首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One possible means of driving antigen‐specific immune suppression is to expand or induce antigen‐specific FoxP3‐expressing Treg cells. One way of activating and expanding these specialized cells, both in vitro and in vivo, is by strong costimulation via CD28 with an agonistic anti‐CD28 monoclonal antibody, called anti‐CD28 superagonist (CD28SA). However, CD28SA also strongly activates conventional T (Tconv) cells to secrete proinflammatory cytokines and, under certain conditions, causes serious cytokine release syndrome. In this issue of European Journal of Immunology, Tabares et al. [Eur. J. Immunol. 2014. 44: 1225–1236] address how CD28SA can be used for the differential control of human Treg and Tconv cells to suppress immune responses without serious adverse effects. They show that, depending on the dose of the antibody or by comedication of cortico‐steroid, the selective expansion of Treg cells can be achieved without significantly activating Tconv cells to produce inflammatory cytokines. This difference in CD28 signal sensitivity between the two populations can be exploited for better control of immune responses.  相似文献   

2.
3.
Murine retinal pigment epithelial (RPE) cells suppress T-cell activation by releasing soluble inhibitory factors and promote the generation of regulatory T cells in vitro. These T cells exposed to RPE supernatants (RPE-induced Treg cells) can suppress the activation of bystander effector T cells via the production of transforming growth factor-beta (TGFβ). In the present study, we showed that human RPE-induced Treg cells are also able to acquire regulatory function when human RPE cell lines were pretreated with recombinant TGFβ2. These RPE-induced Treg cells produced TGFβ1 and IL-10 but not IFNγ, and they significantly suppressed the activation of target cell lines and intraocular T-cell clones established from patients with active uveitis. Moreover, CD4+CD25+ RPE-induced Treg cells expressed CTLA-4 and Foxp3 molecules, and the CD25+ Treg cells profoundly suppressed the T-cell activation. Thus, in vitro manipulated Treg cells acquire functions that participate in the establishment of immune tolerance in the eye.  相似文献   

4.
5.
目的 通过细胞水平探讨CD4+CD25+调节性T细胞(Treg)在T淋巴细胞与感染小鼠巨细胞病毒(MCMV)的小鼠胚胎成纤维细胞(MEF)共培养体系中发挥的免疫作用.方法 建立小鼠T细胞与感染MCMV的同系MEF(MEFMCMV)体外共培养细胞模型.通过噬斑法检测共培养上清中感染性病毒量;Western blot方法检测辅助性T细胞亚群TH1/TH2特异性转录因子T-bet/GATA-3蛋白表达水平;ELISA法检测共培养上清中细胞因子IL-4、IL-10和IFN-γ表达水平.结果 去除Treg的T细胞(TdepTreg)与MEFMCMV共培养3 d后可显著减少上清中的感染性病毒量;同时THl/TH2上游特异性转录因子T-bet/GATA.3和下游细胞因子IL-4、IL-10和IFN-γ的蛋白质表达水平显著升高.向共培养体系中添加Treg后病毒负荷量显著增加;T-bet/GATA-3和IFN-γ蛋白表达水平下降;IL-10蛋白表达水平在Treg比率为1%~2%时与TdepTreg组比较无显著差异,在Treg比率增至5%~20%时较TdepTreg组显著增加;而IL-4表达水平与TdepTreg组比较无显著差异,上述效应均与Treg添加比率成剂量相关性.结论 巨细胞病毒感染小鼠成纤维细胞后能激活效应性T细胞增殖活化,而Treg可抑制效应性T细胞在MCMV感染中的免疫保护作用.  相似文献   

6.
A key issue in mammalian immunology is how CD4+CD25+Foxp3+ regulatory T cells (T(reg) cells) suppress immune responses. Here we show that T(reg) cells induced apoptosis of effector CD4+ T cells in vitro and in vivo in a mouse model of inflammatory bowel disease. T(reg) cells did not affect the early activation or proliferation of effector CD4+ T cells. Cytokines that signal through the common gamma-chain suppressed T(reg) cell-induced apoptosis. T(reg) cell-induced effector CD4+ T cell death required the proapoptotic protein Bim, and effector CD4+ T cells incubated with T(reg) cells showed less activation of the prosurvival kinase Akt and less phosphorylation of the proapoptotic protein Bad. Thus, cytokine deprivation-induced apoptosis is a prominent mechanism by which T(reg) cells inhibit effector T cell responses.  相似文献   

