer 40. All strains of family I also lacked spacer 43. The clustering rate obtained by the combination of spoligotyping and RFLP IS6110 analysis was similar for M. africanum and M. tuberculosis, as 46% and 49% of the respective isolates were grouped into clusters. The results presented demonstrate that M. africanum subtype II isolates from Kampala, Uganda, belong to two closely related genotypes, which may represent unique phylogenetic branches within the M. tuberculosis complex. We conclude that M. africanum subtype II is the main cause of human tuberculosis in Kampala, Uganda.  相似文献   

13.
A preliminary investigation of the genetic biodiversity of Mycobacterium tuberculosis complex strains in Cameroon, a country with a high prevalence of tuberculosis, described a group of closely related M. tuberculosis strains (the Cameroon family) currently responsible for more than 40% of smear-positive pulmonary tuberculosis cases. Here, we used various molecular methods to study the genetic characteristics of this family of strains. Cameroon family M. tuberculosis strains (i) are part of the major genetic group 2 and lack the TbD1 region like other families of epidemic strains, (ii) lack spacers 23, 24, and 25 in their direct repeat (DR) region, (iii) have an identical number of repeats in 8 of 12 variable-number tandem repeats of mycobacterial interspersed repetitive unit (MIRU-VNTR) loci, (iv) have similar IS6110-restriction fragment length polymorphism (RFLP) multiband patterns (10 to 15 copies) with seven common IS6110 bands, (v) do not have an IS6110 element in their DR locus, and (vi) have four IS6110 elements in open reading frames (adenylate cyclase, phospholipase C, moeY, and ATP binding genes). Analysis by spoligotyping, MIRU-VNTR, and IS6110-RFLP typing methods revealed differences not observed in previous studies; polymorphism as assessed by MIRU-VNTR typing was lower than suggested by spoligotyping, and in rare cases, strains with identical IS6110-RFLP patterns had spoligotypes differing by as much as 15 spacers. Our findings confirm the recent expansion of this family in Cameroon and indicate that the interpretation of molecular typing results has to be adapted to the characteristics of the strain population within each setting. The knowledge of this particular genotype, with its large involvement in tuberculosis in Cameroon, allows greater refinement of tuberculosis transmission studies by interpreting data in the context of this geographic area.  相似文献   

14.
As a result of DNA typing of Mycobacterium microti isolates from animals in the United Kingdom and The Netherlands, we diagnosed four human M. microti infections. These are the first M. microti infections among humans to be reported. Three of the patients were immunocompromised and suffered from generalized forms of tuberculosis. The fourth patient was a 34-year-old immunocompetent male with a persistent cough and undefined X-ray abnormalities. Two of the M. microti infections were recognized by their IS6110 restriction fragment length polymorphism (RFLP) patterns, which showed a high degree of similarity with those of M. microti strains isolated from a pig and a ferret in The Netherlands. The two other human M. microti infections were recognized by using the recently developed DNA fingerprinting method, “spoligotyping,” directly on clinical material. All M. microti isolates from the United Kingdom and The Netherlands were found to contain an exceptionally short genomic direct repeat region, resulting in identical two-spacer sequence reactions in spoligotyping. In contrast, the highly similar IS6110 RFLP patterns of the vole strains from the United Kingdom differed considerably from the RFLPs of all M. microti strains isolated in The Netherlands, suggesting that geographic isolation led to divergent strains in the United Kingdom and on the continent.  相似文献   

