首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Differing factors may alter the effects of antibody to tumor necrosis factor (TNF) in infection and sepsis. The authors tested whether bacteria type or treatment route alters antibody to TNF in a rat model of bacterial pneumonia.

Methods: Rats (n = 231) received similarly lethal doses of either intratracheal Escherichia coli or Staphylococcus aureus followed by treatment with either intratracheal or intraperitoneal antibody to TNF or control serum. Animals received antibiotics (cefotiam daily dose, 100 mg/kg) starting 4 h after inoculation and were studied for up to 96 h.

Results: Compared with S. aureus, E. coli increased serum TNF and interleukin-6 concentrations, lung lavage TNF concentrations, neutrophil counts, and alveolar-to-arterial oxygen gradients and decreased circulating neutrophils and lymphocytes (P >= 0.05 for all). Compared with controls, with both bacteria, except for lung lavage TNF concentrations (which decreased with intratracheal but not with intraperitoneal antibody to TNF), treatment route did not alter the effects of antibody to TNF on any parameter (P = not significant for all). Antibody to TNF reduced mortality rates (relative risk of death +/- SEM) with both E. coli (-1.6 +/- 0.6;P = 0.006) and S. aureus (-0.5 +/- 0.04;P = 0.185), but these reductions were greater with E. coli than with S. aureus in a trend approaching statistical significance (P = 0.09). Compared with controls, similarly (P = not significant) with both bacteria, antibody to TNF decreased lung lavage and tissue bacteria concentrations (both P < 0.05) and serum TNF concentration (P < 0.09) and increased circulating neutrophils and lymphocytes (both P <= 0.01). Compared with S. aureus, with E. coli antibody to TNF decreased alveolar-to-arterial oxygen gradients (P = 0.04) and increased serum interleukin-6 concentrations (P = 0.003).  相似文献   


2.
Background: Bulleyaconitine A (BLA) is an active ingredient of Aconitum bulleyanum plants. BLA has been approved for the treatment of chronic pain and rheumatoid arthritis in China, but its underlying mechanism remains unclear.

Methods: The authors examined (1) the effects of BLA on neuronal voltage-gated Na+ channels in vitro under the whole cell patch clamp configuration and (2) the sensory and motor functions of rat sciatic nerve after single BLA injections in vivo.

Results: BLA at 10 [mu]m did not affect neuronal Na+ currents in clonal GH3 cells when stimulated infrequently to +50 mV. When stimulated at 2 Hz for 1,000 pulses (+50 mV for 4 ms), BLA reduced the peak Na+ currents by more than 90%. This use-dependent reduction of Na+ currents by BLA reversed little after washing. Single injections of BLA (0.2 ml at 0.375 mm) into the rat sciatic notch not only blocked sensory and motor functions of the sciatic nerve but also induced hyperexcitability, followed by sedation, arrhythmia, and respiratory distress. When BLA at 0.375 mm was coinjected with 2% lidocaine (approximately 80 mm) or epinephrine (1:100,000) to reduce drug absorption by the bloodstream, the sensory and motor functions of the sciatic nerve remained fully blocked for approximately 4 h and regressed completely after approximately 7 h, with minimal systemic effects.  相似文献   


3.
Background: Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used.

Methods: Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3+ T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays.

Results: Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis.  相似文献   


4.
5.
6.
Background: A new pulmonary drug delivery system produces aerosols from disposable packets of medication. This study compared the pharmacokinetics and pharmacodynamics of morphine delivered by an AERx prototype with intravenous morphine.

Methods: Fifteen healthy volunteers were enrolled. Two subjects were administered four inhalations of 2.2 mg morphine each at 1-min intervals or 4.4 mg over 3 min by intravenous infusion. Thirteen subjects were given twice the above doses, i.e., eight inhalations or 8.8 mg intravenously over 7 min. Arterial blood sampling was performed every minute during administration and at 2, 5, 7, 10, 15, 20, 45, 60, 90, 120, 150, 180, and 240 min after administration. The effect of morphine was assessed by measuring pupil diameter and ventilatory response to a hypercapnic challenge. Pharmacokinetic and pharmacodynamic analyses were performed simultaneously using mixed-effect models.

