首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
The failing heart is subject to elevated metabolic demands, adverse remodeling, chronic apoptosis, and ventricular dysfunction. The interplay among such pathologic changes is largely unknown. Several laboratories have identified a unique posttranslational modification that may have significant effects on cardiovascular function. The O-linked β-N-acetylglucosamine (O-GlcNAc) posttranslational modification (O-GlcNAcylation) integrates glucose metabolism with intracellular protein activity and localization. Because O-GlcNAc is derived from glucose, we hypothesized that altered O-GlcNAcylation would occur during heart failure and figure prominently in its pathophysiology. After 5 d of coronary ligation in WT mice, cardiac O-GlcNAc transferase (OGT; which adds O-GlcNAc to proteins) and levels of O-GlcNAcylation were significantly (P < 0.05) elevated in the surviving remote myocardium. We used inducible, cardiac myocyte-specific Cre recombinase transgenic mice crossed with loxP-flanked OGT mice to genetically delete cardiomyocyte OGT (cmOGT KO) and ascertain its role in the failing heart. After tamoxifen induction, cardiac O-GlcNAcylation of proteins and OGT levels were significantly reduced compared with WT, but not in other tissues. WT and cardiomyocyte OGT KO mice underwent nonreperfused coronary ligation and were followed for 4 wk. Although OGT deletion caused no functional change in sham-operated mice, OGT deletion in infarcted mice significantly exacerbated cardiac dysfunction compared with WT. These data provide keen insights into the pathophysiology of the failing heart and illuminate a previously unrecognized point of integration between metabolism and cardiac function in the failing heart.  相似文献   

5.
Wang L  Zhao Y  Gui B  Fu R  Ma F  Yu J  Qu P  Dong L  Chen C 《The Journal of endocrinology》2011,210(2):173-179
The role of free fatty acids (FFAs) in glucagon secretion has not been well established, and the involvement of FFA receptor GPR40 and its downstream signaling pathways in regulating glucagon secretion are rarely demonstrated. In this study, it was found that linoleic acid (LA) acutely stimulated glucagon secretion from primary cultured rat pancreatic islets. LA at 20 and 40?μmol/l dose-dependently increased glucagon secretion both at 3?mmol/l glucose and at 15?mmol/l glucose, although 15?mmol/l glucose reduced basal glucagon levels. LA induced an increase in cytoplasmic free calcium concentrations ([Ca(2)(+)](i)) in identified rat α-cells, which is reflected by increased Fluo-3 intensity under confocal microscopy recording. The increase in [Ca(2)(+)](i) was partly inhibited by removal of extracellular Ca(2)(+) and eliminated overall by further exhaustion of intracellular Ca(2)(+) stores using thapsigargin treatment, suggesting that both Ca(2)(+) release and Ca(2)(+) influx contributed to the LA-stimulated increase in [Ca(2)(+)](i) in α-cells. Double immunocytochemical stainings showed that GPR40 was expressed in glucagon-positive α-cells. LA-stimulated increase in [Ca(2)(+)](i) was blocked by inhibition of GPR40 expression in α-cells after GPR40-specific antisense treatment. The inhibition of phospholipase C activity by U73122 also blocked the increase in [Ca(2)(+)](i) by LA. It is concluded that LA activates GPR40 and phospholipase C (and downstream signaling pathways) to increase Ca(2)(+) release and associated Ca(2)(+) influx through Ca(2)(+) channels, resulting in increase in [Ca(2)(+)](i) and glucagon secretion.  相似文献   

6.
7.
Three-amino-acid-loop-extension (TALE) homeodomain proteins including Meis and Pbx families are generally recognized for their roles in growth and differentiation during vertebrate embryogenesis and tumorigenesis. Whereas genetic studies indicate that Pbx1 regulates the development and function of insulin-producing pancreatic β-cells, the role of Meis family members in β-cells is still unknown. Here we show that Meis3 is abundantly expressed in pancreatic islets and β-cells and that it regulates β-cell survival. We further identify the 3-phosphoinositide-dependent protein kinase 1 (PDK1), a well-known kinase involved in the PI3K-Akt signaling pathway, as a direct Meis3 target, which mediates its role in β-cell survival. This regulatory module appears to function broadly as we also identify Meis3 regulation of cell survival and PDK1 expression in ovarian carcinoma cells, suggesting a unique function for Meis3 beyond the traditional roles for TALE homeodomain factors during embryogenesis.  相似文献   

