首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid shear stress (FSS) is a ubiquitous mechanical stimulus that potently promotes osteoblast proliferation. Previously, we reported that extracellular signal–regulated kinase 5 (ERK5) is essential for FSS-induced osteoblast proliferation. However, the precise mechanism by which FSS promotes osteoblast proliferation via ERK5 activation is poorly understood. The aim of this study was to determine the critical role of Gαq in FSS-induced ERK5 phosphorylation and osteoblast proliferation, as well as the downstream targets of the Gαq–ERK5 pathway. MC3T3-E1 cells were transfected with 50 nM Gαq siRNA, treated with 5 mM XMD8-92 (a highly selective inhibitor of ERK5 activity), and/or exposed to FSS (12 dyn/cm2). Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression levels of Gαq, P-ERK5, ERK5, Cyclin B1, and CDK1 were analyzed by Western blot. Physiological FSS exposure for 60 min remarkably promoted MC3T3-E1 cell proliferation, however, this effect was suppressed by siRNA-mediated Gαq knockdown or inhibition of ERK5 activity by XMD8-92 treatment, suggesting that Gαq and ERK5 might modulate FSS-increased osteoblast proliferation. Furthermore, ERK5 phosphorylation was dramatically inhibited by Gαq siRNA. In addition, our study further revealed that FSS treatment of MC3T3-E1 cells for 60 min markedly upregulated the protein expression levels of Cyclin B1 and CDK1, and this increased expression was predominantly blocked by Gαq siRNA or XMD8-92 treatment. We propose that FSS acts on the Gαq–ERK5 signaling pathway to upregulate Cyclin B1 and CDK1 expression, thereby resulting in MC3T3-E1 cell proliferation. Thus, the Gαq–ERK5 signaling pathway may provide useful information regarding the treatment of bone metabolic disease.  相似文献   

2.
3.
4.
目的:研究盐酸小檗碱对小鼠前成骨细胞系MC3T3-E1分化与矿化的调控作用及其机制。方法:MC3T3-E1细胞给予不同浓度(0、1、5、10和20 mg/L)的盐酸小檗碱刺激3 d,CCK-8法检测细胞活性。不同浓度的盐酸小檗碱分别干预3 d和7 d,检测细胞碱性磷酸酶(ALP)活性。进一步将实验随机分为4组:对照组、盐酸小檗碱组、盐酸小檗碱+LY249002(PI3K/Akt通路抑制剂)组及LY249002组。干预2 d后,采用real-time PCR检测成骨细胞分化相关因子ALP、骨钙素(OCN)、骨桥蛋白(OPN)及Runt相关转录因子2(Runx2)的mRNA表达情况,采用Western blot检测PI3K/Akt信号通路相关蛋白p-Akt的表达水平。将MC3TC-E1细胞用矿化培养基诱导21 d,茜素红染色检测其矿化情况。结果:与对照组相比,不同浓度的盐酸小檗碱对细胞活性的影响没有明显差异;不同浓度的盐酸小檗碱处理MC3T3-E1细胞后ALP活性有不同程度升高。Real-time PCR结果表明,盐酸小檗碱(5 mg/L)促进ALP、OCN、OPN及Runx2的mRNA表达(P 0. 01),而LY294002能抑制这些分化相关因子的表达。Western blot检测结果表明,盐酸小檗碱(5 mg/L)促进p-Akt蛋白的表达(P 0. 01),其作用被LY249002抑制。茜素红染色发现盐酸小檗碱组矿化明显,但LY294002能抑制盐酸小檗碱的促进作用。结论:盐酸小檗碱可以促进小鼠前成骨细胞的分化与矿化,其机制可能与其激活PI3K/Akt信号通路有关。  相似文献   