7.
Dynamic regulatory mechanisms prevent autoreactive T cell activation. Upon T cell receptor crosslinking, CD4+CD25+ T regulatory (T(R)) cells block both the proliferation and cytokine production of CD4+CD25- effector cells in an apparent antigen non-specific manner. Within the T(R)population, L-selectin (CD62L)(hi)T(R)cells have been described as more efficient suppressors of T cell proliferation than CD62L(low)T(R)cells. We have previously reported that CD4+CD25+CD62L(hi)T(R)cells express elevated levels of two additional adhesion molecules, ICAM-1 (CD54) and P-selectin (CD62P) in comparison to non-T(R)cells. In the current study, we investigated the functional contribution of CD54 and CD62P expression to the suppressive phenotype of T(R)cells both in vitro and in vivo. While the CD4+CD25+ T(R)cell population was demonstrated to be significantly larger in CD62P-/- mice than in wild-type C57BL/6 mice, CD62P-/- T(R)cell function was deficient in vitro, but not in vivo. Interestingly, we detected no deficiencies in T(R)cell numbers or effector function in CD54-/- mice suggesting that T(R)cells may differ from effector CD4+ T cells in the requirement for CD54 expression within the immunological synapse. Collectively, these findings indicate that CD62P may influence T(R)cell differentiation/development and that T(R)cell activation occurs independently of CD54 expression.  相似文献   

8.
Hepatitis C virus (HCV)-specific CD4(+) effector T cell responses are likely to play a key role in the immunopathogenesis of HCV infection by promoting viral clearance and maintaining control of viraemia. As the precursor frequency of HCV-specific CD4(+) T cells in peripheral blood is low, favoured assay systems such as intracellular cytokine (ICC) or tetramer staining have limited utility for ex vivo analyses. Accordingly, the traditional lymphocyte proliferation assay (LPA) remains the gold standard, despite detecting responses in only a minority of infected subjects. Recently, we reported development and validation of a novel whole blood CD4(+) effector T cell assay based on ex vivo antigen stimulation followed by co-expression of CD25 and CD134 on CD4(+) T cells. Here we report adaptation of this assay to assessment of HCV-specific responses in cryopreserved peripheral blood mononuclear cells using standardised antigens, including peptide pools, viral supernatants and recombinant viral proteins. The assay allowed detection of HCV-specific CD4 responses in donors with both resolved and chronic infection. Responses were highly correlated with those revealed by LPA. Application of this assay will further define the role of CD4(+) T cells in the immunopathogenesis of HCV infection.  相似文献   

9.
CD4+ CD25+ regulatory T cells (Treg) exert suppressive functions on effector T cells in vitro and in vivo. However, the exact cellular events that mediate this inhibitory action remain largely unclear. To elucidate these events, we used intravital microscopy in a model of contact hypersensitivity (CHS) and visualized the leukocyte-endothelium interaction at the site of antigen challenge in awake C57BL/6 mice. Injection of Treg i.v. into sensitized mice at the time of local hapten challenge significantly inhibited rolling and adhesion of endogenous leukocytes to the endothelium. A similar inhibition of leukocyte recruitment could be recorded after injection of Treg-derived tissue culture supernatant. Thus, these data indicate that soluble factors may account for the suppressive effects. Accordingly we found that IL-10, but not TGF-beta, was produced by Treg upon stimulation and that addition of anti-IL-10 antibodies abrogated the suppressive effects of Treg and tissue culture supernatant in CHS reactions. Moreover, CD4+ CD25+ T cells isolated from IL-10-/- mice were not able to suppress the immune response induced by hapten treatment in C57BL/6 mice. In conclusion, our data suggest that cytokine-dependent rather than cell-cell contact-dependent mechanisms play a pivotal role in the suppression of CHS reactions by Treg in vivo.  相似文献   

10.
CD25+ regulatory T cells and tumor immunity   总被引:10,自引:0,他引:10  
Tumor cells express a range of antigens including self-antigens (those whose expression is shared by normal host tissue) and non-self antigens (such as those that arise as a result of mutations in normal cellular genes or in the case of some tumors, viral antigens). Immune responses to both types of antigen have been identified in human patients with cancer and in murine tumor models. In both cases, these responses are typically weak and generally fail to result in tumor rejection. Accumulating evidence indicates that a population of T cells, namely CD25(+) regulatory cells, is at least partly responsible for the poor immunogenicity of tumor cells. This evidence is discussed in the context of a murine model of melanoma.  相似文献   