8.
9.
10.
11.
Protein glycosylation via O-linked N-acetylglucosaminylation (O-GlcNAcylation) is an important post-translational regulatory mechanism mediated by O-GlcNAc transferase (OGT) and responsive to nutrients and stress. OGT attaches an O-GlcNAc moiety to proteins, while O-GlcNAcase (OGA) catalyzes O-GlcNAc removal. In skeletal muscle of experimental animals, prolonged increase in O-GlcNAcylation associates with age and muscle atrophy. Here we examined the effects of hormone replacement therapy (HRT) and power training (PT) on muscle OGT and OGA gene expression in postmenopausal women generally prone to age-related muscle weakness. In addition, the associations of OGT and OGA gene expressions with muscle phenotype were analyzed. Twenty-seven 50–57-year-old women participated in a yearlong randomized placebo-controlled trial: HRT (n = 10), PT (n = 8) and control (n = 9). OGT and OGA mRNA levels were measured from muscle samples obtained at baseline and after one year. Knee extensor muscle cross-sectional area (CSA), knee extension force, running speed and vertical jumping height were measured. During the yearlong intervention, HRT suppressed the aging-associated upregulation of OGT mRNA that occurred in the controls. The effects of PT were similar but weaker. HRT also tended to increase the OGA mRNA level compared to the controls. The change in the ratio of OGT to OGA gene expressions correlated negatively with the change in muscle CSA. Our results suggest that OGT and OGA gene expressions are associated with muscle size during the critical postmenopausal period. HRT and PT influence muscle OGT and OGA gene expression, which may be one of the mechanisms by which HRT and PT prevent aging-related loss of muscle mass.  相似文献   

12.
13.
The development of the foetal heart is driven by increased glucose uptake and activation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1α (HIF-1α), which drives glycolysis. In contrast, the healthy adult heart is governed by sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK), which promote fatty-acid oxidation and the substantial mitochondrial ATP production required for survival in a high-workload normoxic environment. During cardiac injury, the heart recapitulates the foetal signalling programme, which (although adaptive in the short term) is highly deleterious if sustained for long periods of time. Prolonged increases in glucose uptake in cardiomyocytes under stress leads to increased flux through the hexosamine biosynthesis pathway; its endproduct – uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) – functions as a critical nutrient surplus sensor. UDP-GlcNAc drives the post-translational protein modification known as O-GlcNAcylation, which rapidly and reversibly modifies thousands of intracellular proteins. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which adds or removes GlcNAc (N-acetylglucosamine), respectively, from target proteins. Recapitulation of foetal programming in heart failure (regardless of diabetes) is accompanied by marked increases in O-GlcNAcylation, both experimentally and clinically. Heightened O-GlcNAcylation in the heart leads to impaired calcium kinetics and contractile derangements, arrhythmias related to activation of voltage-gated sodium channels and Ca2+/calmodulin-dependent protein kinase II, mitochondrial dysfunction, and maladaptive hypertrophy, microvascular dysfunction, fibrosis and cardiomyopathy. These deleterious effects can be prevented by suppression of O-GlcNAcylation, which can be achieved experimentally by upregulation of AMPK and SIRT1 or by pharmacological inhibition of OGT or stimulation of OGA. The effects of sodium–glucose cotransporter 2 (SGLT2) inhibitors on the heart are accompanied by reduced O-GlcNAcylation, and their cytoprotective effects are reportedly abrogated if their action to suppress O-GlcNAcylation is blocked. Such an action may represent one of the many mechanisms by which enhanced AMPK and SIRT1 signalling following SGLT2 inhibition leads to cardiovascular benefits. These observations, taken collectively, suggest that UDP-GlcNAc functions as a critical nutrient surplus sensor (which acting in concert with mTOR and HIF-1α) can promote the development of cardiomyopathy.  相似文献   

14.
High concentrations of glucose induce de novo fatty acid synthesis in pancreatic β-cells and chronic exposure of elevated glucose and fatty acids synergize to induce accumulation of triglycerides, a phenomenon termed glucolipotoxicity.