5.
背景:ERK1/2信号通路和核因子κB信号通路是否参与了牵张应力作用下MC3T3-E1细胞成骨分化及相关基因表达的调控,尚不清楚。 目的:观察机械牵张应力对作用下ERK1/2和核因子κB通路对成骨细胞碱性磷酸酶、Ⅰ型胶原、骨钙蛋白、白细胞介素6表达的影响,探讨ERK1/2与核因子κB信号通路对成骨细胞分化的调控作用。 方法:体外培养的MC3T3-E1细胞,以ERK1/2通路特异性抑制剂PD098059及核因子κB通路抑制剂PDTC分别处理30 min后加载12%的拉伸应变率24 h,以正常细胞及单纯加载12%牵张应力24 h为对照。采用ELISA及Real-time PCR方法检测细胞加载前后碱性磷酸酶活性、Ⅰ型胶原、骨钙蛋白及白细胞介素6 mRNA的表达。 结果与结论:在12%牵张应力作用下,MC3T3-E1细胞碱性磷酸酶、Ⅰ型胶原、白细胞介素6的表达受ERK1/2信号通路的调控,而骨钙蛋白基因表达的变化不受ERK1/2通路的影响。核因子κB信号通路抑制剂PDTC可显著抑制机械牵应张力作用下MC3T3-E1细胞碱性磷酸酶活性的降低,同时抑制白细胞介素6基因的表达,而Ⅰ型胶原、骨钙蛋白基因表达的变化不受核因子κB信号通路的影响。结果表明牵张应力可以通过ERK1/2和核因子κB通路影响MC3T3-E1细胞的成骨分化及相关基因表达。 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程全文链接:  相似文献   

6.
Objectives: Periodontal ligament stem cells (PDLSCs) are characterized by having multipotential differentiation and immunoregulatory properties, which are the main mechanisms of PDLSCs-mediated periodontal regeneration. Periodontal or bone regeneration requires coordination of osteoblast and osteoclast, however, very little is known about the interactions between PDLSCs and osteoblast-like cells or osteoclast precursors. In this study, the indirect co-culture approach was introduced to preliminarily elucidate the effects of PDLSCs on differentiation of osteoblast-like cells and osteoclast precursors in vitro. Materials and methods: Human PDLSCs were obtained from premolars extracted and their stemness was identified in terms of their colony-forming ability, proliferative capacity, cell surface epitopes and multi-lineage differentiation potentials. A noncontact co-culture system of PDLSCs and preosteoblastic cell line MC3T3-E1 or osteoclast precursor cell line RAW264.7 was established, and osteoblastic differentiation of MC3T3-E1 and osteoclastic differentiation of RAW264.7 were evaluated. Results: PDLSCs exhibited features of mesenchymal stem cells. Further investigation through indirect co-culture system showed that PDLSCs enhanced ALP activity, expressions of ALP, Runx2, BSP, OPN mRNA and BSP, OPN proteins and mineralization matrix deposition in MC3T3-E1. Meanwhile, they improved maturation of osteoclasts and expressions of TRAP, CSTK, TRAF6 mRNA and TRAP, TRAF6 proteins in RAW264.7. Conclusions: PDLSCs stimulates osteoblastic differentiation of osteoblast precursors and osteoclastic differentiation of osteoclast precursors, at least partially, in a paracrine fasion.  相似文献   

7.
《Acta histochemica》2021,123(7):151786
ObjectiveTo discuss the effect of miR-183 on osteoblast differentiation in the osteoporosis progression via targeting Smad4.MethodsOsteoporosis models were constructed on ovariectomized (OVX) mice to determine the expression of miR-183 and Smad4. Then, MC3T3-E1 cells and primary osteoblasts were divided into Mock, miR-control, miR-183 mimic, miR-183 inhibitor, siSmad4 and miR-183 inhibitor + siSmad4 groups. Alkaline phosphatase (ALP) staining were performed to determine ALP activity, alizarin red staining to evaluate the calcium deposit, while qRT-PCR and Western blotting were used to determine the expression of related molecules. Besides, MC3T3-E1 cells transfected with miR-control or miR-183 mimic were cultured with or without TGF-β1 to verify whether miR-183 regulates the TGF-β signaling pathway.ResultsMiR-183 was up-regulated with decreased Smad4 in the femur of OVX mice, and dual luciferase reporter gene assay showed that Smad4 was a target of miR-183. As compared to Mock group, MC3T3-E1 cells and primary osteoblasts in the miR-183 mimic group and siSmad4 group had significant reductions of OCN, OPN, Runx2 and Osx, as well as decreased ALP activity and calcium deposit. Contrarily, miR-183 and Smad4 were up-regulated and down-regulated respectively. However, cells in the miR-183 inhibitor group manifested the opposite changes. Besides, osteoblast differentiation in the miR-183 inhibitor + siSmad4 group was weakened evidently when compared to miR-183 inhibitor group. Pathway analysis indicated that miR-183 regulated osteogenic differentiation via TGF-β signaling pathway.ConclusionMiR-183 was up-regulated in osteoporosis, and miR-183 overexpression can inhibit osteoblast differentiation by targetedly down-regulating TGF-β pathway member Smad4 to trigger osteoporosis.  相似文献   