15.
Repetitive-sequence-based PCR (rep-PCR) is useful for generating DNA fingerprints of diverse bacterial and fungal species. Rep-PCR amplicon fingerprints represent genomic segments lying between repetitive sequences. A commercial system that electrophoretically separates rep-PCR amplicons on microfluidic chips, and provides computer-generated readouts of results has been adapted for use with Mycobacterium species. The ability of this system to type M. tuberculosis and M. avium complex (MAC) isolates was evaluated. M. tuberculosis strains (n = 56) were typed by spoligotyping with rep-PCR as a high-resolution adjunct. Results were compared with those generated by a standard approach of spoligotyping with IS6110-targeted restriction fragment length polymorphism (IS6110-RFLP) as the high-resolution adjunct. The sample included 11 epidemiologically and genotypically linked outbreak isolates and a population-based sample of 45 isolates from recent immigrants to Seattle, Wash., from the African Horn countries of Somalia, Eritrea, and Ethiopia. Twenty isolates exhibited unique spoligotypes and were not analyzed further. Of the 36 outbreak and African Horn isolates with nonunique spoligotypes, 23 fell into four clusters identified by IS6110-RFLP and rep-PCR, with 97% concordance observed between the two methods. Both approaches revealed extensive strain heterogeneity within the African Horn sample, consistent with a predominant pattern of reactivation of latent infections in this immigrant population. Rep-PCR exhibited 89% concordance with IS1245-RFLP typing of 28 M. avium subspecies avium strains. For M. tuberculosis as well as M. avium subspecies avium, the discriminative power of rep-PCR equaled or exceeded that of RFLP. Rep-PCR also generated DNA fingerprints from M. intracellulare (n = 8) and MAC(x) (n = 2) strains. It shows promise as a fast, unified method for high-throughput genotypic fingerprinting of multiple Mycobacterium species.  相似文献   

16.
DNA fingerprinting techniques were used to type 273 isolates of Mycobacterium bovis from Australia, Canada, the Republic of Ireland, and Iran. The results of restriction fragment length polymorphism (RFLP) analysis with DNA probes from IS6110, the direct repeat (DR), and the polymorphic GC-rich sequence (PGRS) were compared with those of a new PCR-based method called spacer oligonucleotide typing (spoligotyping) developed for the rapid typing of Mycobacterium tuberculosis (J. Kamerbeek et al., J. Clin. Microbiol. 35:907–914, 1997). Eighty-five percent of the isolates harbored a single copy of IS6110, and 81.5% of these carried IS6110 on the characteristic 1.9-kb restriction fragment. RFLP analysis with IS6110 identified 23 different types, RFLP analysis with the DR probe identified 35 types, RFLP analysis with the PGRS probe identified 77 types, and the spoligotyping method identified 35 types. By combining all results, 99 different strains could be identified. Isolate clusters were frequently associated within herds or were found between herds when epidemiological evidence confirmed animal movements. RFLP analysis with IS6110 was sufficiently sensitive for the typing of isolates with more than three copies of IS6110, but RFLP analysis with the PGRS probe was the most sensitive typing technique for strains with only a single copy of IS6110. Spoligotyping may have advantages for the rapid typing of M. bovis, but it needs to be made more sensitive.  相似文献   

17.
Two PCR typing methods, based on polymorphism of the insertion sequence IS6110, were compared with Mycobacterium tuberculosis strains by using a single primer complementary to the inverted repeats of IS6110. Total M. tuberculosis DNA either was amplified directly (IS6110-PCR) or was amplified following digestion and ligation (IS6110-inverse-PCR). Both PCR techniques showed a similar degree of discrimination. Because of its simplicity, IS6110-PCR was chosen to confirm that a single M. tuberculosis strain was responsible for an outbreak of tuberculosis in a secondary school. IS6110-PCR was used to study the degree of differentiation in 85 clinical M. tuberculosis isolates from BACTEC 12B broth cultures. Results were consistent with those of the standardized IS6110 restriction fragment length polymorphism (RFLP) analysis method, showing identical PCR types for identical RFLPs, although the degree of discrimination was greater by RFLP analysis. The study concludes that due to its simplicity, IS6110-PCR is a good screening method when quick differentiation between M. tuberculosis strains is needed because BACTEC cultures may be used directly.  相似文献   