Here we investigate the role of sterol-regulatory element binding proteins in glucose-induced lipogenesis in the pancreatic β-cell line INS-1E. We show that glucose induces SREBP-1c expression and SREBP-1 activity independent of insulin secretion and signaling. Using adenoviral expression of SREBP-1c and a SREBP-mutant we show that lipogenic gene expression, de novo fatty acid synthesis and lipid accumulation are induced primarily through sterol-regulatory elements (SREs) and not E-Boxes. Adenoviral expression of a dominant negative SREBP compromises glucose induction of some lipogenic genes and significantly reduces glucose-induction of de novo fatty acid synthesis. Thus, we demonstrate for the first time that SREBP activity is necessary for full glucose induction of de novo fatty acid synthesis in pancreatic β-cells.  相似文献   


15.
We recently showed that activation of G protein-coupled receptor 119 (GPR119) (also termed glucose dependent insulinotropic receptor) improves glucose homeostasis via direct cAMP-mediated enhancement of glucose-dependent insulin release in pancreatic beta-cells. Here we show that GPR119 also stimulates incretin hormone release and thus may regulate glucose homeostasis by this additional mechanism. GPR119 mRNA was found to be expressed at significant levels in intestinal subregions that produce glucose-dependent insulinotropic peptide and glucagon-like peptide (GLP)-1. Furthermore, in situ hybridization studies indicated that most GLP-1-producing cells coexpress GPR119 mRNA. In GLUTag cells, a well-established model of intestinal L-cell function, the potent GPR119 agonist AR231453 stimulated cAMP accumulation and GLP-1 release. When administered in mice, AR231453 increased active GLP-1 levels within 2 min after oral glucose delivery and substantially enhanced total glucose-dependent insulinotropic peptide levels. Blockade of GLP-1 receptor signaling with exendin(9-39) reduced the ability of AR231453 to improve glucose tolerance in mice. Conversely, combined administration of AR231453 and the DPP-4 inhibitor sitagliptin to wild-type mice significantly amplified both plasma GLP-1 levels and oral glucose tolerance, relative to either agent alone. In mice lacking GPR119, no such enhancement was seen. Thus, GPR119 regulates glucose tolerance by acting on intestinal endocrine cells as well as pancreatic beta-cells. These data also suggest that combined stimulation of incretin hormone release and protection against incretin hormone degradation may be an effective antidiabetic strategy.  相似文献   

16.
17.
Among various second messengers, phosphatidylinositol 3,4,5-triphosphate (PIP3) and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] regulate a variety of cellular processes, such as cell survival, polarization, and proliferation. Many of these functions are achieved via activation of serine/threonine kinase Akt. To investigate the spatiotemporal regulation of these lipids, we constructed a genetically targetable phosphoinositide (PI) indicator by sandwiching pleckstrin homology (PH) domain of Akt and a "pseudoligand" containing acidic amino acid residues, between cyan and yellow mutants of GFP. In living cells, elevations in PIP3 and PI(3,4)P2 by growth factor-induced activation of phosphatidylinositol 3-kinase (PI3K) resulted in a change in fluorescence resonance energy transfer (FRET) between the fluorescent proteins, increasing yellow to cyan emission ratios by 10-30%. This response can be reversed by inhibiting PI3K and abolished by mutating the critical residues responsible for PI binding. Differential dynamics of PIs were observed at plasma membrane of NIH 3T3 cells, stimulated by various growth factors. On the other hand, the nuclear targeted indicator showed no response within an hour after platelet-derived growth factor stimulation, suggesting that no appreciable amounts of accessible PIP3 and PI(3,4)P2 were produced in the nucleus. Furthermore, simultaneous imaging of a plasma membrane-targeted PI indicator and a nuclear-targeted Akt activity reporter revealed a gradual and sustained accumulation of Akt activity in the nucleus after rapid and transient production of PIP3 and PI(3,4)P2 at plasma membrane in the same cell. Thus, signal propagation from the lipid messengers at plasma membrane to the effectors in the nucleus is precisely controlled by kinases as well as lipid and protein phosphatases.  相似文献   

