首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Primary stability and an optimized load transfer are assumed to account for an undisturbed osseointegration process of implants. Immediate loaded newly designed titanium dental implants inserted in the mandible of minipigs were used for the characterization of the interfacial area between the implant surface and the surrounding bone tissue during the early healing phase. Histological and electron microscopical studies were performed from implant containing bone specimens. Two different load regimens were applied to investigate the load related tissue reaction. Histological and electron microscopical analysis revealed a direct bone apposition on the implant surfaces, as well as the attachment of cells and matrix proteins in the early loading phase. A striking finding of the ultrastructural immunocytochemical investigations was the synthesis and deposition of bone related proteins (osteonectin, fibronectin, fibronectin receptor) by osteoblasts from day one of bone/biomaterial interaction. Calcium-phosphate needle-like crystallites were newly synthesized in a time-related manner directly at the titanium surface. No difference in the ultrastructural appearance of the interface was found between the two loading groups. Our experimental data suggest that loading of specially designed implants can be performed immediately after insertion without disturbing the biological osseointegration process.  相似文献   

2.
The significance of micrometer-sized strut porosity in promoting bone ingrowth into porous hydroxyapatite (HA) scaffolds has only recently been noted. In this study, silicon-substituted HA (0.8 wt % Si-HA) with approximately 8.5% of the total porosity present as microporosity within the struts of the implant was prepared for high-resolution transmission electron microscopy (HR-TEM) via both ultramicrotomy and focused ion beam milling. Between the struts of the porous Si-HA, pores with varying shapes and sizes (1-10 microm in diameter) were characterized. Within the struts, the Si-HA contained features such as grain boundaries and triple-junction grain boundaries. Bone ingrowth and dissolution from a Si-HA implant were studied using HR-TEM after 6 weeks in vivo. Minor local dissolution occurred within several pores within the struts. Organized, mineralized collagen fibrils had grown into the strut porosity at the interface between the porous Si-HA implant and the surface of the surrounding bone. In comparison, deeper within the implant, disorganized and poorly mineralized fibers were observed within the strut porosity. These findings provide valuable insight into the development of bone around porous Si-HA implants.  相似文献   

3.
4.
《Acta biomaterialia》2014,10(12):5156-5168
Bioactive materials play an important role in facilitating dental pulp repair when living dental pulp is exposed after injuries. Mineral trioxide aggregate is the currently recommended material of choice for pulp repair procedures though has several disadvantages, especially the inconvenience of handling. Little information is yet available about the early events and molecular mechanisms involved in bioceramic-mediated dental pulp repair. We aimed to characterize and determine the apatite-forming ability of the novel ready-to-use nanoparticulate bioceramic iRoot BP Plus, and investigate its effects on the in vitro recruitment of human dental pulp stem cells (DPSCs), as well as its capacity to induce dentin bridge formation in an in vivo model of pulp repair. It was found that iRoot BP Plus was nanosized and had excellent apatite-forming ability in vitro. Treatment with iRoot BP Plus extracts promoted the adhesion, migration and attachment of DPSCs, and optimized focal adhesion formation (Vinculin, p-Paxillin and p-Focal adhesion kinase) and stress fibre assembly. Consistent with the in vitro results, we observed the formation of a homogeneous dentin bridge and the expression of odontogenic (dentin sialoprotein, dentin matrix protein 1) and focal adhesion molecules (Vinculin, p-Paxillin) at the injury site of pulp repair model by iRoot BP Plus. Our findings provide valuable insights into the mechanism of bioceramic-mediated dental pulp repair, and the novel revolutionary ready-to-use nanoparticulate bioceramic paste shows promising therapeutic potential in dental pulp repair application.  相似文献   