Results: The pharmacokinetic data after intravenous administration were described by a three-exponent decay model preceded by a lag time. The pharmacokinetic model for administration by inhalation consisted of the three-exponent intravenous pharmacokinetic model preceded by a two-exponent absorption model. The authors found that, with administration by inhalation, the total bioavailability was 59%, of which 43% was absorbed almost instantaneously and 57% was absorbed with a half-life of 18 min. The median times to the half-maximal miotic effects of morphine were 10 and 5.5 min after inhalation and intravenous administration, respectively (P < 0.01). The pharmacodynamic parameter ke0 was approximately 0.003 min-1.  相似文献   


7.
8.
Background: Pulmonary surfactant is a complex mixture of proteins and phospholipids synthetized by alveolar type II cells. Volatile anesthetics have been shown to reduce surfactant phospholipid biosynthesis by rat alveolar type II cells. Surfactant-associated protein C (SP-C) is critical for the alveolar surfactant functions. Our goal was to evaluate the effects of halothane and thiopental on SP-C messenger RNA (mRNA) expression in vitro in rat alveolar type II cells and in vivo in mechanically ventilated rats.

Methods: In vitro, freshly isolated alveolar type II cells were exposed to halothane during 4 h (1, 2, 4%) and 8 h (1%), and to thiopental during 4 h (10, 100 [mu]m) and 8 h (100 [mu]m). In vivo, rats were anesthetized with intraperitoneal thiopental or inhaled 1% halothane and mechanically ventilated for 4 or 8 h. SP-C mRNA expression was evaluated by ribonuclease protection assay.

Results: In vitro, 4-h exposure of alveolar type II cells to thiopental 10 and 100 [mu]m increased their SP-C mRNA content to 145 and 197%, respectively, of the control values. In alveolar type II cells exposed for 4 h to halothane 1, 2, and 4%, the SP-C mRNA content increased dose-dependently to 160, 235, and 275%, respectively, of the control values. In vivo, in mechanically ventilated rats, 4 h of halothane anesthesia decreased the lung SP-C mRNA content to 53% of the value obtained in control (nonanesthetized, nonventilated) animals; thiopental anesthesia increased to 150% the lung SP-C mRNA content.  相似文献   


9.
Background : The authors hypothesized that perioperative lymphocytopenia is partially caused by apoptosis of lymphocytes induced by inhalation anesthetics. Therefore, they evaluated whether sevoflurane and isoflurane induce apoptosis of normal peripheral lymphocytes.

Methods : Normal peripheral blood mononuclear cells were exposed to sevoflurane and isoflurane, and the percentages of apoptotic lymphocytes was measured by Annexin V-fluorescein isothiocyanate-7-amino actinomycin D flow cytometry after 24 h of exposure (0.5, 1.0, and 1.5 mm) and after 6, 12, and 24 h of exposure (1.5 mm). The percentages of lymphocytes with caspase 3-like activity were also measured after 24 h of exposure (1.5 mm).

Results : The percentages of apoptotic lymhocytes were increased in a dose-dependent manner (controls: 5.1 +/- 1.4%; sevo-flurane: 7.3 +/- 1.3% [0.5 mm], 9.1 +/- 1.5% [1.0 mm], 12.6 +/- 2.1% [1.5 mm]; isoflurane: 7.5 +/- 1.6% [0.5 mm], 10.5 +/- 1.5% [1.0 mm], 16.3 +/- 2.7% [1.5 mm]) after 24 h of exposure and in a time-dependent manner (controls: 1.2 +/- 0.4% [6 h], 3.4 +/- 0.7% [12 h], 5.6 +/- 1.2% [24 h]; sevoflurane: 1.8 +/- 0.4% [6 h], 6.4 +/- 1.2% [12 h], 11.3 +/- 2.2% [24 h]; isoflurane: 2.6 +/- 0.5% [6 h], 8.8 +/- 1.5% [12 h],16.0 +/- 1.9% [24 h]) at the concentration of 1.5 mm. The percentages of lymphocytes with caspase 3-like activity were increased (controls: 10.0 +/- 1.1%; sevoflurane: 13.8 +/- 1.2%; isoflurane: 17.0 +/- 1.3%).  相似文献   


10.
Background: In 1992, Medicare changed its method for calculating physician payments. The resulting fee schedules have contained low payments for anesthesiologists. Now, other third-party (insurance) payers are using these schedules. The financial impact on anesthesiologists if all payers pay Medicare rates is unknown.