11.
Human CD4+CD25+ regulatory T cells   总被引:17,自引:0,他引:17  
In this report, we review studies of human CD4+CD25+ regulatory T cells (T-reg). Although lagging a few years behind the discovery of these cells in the mouse, the equivalent population of CD4+CD25+ regulatory T cells has also been isolated from human peripheral blood, thymus, lymph nodes and cord blood. In general, the characteristics of this T cell subset are strikingly similar between mouse and man. In the recent explosion of research reports on human CD4+CD25+ cells, although the majority of the characteristics ascribed to these cells appear to be consistent, contrasting results have been found primarily in regards to potential involvement of TGFbeta and production of IL-10. One explanation for this variability may reside in the fact that markedly different techniques are used to isolate human CD4+CD25+ T-reg cells and thus may result in the comparison of T-reg populations that differ in cellular composition and/or activation state. Another potential explanation for differences in human T-reg function may rest on the extreme variability of the culture conditions and TCR stimuli that have been used to test the functional properties of these cells in vitro. The strength of the TCR signal provided to the culture greatly affects the functional outcome of the co-culture and can result in the difference between suppression and full activation. Surprisingly, it appears that stronger stimulation has a greater and more rapid effect on the T-resp cell than on the T-reg cell as it causes T-resp cells to quickly become resistant to suppression. Thus, the details of in vitro culture conditions may at least partially account for disparate findings in regard to the functional characterization of human CD4+CD25+ cells. Here we review the evidence regarding the identification of human CD4+CD25+ regulatory T cells and their possible mechanism(s) of function.  相似文献   

12.
《Autoimmunity》2013,46(8):590-597
Dysregulation of inflammatory responses is considered to be a key element in autoreactive immune responses. T regulatory cells (Tregs) are important to maintain self-tolerance and the role of CD4+CD25+FoxP3+ Tregs in autoimmunity has been extensively investigated. Recently, it was shown that Tregs in systemic lupus erythematosus lacked CD25 but were biologically functional. These data warrants for further investigation of CD25? Tregs in human autoimmunity. We analyzed relapsing–remitting multiple sclerosis (MS) patients by multicolor flow cytometry for the expression of CD3, CD4, IL2R (CD25), FoxP3, and the IL7R (CD127). Further, the level of Tregs was compared in remitting and relapsing patients and correlated with disease duration. Patients in relapse exhibited higher levels of FoxP3-positive Tregs lacking CD25 compared to healthy controls (p < 0.05), indicating that Tregs attempt to restrain immune activity during relapse. The proportion of Tregs tended to be decreased with disease duration, while CD25+CD4+ and CD25+CD8+ effector T-cell proportions were elevated and positively correlated with overall disease duration (p < 0.05). In conclusion, while MS patients in remission have normal levels of Tregs of different phenotype, relapsing patients show an increased proportion of systemic CD25? FoxP3+ Tregs. With time, the proportion of Tregs decrease while effector T cells expand.  相似文献   

13.
Development and function of CD25+CD4+ regulatory T cells   总被引:20,自引:0,他引:20  
The essential role played by CD25(+)CD4(+) regulatory T cells (T(R) cells) in the control of physiological as well as pathological immunity is now well established, but many aspects of their biology still remain unclear. One of the unresolved issues regards their development: where does this occur, what signals are required, and how do T(R) cells fit into the larger taxonomy of the T-cell family? Recent data has begun to shed light on the development and function of these important cells.  相似文献   

14.
Naive, CD4+ T cells proliferate extensively but fail to differentiate when they are transferred into unirradiated recipients that express alloantigen or transgenic antigen on all MHC class II+ cells. Addition of an agonist antibody to OX40 (CD134), a costimulatory TNF receptor family member expressed on activated CD4+ T cells, enables the proliferating T cells to accumulate as differentiated effector cells and kill the host animals. The donor T cells from anti-OX40-treated animals express high levels of IL-2R alpha (CD25) and acquire the ability to secrete IFN-gamma when stimulated with IL-12 and IL-18. OX40 promotes differentiation by 48 h in T cell priming, before changes in Bcl-2 expression or cell recovery become apparent. We found that a Bcl-2 transgene or deficiency in Fas or TNFR1 failed to influence accumulation of differentiated donor cells, and found larger changes in expression of cytokine and cytokine receptor genes than in survival genes. Accumulation of differentiated CD4+ effector T cells is initiated directly through OX40, but some OX40-deficient donor cells can gain effector function as bystanders to OX40+/+ cells. Taken together, these data suggest that CD4+ T cell differentiation to effector function is an important effect of OX40 engagement under conditions of ubiquitous antigen presentation.  相似文献   

15.
目的:研究CD4 CD25 FoxP3 调节性T细胞在类风湿关节炎患者(RA)外周血中的比例改变,并探讨其在疾病进程中的意义.方法:选取活动期及稳定期RA患者,采用细胞内染色的流式细胞术及定量PCR的方法,分别在蛋白质和mRNA水平检测FoxP3表达,并与正常人进行比较.结果:RA患者CD4和CD25双阳性细胞所占比例与对照组没有明显差异,而活动期患者外周血CD4 CD25high和CD4 CD25 FoxP3 细胞明显低于稳定期和对照组(P<0.05).FoxP3 mRNA表达水平与蛋白质表达水平变化相一致.结论:类风湿性关节炎活动期时CD4 CD25 FoxP3 调节性T细胞明显减少,这群调节性T细胞可能参与了类风湿性关节炎的病理进程.  相似文献   