8.
目的 研究低强度高频率振动(low-magnitude high-frequency vibration, LMHFV)对成骨细胞生物学特性的影响。 方法 建立LMHFV加载MC3T3-E1细胞模型,观察不同频率LMHFV对MC3T3-E1细胞OPG/RANKL浓度比的影响,获得OPG/RANKL浓度比最高的频率(F)为后续研究频率;以0 Hz为对照,观察LMHFV对MC3T3-E1细胞碱性磷酸酶 (ALP)、骨钙素(OCN) mRNA和蛋白活性,及钙化结节形成的影响;LMHFV加载形成的条件培养液(CMF)孵育RAW264.7细胞,观察CMF对破骨细胞抗酒石酸酸性磷酸酶(TRAP)染色、多核破骨细胞形成、TRAP mRNA及蛋白活性的影响;观察LMHFV对MC3T3-E1细胞环氧化酶2(COX-2)蛋白水平的表达及COX-2抑制剂NS-398对LMHFV影响MC3T3-E1细胞分化的作用。 结果 30 Hz LMHFV获得OPG/RANKL浓度比最高,促进ALP、OCN mRNA及蛋白活性增加,增加钙化结节形成。30 Hz LMHFV形成的CM抑制RAW264.7细胞向多核破骨细胞分化,抑制TRAP mRNA及活性;LMHFV可诱导COX-2蛋白水平增加,NS-398能抑制LMHFV促进成骨细胞分化。 结论 30 Hz的LMHFV对MC3T3-E1细胞OPG/RANKL浓度比及成骨分化具有积极的影响,通过调控成骨细胞OPG/RANKL浓度比间接抑制骨吸收,COX-2通路参与了LMHFV对成骨细胞生物学特性的调节作用。  相似文献   

9.
10.
目的:研究细胞外信号调节激酶(ERK)/转化生长因子β(TGF-β)/Sma和Mad相关蛋白(Smads)信号级联在左归丸含药血清干预成骨前体细胞系MC3T3-E1细胞增殖与分化中的作用。方法:以倍美力为阳性对照药,对Sprague-Dawley(SD)雌性大鼠灌服高、中、低剂量的左归丸混悬液,7 d后腹主动脉取血分离含药血清。采用噻唑蓝(MTT)法检测左归丸含药血清对MC3T3-E1细胞的增殖作用,采用改良钙钴染色法检测碱性磷酸酶(ALP)表达,采用茜素红染色法检测钙化结节,采用Western blotting法检测核结合因子α1(Cbfα1)和Ⅰ型胶原(ColⅠ)蛋白表达,采用real-time RT-PCR法检测TGF-β1、Smad4和Smad2 mRNA表达。结果:左归丸含药血清对MC3T3-E1细胞的促增殖作用呈剂量和时间相关性,其中以低剂量且体积分数为15%作用48 h后对MC3T3-E1的促增殖作用最大;左归丸含药血清能促进MC3T3-E1细胞ALP表达,增强细胞基质钙化,提高Cbfα1和ColⅠ蛋白分泌,上调TGF-β1、Smad4和Smad2 mRNA表达;加入ERK1/2信号通路特异性阻滞剂PD98059后,MC3T3-E1细胞增殖降低,ALP表达下降,细胞基质钙化减弱,Cbfα1和ColⅠ蛋白分泌降低,Smad4和Smad2 mRNA表达下调,TGF-β1 mRNA表达进一步上调。结论:左归丸可能通过干预ERK/TGF-β/Smads信号级联而调控成骨细胞的增殖和分化,这可能是其防治骨质疏松症的机制之一。  相似文献   