Methods: Payments from Medicare were compared with payments from other third parties in each clinical procedural terminology (CPT) grouping used by the West Virginia University Department of Anesthesiology during 1998. Changes in total Department of Anesthesiology receipts were determined if non-Medicare third-party payers paid Medicare rates. Then, the effect of adding payments at Medicare rates from patients without insurance was determined. Finally, potential changes in receipts of the Departments of Anesthesiology, Radiology, Surgery, and Medicine were compared by considering only patients with insurance and recalculating total payments to the departments using Medicare rates.

Results: Medicare paid less than other third-party payers in every clinical procedural terminology group. Total Department of Anesthesiology payments would decrease by 31% if all non-Medicare third-parties paid Medicare rates. Adding payments at Medicare rates from patients without insurance still leads to a 21% decrease in total Department of Anesthesiology receipts. Considering only patients with third-party coverage, Medicare-rate payments would decrease total Department of Anesthesiology payments by 37%, whereas radiology, surgery, and medicine payments would decrease by 26, 22, and 13% respectively.  相似文献   


11.
12.
13.
14.
15.
Background: Xenon, the "inert" gaseous anesthetic, is an antagonist at the N-methyl-d-aspartate (NMDA)-type glutamate receptor. Because of the pivotal role that NMDA receptors play in neuronal injury, the authors investigated the efficacy of xenon as a neuroprotectant in both in vitro and in vivo paradigms.

Methods: In a mouse neuronal-glial cell coculture, injury was provoked either by NMDA, glutamate, or oxygen deprivation and assessed by the release of lactate dehydrogenase into the culture medium. Increasing concentrations of either xenon or nitrogen (10-75% of an atmosphere) were coadministered and maintained until injury was assessed. In separate in vivo experiments, rats were administered N-methyl-dl-aspartate and killed 3 h later. Injury was quantified by histologic assessment of neuronal degeneration in the arcuate nucleus of the hypothalamus.

Results: Xenon exerted a concentration-dependent protection against neuronal injury provoked by NMDA (IC50 = 19 +/- 6% atm), glutamate (IC50 = 28 +/- 8% atm), and oxygen deprivation (IC50 = 10 +/- 4% atm). Xenon (60% atm) reduced lactate dehydrogenase release to baseline concentrations with oxygen deprivation, whereas xenon (75% atm) reduced lactate dehydrogenase release by 80% with either NMDA- or glutamate-induced injury. In an in vivo brain injury model in rats, xenon exerted a concentration-dependent protective effect (IC50 = 78 +/- 8% atm) and reduced the injury by 45% at the highest xenon concentration tested (75% atm).  相似文献   


16.
Background: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S (+)-ketamine on ischemic preconditioning in the rabbit heart in vivo.

Methods: In 46 [alpha]-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S (+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg-1) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point.

Results: Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S (+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0).  相似文献   


17.
Background: Occupational exposure of healthcare workers to natural rubber latex has led to sensitization and potentially life-threatening anaphylaxis. Although environmental exposure to natural rubber latex products is necessary for sensitization, it is not sufficient. A number of genetic factors also seem to contribute to the latex sensitization; however, the multigenic nature of the allergic phenotype has made the identification of susceptibility genes difficult. The current study tests the hypothesis that known functional polymorphisms in genes encoding interleukin 4, interleukin 13, and interleukin 18 occur in a higher frequency in healthcare workers with natural rubber latex allergy.

Methods: Four hundred thirty-two healthcare workers with occupational exposure to natural rubber latex were screened using a clinical history questionnaire and latex-specific immunoglobulin E serology. Genomic DNA was extracted from peripheral blood lymphocytes and analyzed for single-nucleotide polymorphisms in candidate genes of interest. Data from cases and controls were analyzed by nominal logistic regression, with P < 0.05 considered significant.

Results: The latex allergy phenotype was significantly associated with promoter polymorphisms in IL13 -1055 (P = 0.02), IL18 -607 (P = 0.02), and IL18 -656 (P = 0.02) compared with nonatopic controls.  相似文献   


18.
Background: Ventilator-associated pneumonia is the leading nosocomial infection in critically ill patients. The frequency of ventilator-associated pneumonia caused by multidrug-resistant bacteria has increased in recent years, and these pathogens cause most of the deaths attributable to pneumonia. The authors, therefore, evaluated factors associated with selected multidrug-resistant ventilator-associated pneumonia in critical care patients.