16.
CD4+CD25+ T cells have been shown to inhibit experimentally induced organ-specific autoimmune disease and depletion of these regulatory T cells from normal mice results in development of such conditions. Furthermore, CD4+CD25+ T cells suppress the IL-2 production and thereby the proliferation of polyclonally activated CD4+CD25- T cells in vitro. The suppression in vitro is independent of secreted factors but requires interactions between CD4+CD25- and CD4+CD25+ T cells and antigen-presenting cells (APC). We have now further investigated the function of CD4+CD25+ T cells in vitro and have focused on their interactions with APC. We found that CD4+CD25+ T cells down-regulated the expression of the co-stimulatory molecules CD80 and CD86 on dendritic cells. The steady-state level of CD80 mRNA was also decreased, while the steady-state level of CD86 mRNA was not, suggesting that distinct mechanisms regulate the expression of these molecules. The down-regulation occurred even in the presence of stimuli that would normally increase the expression of CD80 and CD86 molecules. Thus, down-regulation of co-stimulatory molecules may be an additional effector function of these regulatory T cells.  相似文献   

17.
目的:分析Neuropilin-1 T细胞(Nrp-1 T细胞)与经典CD4 CD25 调节性T细胞(Treg)的关系并比较二者的免疫调节作用。方法:流式细胞术分析BALB/c小鼠脾脏T细胞上Nrp-1与CD4、CD25的表达关系并分选Nrp-1 T细胞及CD4 CD25 Treg,通过B16-F10-luc-G5黑色素肿瘤细胞体外培养实验并利用萤光成像系统,观察比较两种细胞对NK细胞杀伤B16-F10-luc-G5黑色素瘤细胞的影响。结果:CD4 CD25 Treg中表达Nrp-1的比例为(27.28±1.17)%,明显高于CD4 CD25-T细胞的(1.63±0.08)%(P<0.01);在体外实验中,Nrp-1 T细胞与CD4 CD25 Treg均能抑制NK细胞杀伤B16-F10-luc-G5黑色素瘤细胞,Nrp-1 T细胞组的肿瘤细胞数目在6、24、48、72h分别为984±15、1015±14、1261±21、1323±38,高于CD4 CD25 Treg组的931±4、983±8、1201±18、1256±18,两组肿瘤细胞数目在各时间点均有统计学意义(P<0.01)。结论:经典CD4 CD25 Treg中表达Nrp-1的细胞比例较高,Nrp-1 T细胞有负性免疫调节作用,抑制功能比CD4 CD25 Treg更强,可以作为一类新的Treg亚群。  相似文献   

18.
Thirty-five rheumatoid arthritis (RA) patients and 27 healthy volunteers were enrolled in the study. Regulatory T (Treg) cell numbers were significantly reduced in RA patients. RA Treg cells exhibited an impaired capacity to inhibit proliferation and cytokine secretion of autologous T effector (Teff) cells. However, the crossover experiments further indicated that this impaired suppression was due to resistance of Teff cells but not to an intrinsic defect of Treg cells in RA patients. RA Teff cells showed a higher expression of membrane tumor necrosis factor-related apoptosis-inducing ligand and secreted more soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL could induce apoptosis in Treg cells. Neutralization of TRAIL restored the regulation of Teff by Treg in RA patients. In summary, our data suggest that reduced peripheral Treg cell numbers and an increased resistance of Teff cells to suppression by Treg cells were present in RA patients, and TRAIL may be an underlying mechanism for the impaired regulation of Teff cells by Treg cells.  相似文献   

19.
Regulatory T cells (Tregs) are a subset of T cells that specialize in immune suppression. CD4+CD25+FoxP3+ T cells have been characterized as Tregs and extensively studied in mammals. In the absence of a putative FoxP3 ortholog in avians, CD4+CD25+ cells is characterized as Tregs in avians. Avian CD4+CD25+ cells produce high amounts of IL-10, TGF-β, CTLA-4, and LAG-3 mRNA; lack IL-2 mRNA; and suppress T cell proliferation in vitro through both contact-dependent and -independent pathways. Depleting avian CD4+CD25+ cells increases the proliferation of, IL-2 amount, and IFNγ mRNA amount of CD4+CD25 cells. Avian CD4+CD25+ cells lose their suppressive properties immediately after inflammation and acquire supersuppressive properties once inflammation subsides. Although Treg activity could be beneficial to the host, Tregs simultaneously inhibit host immunity and cause persistent infections of certain pathogens. Therapy targeted toward alleviating Treg mediated immune suppression can improve host immunity against those persistent pathogens and benefit poultry production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号