5.
Dental implants are ideally placed in an orientation that allows vertical transfer of occlusal forces along their long axis. Nevertheless, optimal situations for implant placement are seldom encountered resulting in implants placement in angulated positions, which may affect their long-term success. The resonance frequency (RF) is an objective tool used to monitor stability of the implant tissue integration; however, little is known of the effect of the implant orientation in bone on the RF and its potential significance. The purpose of this research was to determine the relation between the dental implant orientation and the corresponding RF of implant. Three-dimensional (3D) modelling software was used to construct a 3D model of a pig mandible from computed tomography (CT) images. The RF of the implant was analysed using finite element (FE) modal analysis in software ANSYS (v.12). In addition, a cubical model was also developed in MIMICS to investigate the parameters affecting the relationship between RF and implant orientation in a simplified environment. The orientation angle was increased from 0 to 10 degrees in 1 degree increments and the resulting RF was analysed using correlation analysis and one-way ANOVA. Our analysis illustrated that the RF fluctuation following altering implant orientation was strongly correlated (r = 0.97) with the contacting cortical to cancellous bone ratio (CCBR) at the implant interface. The most extreme RF change (from 9.81 kHz to 10.07 kHz) occurred when the implant was moved 0.5 mm in positive z-direction, which resulted in the maximum change of CCBR from 52.9 to 54.8.  相似文献   

6.
We sought to explore the biological mechanisms by which endosseous implant surface topography contributes to bone anchorage. To address this experimentally, we implanted five groups of custom-made commercially pure titanium implants of varying surface topographical complexity in rat femora for 9 days; subjected them to mechanical testing; and then examined the interfacial bone matrix by electron microscopy. The five implant surfaces were prepared by combinations of dual acid etching and grit blasting the titanium substrates and, in some cases, modifying the created surfaces with the deposition of nanocrystals of calcium phosphate, which resulted in 10 samples per group. In parallel, we cultured rat bone marrow cells on surrogate implants constructed from polymer resin coated with the same calcium phosphate nanocrystals, and monitored the deposition of bone sialoprotein by transmission electron immunohisto-micrography. We found that implant samples modified with sub-micron scale crystals were bone-bonding, as described by the interdigitation of a mineralized cement line matrix with the underlying implant surface. The in vitro assay showed that bone sialoprotein could be deposited in the interstices between, and undercuts below, the nanocrystals. In addition, when mineralized, the cement line matrix globules occupied micron-sized pits in the implant surfaces, and in part obliterated them, creating an additional form of anchorage. Our results also showed that collagen, elaborated by the osteogenic cells, wrapped around the coarse-micron features, and became mineralized in the normal course of bone formation. This provided a mechanism by which coarse-micron implant features contributed to a functional interface, which we have previously described, that is capable of resisting the mechanical loading that increases as peri-implant bone matures. Thus, our findings provide mechanistic explanations for the biologically-relevant criteria that can be employed to assess the importance of implant surface topography at different scale-ranges.  相似文献   

7.
背景:目前临床应用的牙种植体材料种类繁多,各有其优缺点,哪种材料更具临床应用价值及良好的生物相容性呢? 目的:综述不同口腔种植材料的研究进展,评价其种植后与宿主的相容性及临床应用前景。 方法:应用计算机检索CNKI和PubMed数据库中2000-01/2011-03关于口腔种植材料应用的文章,在标题和摘要中以“口腔种植体;牙种植体;合金;陶瓷;高分子材料;复合材料”或“dental implant;polymer alloy composite material;ceramic/aluminum alloy”为检索词进行检索。选择内容与不同口腔种植材料的应用特点及安全性相关文章。初检得到126篇文献,根据纳入标准选择30篇文章进行综述。 结果与结论:合金、陶瓷、高分子、复合材料及纳米材料在口腔种植方面发挥了重要作用。理想口腔植入材料的选择,需要对其生物相容性、生物力学性能、生物学形态、与周围组织的结合能力等各方面综合考虑,对细胞、组织等应无毒性、无刺激性、无致畸致突变性,同时与骨组织之间应形成骨性结合,具有良好的骨引导或骨诱导作用。  相似文献   