11.
目的:探讨细胞焦亡(pyroptosis)能否介导高糖(HG;45 mmol/L葡萄糖)引起的小鼠胚胎成骨细胞MC3T3-E1炎症和损伤。方法:应用细胞计数试剂盒8(CCK-8)检测成骨细胞活力;Western blot测定成骨细胞的核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)和胱天蛋白酶1(CASP1)的表达水平;ELISA法测定细胞培养上清液中白细胞介素18(IL-18)和IL-1β的水平;2',7'-二氯二氢荧光素二乙酯染色荧光显微镜照相法检测胞内活性氧(ROS)水平;罗丹明123染色荧光显微镜照相法测定线粒体膜电位(MMP)水平;碱性磷酸酶(ALP)试剂盒测定成骨细胞早期标志物ALP的活性;茜素红染色观察成骨细胞晚期标志物矿化结节的形成。结果:HG处理MC3T3-E1细胞24 h可明显促进NLRP3和CASP1的表达,引起IL-18和IL-1β的分泌增多,同时可使细胞活力降低,ROS生成和MMP丢失增加,成骨细胞分化与矿化功能下降(表现为ALP活性降低和矿化结节数量减少)。利用siRNA沉默CASP1表达可显著减轻HG引起的上述成骨细胞炎症和损伤。结论:焦亡可介导HG引起的MC3T3-E1细胞炎症和损伤。  相似文献   

12.
Surface roughness of titanium-based implants may enhance osteogenic differentiation of cells in vitro and bone-to-implant contact in vivo. Nevertheless, how surface roughness regulates the signaling pathway of osteoblasts is little understood. The study intended to investigate specifically the roles of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in regulating osteogenic differentiation of MC3T3-E1 murine preosteoblast cells on Ti surfaces. Substrates applied were two groups of titanium disks: (1) sand-blasted and acid-etched rough surfaces (SLA) and (2) smooth pretreated Ti surfaces (PT). Surface morphology of the two groups was examined by scanning electron microscope, and cell morphology cultured on Ti disks was observed by confocal microscope. The levels of alkaline phosphatase (ALP) activity and calcium deposition were measured and compared between the two groups. Real-time polymerase chain reaction was applied to detect the expression levels of osteogenic genes including runt related protein 2 (Runx2), osterix (OSX), osteocalcin (OCN) and osteoprotegerin (OPN) of the cells cultured on the two groups of substrates and on SLA surfaces treated with ERK1/2 inhibitor, PD98095. ERK1/2 activities in MC3T3-T1 cells were measured by Western-blotting on the two surfaces with or without PD98095. Cells cultured on rougher SLA surfaces displayed a more differentiated morphology. ALP activities at 7 days and 14 days and the calcium deposition at 28 days were significantly higher on SLA surfaces. The expression levels of Runx2, OSX, OPN and OCN were upregulated by the effect of surface roughness and PD98095 further upregulated the expression levels of these osteogenic genes on SLA surfaces. ERK1/2 phosphorylation was continuously inhibited by surface roughness at 2 days, 4 days and 6 days. In contrast, no marked alterations in ERK1/2 phosphorylation on PT surfaces were observed. PT surfaces treated with PD98095 (50 μM) and SLA surfaces without PD98095 both demonstrated reduced ERK1/2 phosphorylation of the cells, and the inhibitive effect of SLA surfaces was milder than that of PD98095. In conclusion, ERK1/2 pathway may be a negative regulator of cell differentiation in a dosage-dependent manner, and the enhancing effect of surface roughness on osteoblastic differentiation may be mediated through inhibiting ERK1/2 pathway.  相似文献   

13.
For bone morphogenetic protein (BMP) gene therapy to be a viable approach for enhancing implant osseointegration clinically, requires the development of efficient nonviral delivery vectors that can coat the implant. This study evaluated a multilayer cationic liposome-DNA complex (LDc) coating as a delivery vehicle for recombinant human BMP-2 (rhBMP-2). Multilayered coatings, comprising hyaluronic acid (HA) and LDc, were fabricated onto titanium using a layer-by-layer (LBL) assembly technique. Preosteoblastic MC3T3-E1 cells were cultured on the roughened titanium surfaces coated with multilayers of HA/LDc, or on uncoated or HA/liposome only surfaces as controls. The amount of rhBMP-2 secreted by the MC3T3-E1 cells and the effect of the various surfaces on cell viability, proliferation, alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and calcium deposition were evaluated. Messenger RNA levels of OC, ALP, Runx2, and Osx were also investigated. The results demonstrated that rhBMP-2 protein secreted into culture medium at 3 days was significantly higher than control groups. MC3T3-E1 cells cultured on the HA/LDc coating displayed significantly higher ALP activity and OC secretion at 7 days and 14 days culture, respectively. MC3T3-E1 cells cultured on HA/LDc upregulated expression of the osteoblast differentiation markers, especially on days 12 for OC and on days 6 and 12 for ALP and Osx. In conclusion, MC3T3-E1 cell cultured on the multilayer HA/LDc coating surface can secret rhBMP-2 protein and the protein levels were effective in inducing early osteogenic differentiation. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A: 2766-2774, 2012.  相似文献   