Methods: The authors prospectively recorded potential risk factors at the time of intensive care unit admission. An endotracheal aspirate was obtained in all patients who met clinical criteria for pneumonia. Patients were considered to have ventilator-associated pneumonia only when they met the clinical criteria and aspirate culture was positive for bacteria 48 h or more after initiation of mechanical ventilation. Pediatric patients were excluded. Adult patients with ventilator-associated pneumonia were first grouped as "early-onset" (< 5 days) and "late-onset," determined by episodes of ventilator-associated pneumonia, and then, assigned to four groups based on the bacteria cultured from their tracheal aspirates:Pseudomonas aeruginosa, Acinetobacter baumanii, methicillin-resistant staphylococci, and all others. The first three bacteria were considered to be multidrug resistant, whereas the others were considered to be antibiotic susceptible. Potential risk factors were evaluated with use of univariate statistics and multivariate regression.

Results: Among 486 consecutive patients admitted during the study, 260 adults underwent mechanical ventilation for more than 48 h. Eighty-one patients (31%) experienced 99 episodes of ventilator-associated pneumonia, including Pseudomonas (33 episodes), methicillin-resistant staphylococci (17 episodes), Acinetobacter (9 episodes), and nonresistant bacteria (40 episodes). Sixty-six of these episodes were early onset and 33 episodes were late onset. Logistic regression analysis identified three factors significantly associated with early-onset ventilator-associated pneumonia caused by any one of the multidrug-resistant bacterial strains: emergency intubation (odds ratio, 6.4; 95% confidence interval, 2.0-20.2), aspiration (odds ratio, 12.7; 95% confidence interval, 2.4-64.6), and Glasgow coma score of 9 or less (odds ratio, 3.9; 95% confidence interval, 1.3-11.3). A. baumanii-related pneumonia cases were found to be significantly associated with two of these factors: aspiration (odds ratio, 14.2; 95% confidence interval, 1.5-133.8) and Glasgow coma score (odds ratio, 6.0; 95% confidence interval, 1.1-32.6).  相似文献   


19.
20.
Background: Volatile anesthetics protect against cardiac ischemia-reperfusion injury via adenosine triphosphate-dependent potassium channel activation. The authors questioned whether volatile anesthetics can also protect against renal ischemia-reperfusion injury and, if so, whether cellular adenosine triphosphate-dependent potassium channels, antiinflammatory effects of volatile anesthetics, or both are involved.

Methods: Rats were anesthetized with equipotent doses of volatile anesthetics (desflurane, halothane, isoflurane, or sevoflurane) or injectable anesthetics (pentobarbital or ketamine) and subjected to 45 min of renal ischemia and 3 h of reperfusion during anesthesia.

Results: Rats treated with volatile anesthetics had lower plasma creatinine and reduced renal necrosis 24-72 h after injury compared with rats anesthetized with pentobarbital or ketamine. Twenty-four hours after injury, sevoflurane-, isoflurane-, or halothane-treated rats had creatinine (+/- SD) of 2.3 +/- 0.7 mg/dl (n = 12), 1.8 +/- 0.5 mg/dl (n = 6), and 2.4 +/- 1.2 mg/dl (n = 6), respectively, compared with rats treated with pentobarbital (5.8 +/- 1.2 mg/dl, n = 9) or ketamine (4.6 +/- 1.2 mg/dl, n = 8). Among the volatile anesthetics, desflurane demonstrated the least reduction in plasma creatinine after 24 h (4.1 +/- 0.8 mg/dl, n = 12). Renal cortices from volatile anesthetic-treated rats demonstrated reduced expression of intercellular adhesion molecule 1 protein and messenger RNA as well as messenger RNAs encoding proinflammatory cytokines and chemokines. Volatile anesthetic treatment reduced renal cortex myeloperoxidase activity and reduced nuclear translocation of proinflammatory nuclear factor [kappa]B. Adenosine triphosphate-dependent potassium channels are not involved in sevoflurane-mediated renal protection because glibenclamide did not block renal protection (creatinine: 2.4 +/- 0.4 mg/dl, n = 3).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号