8.
9.
背景:假体松动是造成人工关节置换失败和翻修的主要原因之一。材料表面处理能够促进假体和骨组织界面的骨整合,提高假体的稳定性。 目的:研究纳米化表面钛合金(Ti6A14V)內植物在动物体内的骨整合情况。 方法:基于严重塑性变形原理制备纳米化表面钛合金。在比格犬股骨髁间植入普通表面、羟基磷灰石表面和纳米化表面钛合金内植物,置入后3个月取材,处死前行影像学观察,处死后取带有内植物的股骨髁制作不脱钙骨组织磨片,行Van Gieson苦味酸一品红染色,观察内植物和骨组织界面组织学情况,并进行骨动力学参数计算。同时行推出实验,比较不同表面内植物和骨组织界面生物力学情况。 结果与结论:影像学检查,见内植物和骨组织结合良好;界面组织学可见羟基磷灰石表面和纳米化表面钛合金与骨界面有大量成熟骨小梁直接结合,两者界面骨结合率相似(P > 0.05),但都优于普通表面钛合金(P < 0.01);推出实验显示羟基磷灰石表面和纳米化表面钛合金內植物和骨组织的结合力相似(P > 0.05),但都优于普通表面钛合金(P < 0.001)。提示严重塑性变形原理制备的纳米化表面钛合金和羟基磷灰石表面钛合金一样具有成骨诱导活性,能够促进骨整合,具有良好的临床应用前景。  相似文献   

10.
BACKGROUND: The peri-implant bone absorption is closely related to the repair effect. OBJECTIVE: To compare the effects of three kinds of dental implant systems on the peri-implant bone absorption. METHODS: 116 patients who underwent the dental implant systems were collected, including 46 cases with 3I implant system, 40 cases with ITI implant system and 30 cases with BLB implant system. The peri-implant bone absorption, sulcus bleeding index and periodontal probing depth of three groups were detected at 1, 3, 6, 9 and 12 months after implantation, respectively. RESULTS AND CONCLUSION: The peri-implant bone absorption of three groups within 1 year after implantation was in a rise, and the bone absorption of BLB group was significantly higher than that of ITI and 3I groups at 3 and 12 months after implantation (P < 0.05). Compared with the natural teeth, the gingival sulcus bleeding index of three groups were all increased at different time points after implantation; the gingival sulcus bleeding index of BLB group was significantly higher than that of natural teeth at 6 months after implantation (P < 0.05); the gingival sulcus bleeding index of three groups were significantly higher than that of natural teeth at 9 months after implantation (P < 0.05). The periodontal probing depth of three groups showed an ascending trend at 6 months after implantation; the periodontal probing depth of three groups was higher than that of natural teeth at different time points after implantation, which exhibited significant differences at 6 and 9 months after implantation (P < 0.05). In conclusion, three kinds of dental implant systems exhibit differet effects on the peri-implant bone absorption, but all achieve excellent clinical efficacies.  相似文献   

11.
In a previous work by the author [H.S. Hedia and M. Nemat-Alla, Design optimization of functionally graded dental implant, submitted to be published in the J. Bio-Medical Materials and Engineering], a functionally graded material dental implant was designed without cansellous bone in the model. In this investigation the effect of presence cancellous bone as a thin layer around the dental implant was investigated.It is well known that the main inorganic component of natural bone is hydroxyapatite (HAP) and that the main organic component is collagen (Col). Hydroxyapatite HAP implants are not bioabsorbable, and because induction of bone into and around the artificially made HAP is not always satisfactory, loosening or breakage of HAP implants may occur after implantation in the clinical application. The development of a new material which is bioabsorbable and which has osteoconductive activity is needed. Therefore, the aim of the current investigation is to design an implant, in the presence of cancellous bone as a thin layer around it, from functionally graded material. In this study, a novel biomaterial, collagen/hydroxyapatite (Col/HAP) as a functionally graded material (FGM), was developed using the finite element and optimization techniques which are available in the ANSYS package. These materials have a self-organized character similar to that of natural bone. The investigations have shown that the maximum stress in the cortical bone and cancellous bone for the Col/HAP functionally graded implant has been reduced by about 40% and 19% respectively compared to currently used titanium dental implants.  相似文献   

12.
Cylindrical porous plugs (6.35 mm dia. 11 mm long, average pore size of 190 μ dia.) made of electrically conductive Co-Cr-Mo surgical alloy powders were implanted in the canine femur. An electrical stimulation device (mercury battery, 1.35 V, connected in series with a 150 kΩ resistor) was attached to all implants directly. The in vivo current was about 8 μA for the stimulated implants while no current was delivered for the control ones.