14.
目的考察频率对拉伸应变诱导成骨细胞凋亡的影响。方法采用Flexcell力学加载系统对小鼠前成骨细胞MC3T3-E1施加1%双轴拉伸应变刺激,频率分别为1、2、3、4、5 Hz,每天加载1 h,间歇性拉伸8 d;通过测定乳酸脱氢酶(LDH)活性检测细胞死亡率;采用Annexin V-FITC/PI流式细胞术观察细胞凋亡情况;实时PCR检测细胞凋亡标志基因caspase-3、-9以及Bcl-2、Bax基因水平;Western blotting检测caspase-3、-9蛋白表达。结果不同加载频率对成骨细胞LDH活性无影响;不同频率下流式细胞术总体凋亡率无显著性差异,但是2 Hz频率可诱导成骨细胞早期凋亡。2 Hz拉伸应变可明显上调caspase-3、-9基因和蛋白表达,上调Bax/Bcl2蛋白比值。结论 1%双轴拉伸应变刺激下1~5 Hz频率不能引起成骨细胞凋亡和死亡,但2 Hz频率可诱导成骨细胞早期凋亡,且通过上调Bax/Bcl-2表达实现的。  相似文献   

15.
背景:人牙周膜干细胞具有较强的成骨分化能力,人牙周膜干细胞来源外泌体作为牙周膜干细胞分泌的主要成分,对成骨细胞MC3T3-E1增殖和成骨分化的影响尚不明确。目的:探讨人牙周膜干细胞来源外泌体对MC3T3-E1细胞增殖和分化的影响。方法:采用酶消化法分离及培养人牙周膜干细胞,超速离心法提取人牙周膜干细胞来源外泌体,通过透射电镜、粒径分析及Western blot方法对人牙周膜干细胞来源外泌体进行鉴定;CCK8法检测不同质量浓度人牙周膜干细胞来源外泌体对MC3T3-E1细胞增殖的影响,茜素红染色观察100 mg/L人牙周膜干细胞来源外泌体对MC3T3-E1细胞成骨矿化的影响,Western blot检测100 mg/L人牙周膜干细胞来源外泌体干预前后MC3T3-E1细胞内MEK和ERK的磷酸化水平。结果与结论:①透射电镜观察可见外泌体为脂质双分子层形成的囊泡结构,粒径检测显示外泌体直径分布在50-120 nm,集中在79.86 nm,Western blot检测结果显示提取的外泌体中含有CD81,CD63,TSG101的表达;②与对照组相比,人牙周膜干细胞来源外泌体对MC3T3-E1细胞的增殖具有促进作用,且作用呈剂量依赖性;③与对照组相比,人牙周膜干细胞来源外泌体组MC3T3-E1细胞能够形成更多的钙结节;与对照组相比,人牙周膜干细胞来源外泌体组MC3T3-E1细胞内p-MEK及p-ERK蛋白表达量升高;④结果表明,人牙周膜干细胞来源外泌体可以显著促进MC3T3-E1增殖和成骨分化,推测可能与其激活MEK/ERK信号通路有关。  相似文献   

16.
《Connective tissue research》2013,54(1-4):249-257
To examine the effects that an organizing extracellular matrix might have on osteoblast precursors, we created MC3T3-E1 cell lines that stably incorporated a plasmid that expressed proαl(I) collagen chains having a truncated triple helical domain. Cells that had incorporated the proαl(I) expression plasmid (pMG155) efficiently secreted molecules with shortened prood(I) chains into culture media. Electron micrographs indicated that expression of the minigene dramatically interferes with normal type I collagen fibril architecture. The turnover of newly deposited collagenous matrix as measured by 3[H]-hydroxyproline release was 29% after a 14 day chase in cells expressing the mini-gene compared to essentially no turnover in control cultures. MC3T3-E1 cells in culture normally demonstrate a time dependent reduction of cell division followed by an increase in osteoblast characteristics. Cell number was consistently 20–25% higher than control in MC3T3-E1 cultures expressing the truncated prooαl(I) gene but ALP activity was only 45% of control. Secretion and steady state mRNA levels for osteocalcin were over fivefold higher than control cultures but expression of other extracellular matrix components was not changed. These findings demonstrate that osteoblasts require a normally structured collagenous matrix for inhibition of cellular proliferation and subsequent upregulation of ALP. However, in the presence of rapid turnover of osteoblast matrix, the gene for osteocalcin may be upregulated in response to local signals.  相似文献   