18.
Nineteen multidrug-resistant (MDR) Mycobacterium complex strains isolated in a nosocomial outbreak were characterized at the molecular level. The strains were microbiologically characterized as Mycobacterium bovis. The mpt40 sequence was not present in chromosomal DNA from these strains, supporting the fact that they were M. bovis. All of the isolates were resistant to isoniazid, rifampin, pyrazinamide, ethambutol, streptomycin, para-aminosalicylic acid, clarithromycin, cycloserine, ethionamide, ofloxacin, capreomycin, and amikacin. By performing the standardized IS6110 fingerprinting by restriction fragment length polymorphism (RFLP) analysis, we were able to differentiate two groups (groups A and B) containing two (16 isolates) and three (3 isolates) IS6110 copies, respectively. These strains were typed by spoligotyping, developed to distinguish M. bovis strains and also to distinguish them from M. tuberculosis strains (J. Kamerbeek et al., J. Clin. Microbiol. 35:907-914, 1997). All the strains were confirmed to be M. bovis. In addition, spoligotyping showed a difference in only 1 of 43 spacers between RFLP groups A and B. The rpo beta region of several strains representative of each identified group was cloned and sequenced, and identical mutations (Ser-531 to Leu) responsible for the rifampin resistance phenotype were found. To our knowledge, this is the first characterization at the molecular level of an MDR M. bovis strain responsible for a nosocomial outbreak.  相似文献   

19.
In order to evaluate the discriminatory power of different methods for genotyping of Mycobacterium tuberculosis complex (MTBC) isolates, we compared the performance of (i) IS6110 DNA fingerprint typing, (ii) spoligotyping, and (iii) 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing in a long-term study on the epidemiology of tuberculosis (TB) in Schleswig-Holstein, the northernmost federal state of Germany. In total, we analyzed 277 MTBC isolates collected from patients between the years 2006 and 2010. The collection comprised a broad spectrum of 13 different genotypes, among which strains of the Haarlem genotype (31%) were most prominent, followed by strains belonging to the Delhi and Beijing lineages (7% and 6%, respectively). On the basis of IS6110 restriction fragment length polymorphism (RFLP) and spoligotyping analyses, 211 isolates had unique patterns (76%) and 66 isolates (24%) were in 20 clusters. MIRU-VNTR combined with spoligotyping analyses revealed 202 isolates with unique patterns (73%) and 75 isolates in 18 clusters (27%). Overall, there was 93.1% concordance between the typing results obtained; 198 strains were identified as unique, and 60 isolates were clustered by both typing combinations (including all 31 isolates with confirmed epidemiological links). Of the remaining 19 isolates with discrepant results, 15 were falsely clustered by MIRU-VNTR (six Beijing genotype strains) and four were clustered by IS6110 RFLP (low IS6110 copy number) only. In conclusion, in the study population investigated, a minority of isolates, especially of the Beijing genotype, clustered by standard 24-loci MIRU-VNTR and without an obvious epidemiological link may require second-line typing by IS6110 RFLP or hypervariable MIRU-VNTR loci.  相似文献   

20.
In a previous study, we proposed to associate spoligotyping and typing with the variable number of tandem DNA repeats (VNTR) as an alternative strategy to IS6110-restriction fragment length polymorphism (RFLP) for molecular epidemiological studies on tuberculosis. The aim of the present study was to further evaluate this PCR-based typing strategy and to describe the population structure of Mycobacterium tuberculosis in another insular setting, Sicily. A collection of 106 DNA samples from M. tuberculosis patient isolates was characterized by spoligotyping and VNTR typing. All isolates were independently genotyped by the standard IS6110-RFLP method, and clustering results between the three methods were compared. The totals for the clustered isolates were, respectively, 15, 60, and 82% by IS6110-RFLP, spoligotyping, and VNTR typing. The most frequent spoligotype included type 42 that missed spacers 21 to 24 and spacers 33 to 36 and derived types 33, 213, and 273 that, together represented as much as 26% of all isolates, whereas the Haarlem clade of strains (types 47 and 50, VNTR allele 32333) accounted for 9% of the total strains. The combination of spoligotyping and VNTR typing results reduced the number of clusters to 43% but remained superior to the level of IS6110-RFLP clustering (ca. 15%). All but one IS6110-defined cluster were identified by the combination of spoligotyping and VNTR clustering results, whereas 9 of 15 spoligotyping-defined clusters could be further subdivided by IS6110-RFLP. Reinterpretation of previous IS6110-RFLP results in the light of spoligotyping-VNTR typing results allowed us to detect an additional cluster that was previously missed. Although less discriminative than IS6110-RFLP, our results suggest that the use of the combination of spoligotyping and VNTR typing is a good screening strategy for detecting epidemiological links for the study of tuberculosis epidemiology at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号