After predetermined implant periods, tensile test specimens were made to measure the interfacial strength between bone and implants. Some samples were used for histological observations.

The present results show that in vivo electrical stimulation substantially increased the strength of the union between porous implants and bone when compared to the controls up to 12 weeks. Histological observations show that the increased strength is mainly due to the increased new bone formation in the pores of implants.

It was also observed that the fractional callus volume in the intramedullary canal for the stimulated samples retained more than the controls after reaching maximum at 3 weeks.  相似文献   


13.
In a previous work by the author [Hedia HS, Mahmoud NA. Biomed Mater Eng 2004;14(2):133--143], a functionally graded material (FGM) dental implant was designed without cancellous bone in the model. In this investigation, the effect of the presence of cancellous bone as a thin layer around the dental implant was investigated. It is well known that the main inorganic component of natural bone is hydroxyapatite (HAP) and that the main organic component is collagen (Col). HAP implants are not bioabsorbable, and because induction of bone into and around the artificially made HAP is not always satisfactory, loosening or breakage of HAP implants might occur after implantation in the clinical application. The development of a new material that is bioabsorbable and that has osteo-conductive activity is needed. Therefore, the aim of the current investigation was to design an implant, in the presence of cancellous bone as a thin layer around it, from FGM. In this study, a novel biomaterial, Col/HAP, as a FGM, was developed using the finite element and optimization techniques that are available in the ANSYS package. These materials have a self-organized character similar to that of natural bone. The investigations have shown that the maximum stress in the cortical bone and cancellous bone for the Col/HAP functionally graded implant has been reduced by about 40% and 19%, respectively, compared with currently used titanium dental implants.  相似文献   

14.
Resorbable porous ceramic constructs, based on silicon-stabilized tricalcium phosphate, were implanted in critical-size defects of sheep tibias, either alone or after seeding with bone marrow stromal cells (BMSC). Only BMSC-loaded ceramics displayed a progressive scaffold resorption, coincident with new bone deposition. To investigate the coupled mechanisms of bone formation and scaffold resorption, X-ray computed microtomography (muCT) with synchrotron radiation was performed on BMSC-seeded ceramic cubes. These were analyzed before and after implantation in immunodeficient mice for 2 or 6 months. With increasing implantation time, scaffold thickness significantly decreased while bone thickness increased. The muCT data evidenced that all scaffolds showed a uniform density distribution before implantation. Areas of different segregated densities were instead observed, in the same scaffolds, once seeded with cells and implanted in vivo. A detailed muX-ray diffraction analysis revealed that only in the contact areas between deposited bone and scaffold, the TCP component of the biomaterial decreased much faster than the HA component. This event did not occur at areas away from the bone surface, highlighting coupling and cell-dependency of the resorption and matrix deposition mechanisms. Moreover, in scaffolds implanted without cells, both the ceramic density and the TCP:HA ratio remained unchanged with respect to the pre-implantation analysis.  相似文献   

15.
Micro and nanostructural properties are believed to play a critical role in the osteoinductive capacity of bioceramic bone scaffolds. Physical characteristics also play an important role for optimum biological performance, including osteoconductivity and strength. In this study microstructural and nano-mechanical properties of a bioceramic bone scaffold were investigated as a function of the sintering temperature in the range of 950-1150?°C, through the use of scanning electron microscopy (SEM), X-ray diffraction (XRD) and nanoindentation testing. Although the samples presented the same crystallographic phase, an increase in sintering temperature resulted in increased grain size, density and crystallite size. The intrinsic mechanical properties were measured by nanoindentation testing and analyzed with the Oliver-Pharr method. The nanoindentation tests consisted of a series of fourteen partial unload tests (n=14 per treatment) of twelve steps ranging from 1?to 12?mN. Statistically significant increases in hardness and elastic modulus were measured for increasing sintering temperature. These results support the development of clinically successful bioceramic scaffolds with mechanical properties that encourage bone ingrowth and provide structural integrity.  相似文献   