17.
背景:一系列研究表明自噬与分化有密切联系;骨形态发生蛋白2是诱导C2C12、MC3T3-E1成骨分化经典途径,是研究成骨分化过程的理想模型。 目的:观察自噬与骨形态发生蛋白2诱导细胞株C2C12、MC3T3-E1成骨分化的关系。 方法:Real-Time PCR检测MC3T3-E1与C2C12在骨形态发生蛋白2(100 μg/L)诱导培养3 d后成骨与自噬相关指标变化。碱性磷酸酶染色检测不同浓度3-甲基腺嘌呤(0,1,5,10 mmol/L)对骨形态发生蛋白2(100 μg/L)诱导培养7 d MC3T3-E1与C2C12成骨指标碱性磷酸酶变化,Western Blot检测C2C12和MC3T3-E1在骨形态发生蛋白2(100 μg/L)诱导不同时间点(0,12,24,48,72,96 h)LC3-Ⅰ/Ⅱ蛋白表达水平。 结果与结论:在骨形态发生蛋白2诱导细胞株C2C12、MC3T3-E1成骨分化过程中,诱导自噬相关mRNA与蛋白水平均有增高趋势,且自噬相关蛋白LC3水平增高与时间相关。同时,抑制自噬成骨分化过程中碱性磷酸酶表达水平降低。因此,自噬与骨形态发生蛋白2诱导细胞株C2C12、MC3T3-E1成骨分化过程有密切关系。 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程全文链接:  相似文献   

18.
19.
Isama K  Tsuchiya T 《Biomaterials》2003,24(19):3303-3309
Poly(L-lactide) (PLLA) has bioabsorbability and biocompatibility, and it is used as biodegradable screws, pins and plates for internal bone fixation. The purpose of this study was to clarify the effects of low molecular weight (Mw) PLLA on the proliferation and differentiation of mouse osteoblast-like MC3T3-E1 cells. MC3T3-E1 cells were cultured with the concentration of 5-50 microg/ml of PLLA with weight average Mw of 5000 (PLLA-5k) and 10,000 (PLLA-10k) for 2 weeks using the micromass culture. Both PLLAs did not affect the proliferation of MC3T3-E1 cells. However, the calcifications of MC3T3-E1 cells were stimulated with increasing the concentration of the PLLAs. Then PLLA-5k increased the calcification of MC3T3-E1 cells more than PLLA-10k. Additionally, both PLLAs increased the alkaline phosphatase (ALP) activity and calcium content of MC3T3-E1 cells up to the similar level to the calcification. These results indicated that low Mw PLLA enhanced the differentiation of MC3T3-E1 cells with no effect on the proliferation. Moreover, it was suggested that the increase of the ALP activity was a key step to stimulate the calcification of MC3T3-E1 cells. The osteoconductivity of implanted PLLA would be based on the enhancing effect of low Mw PLLA on the differentiation of the osteoblasts.  相似文献   

20.
The protective effect of quercitrin on the response of osteoblastic MC3T3-E1 cells to oxidative stress was evaluated. Osteoblasts were incubated with H2O2 and/or quercitrin, and markers of osteoblast function and oxidative damage were examined. Quercitrin treatment reversed the cytotoxic effect of H2O2 significantly (P < 0.05). This effect was blocked by ICI182780 and LY294002, suggesting that quercitrin's effect might be involved in estrogen action and results from PI3K mediated signaling pathway. Pretreatment of quercitrin increased collagen content, alkaline phosphatase (ALP) activity, and calcium deposition of osteoblasts compared with H2O2 treated cells and these effects were blocked by ERKs and p38 mitogen-activated protein kinases (MAPKs) inhibitors such as PD98059 and SB203580, respectively. These suggest that quercitrin-induced protective effect against osteoblast dysfunction by oxidative stress is associated with increased activation of ERKs and p38 MAPK. Pretreatment with quercitrin also reduced the increase in bone-resorbing factor, receptor activator of nuclear factor-kB ligand (RANKL) and oxidative damage markers (malondialdehyde, protein carbonyl, and nitrotyrosine) induced by H2O2. These results suggest that quercitrin may be protective against H2O2-induced dysfunction in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号