18.
The PI3-kinase (PI3K) pathway regulates many cellular processes, especially cell metabolism, cell survival, and apoptosis. Phosphatidylinositol-3,4,5-trisphosphate (PIP3), the product of PI3K activity and a key signaling molecule, acts by recruiting pleckstrin-homology (PH) domain-containing proteins to cell membranes. Here, we describe a new structural class of nonphosphoinositide small molecule antagonists (PITenins, PITs) of PIP3-PH domain interactions (IC(50) ranges from 13.4 to 31 μM in PIP3/Akt PH domain binding assay). PITs inhibit interactions of a number of PIP3-binding PH domains, including those of Akt and PDK1, without affecting several PIP2-selective PH domains. As a result, PITs suppress the PI3K-PDK1-Akt pathway and trigger metabolic stress and apoptosis. A PIT-1 analog displayed significant antitumor activity in vivo, including inhibition of tumor growth and induction of apoptosis. Overall, our studies demonstrate the feasibility of developing specific small molecule antagonists of PIP3 signaling.  相似文献   

19.
GnRH is the main regulator of the hypothalamic-pituitary-gonadal (H-P-G) axis. GnRH stimulates the pituitary gonadotroph to synthesize and secrete gonadotrophins (LH and FSH), and this effect of GnRH is dependent on the availability of glucose and other nutrients. Little is known about whether GnRH regulates glucose metabolism in the gonadotroph. This study examined the regulation of glucose transporters (Gluts) by GnRH in the LβT2 gonadotroph cell line. Using real-time PCR analysis, the expression of Glut1, -2, -4, and -8 was detected, but Glut1 mRNA expression level was more abundant than the mRNA expression levels of Glut2, -4, and -8. After the treatment of LβT2 cells with GnRH, Glut1 mRNA expression was markedly induced, but there was no GnRH-induction of Glut2, -4, or -8 mRNA expression in LβT2 cells. The effect of GnRH on Glut1 mRNA expression is partly mediated by ERK activation. GnRH increased GLUT1 protein and stimulated GLUT1 translocation to the cell surface of LβT2 cells. Glucose uptake assays were performed in LβT2 cells and showed that GnRH stimulates glucose uptake in the gonadotroph. Finally, exogenous treatment of mice with GnRH increased the expression of Glut1 but not the expression of Glut2, -4, or -8 in the pituitary. Therefore, regulation of glucose metabolism by GnRH via changes in Gluts expression and subcellular location in the pituitary gonadotroph reveals a novel response of the gonadotroph to GnRH.  相似文献   

20.
己糖胺合成通路(HBP)是机体正常的葡萄糖代谢途径之一,其流量随细胞外葡萄糖水平的增加而增加,被认为是机体的能量感受器,在胰岛素抵抗及糖尿病血管并发症等方面发挥着重要作用.其关键酶是谷氨酰胺:6-磷酸果糖酰基转移酶(GFAT),其终产物是二磷酸尿嘧啶-N-乙酰葡萄糖胺(UDP-GlcNAc).UDP-GlcNAc可被氧联糖基化转移酶修饰生成氧联乙酰葡萄糖胺(O-GlcNAc),后者可对细胞中许多重要的蛋白进行翻译后修饰,调节细胞功能.因此,HBP的流量增加可导致氧联糖基化的增加,从而引起一系列代谢紊乱.本文就HBP的下游产物O-GlcNAc在糖尿病发生、发展中的作用作一概述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号