16.
The interface between mandibular bone and endosteal dental implants was examined with an in vivo dog model. Undecalcified mandibular implant samples were observed with both conventional transmission electron microscopy and high-voltage transmission electron microscopy (HVEM). Results demonstrated the variable nature of the interfacial support tissues. Mineralized bone was often found within 50 nm of the implant surface, separated from that surface only by an electron dense deposit. Osteocytes were observed close to the interface encased within lacunae extending numerous cellular processes through canaliculi. An osteoblast was also observed directly at the interface within a developing lacuna. Other interfacial areas exhibited a finely fibrillar and more electron lucent morphology. Furthermore, other areas were shown to be composed of wider zones of extracellular products containing collagen fibrils, ground substance, and calcified inclusions. Because bone is an actively growing and remodeling tissue, these different morphological zones around the entire area of the implants would appear to confirm the dynamic tissue response to endosteal dental implants. Further, HVEM stereology was shown to be an exciting research tool to investigate this tissue response.  相似文献   

17.
This article investigates the transmittance of a new ceramic filling material as a function of time, thickness, wavelength, and addition of pigments. In the hardened state the ceramic material is composed of hydrates, calcium aluminate, and glass fillers. The radiopacity of the investigated material is also measured. The results of the transmittance are compared to a commercial glass ionomer cement (Fuji II) and resin composite (Tetric Ceram). The transmittance increased with time from low values after 1 h to values close to the glass ionomer cements after 1 week. The resin composite had almost twice the transmittance as the calcium aluminate material and the glass ionomer cement. The amount of light passing through the material was dependent on both the sample thickness and the wavelength. Samples of 0.5-mm thickness transmitted almost twice as much as 1-mm-thick samples. Regarding the wavelength, blue light was scattered very effectively (low transmittance), whereas red light was not (high transmittance). Addition of pigments lowered the transmittance. The radiopacity was slightly higher than that of enamel.  相似文献   

18.
The stress and strain distribution in the bone surrounding a dental implant have been analyzed using the finite element and optimization techniques. The effect of removing cancellous bone completely or not was investigated. Two models were used, the first model without cancellous bone and the second with it. The elastic modulus of the implant material and the length of the implant neck or the height of bone surrounding the implant were used as design variables in the two models. In the first model a higher level of stress in the cortical bone surrounding the neck of the implant was found. While in the second model, it was found surrounding the tip of the implant. The result indicates that the stress concentration factor in the bone of the first model is reduced by 30% compared to the initial design. However, when the implant was surrounded by sleeve of cancellous bone (second model) the stress concentration is reduced by 16% for cortical bone and 15% for cancellous bone. This reduction help to reduce fatigue failure and bone resorption.  相似文献   

19.
Tensile strength of the interface between hydroxyapatite and bone.   总被引:3,自引:0,他引:3  
Tensile strength of the interface between hydroxyapatite (HA) and bone was tested. Scanning electron microscopy was used to observe the tensile failure mode and the morphological change of hydroxyapatite ceramic surface in bone. The porosity of hydroxyapatite is 14% and pore size less than 2 microns. After 2 weeks of implantation, the tensile strength of the interface is 0.72 MPa. After 4, 8, and 16 weeks, the average tensile strength stayed at 1.5 MPa. SEM showed that tensile failure occurred at the HA-bone interface at the second week, but after 4 weeks, the failure occurred between HA particles within the bulk, and not at the HA-bone interface. Calcified tissue was directly deposited on the HA ceramic surface and exits also in the micropores. Near the interface, sintered necks among HA ceramic particles were subjected to biodegradation.  相似文献   

20.
We developed a composite (ABC) consisting of alumina bead powder as an inorganic filler and bisphenol-a-glycidyl dimethacrylate (Bis-GMA)-based resin as an organic matrix. Alumina bead powder was manufactured by fusing crushed alpha-alumina powder and quenching it. The beads took a spherical form 3 microm in average diameter. The proportion of filler in the composites was 70% w/w. The composite was implanted into rat tibiae and cured in situ. Specimens were prepared 1, 2, 4, and 8 weeks after the operation and observed by transmission electron microscopy. The results were compared with those of a bone composite made of alpha-alumina powder (alpha-ALC). In ABC-implanted tibiae, the uncured surface layer of Bis-GMA-based resin was completely filled with newly formed bonelike tissue 2 weeks after implantation. The alumina bead fillers were surrounded by and in contact with bonelike tissue. No intervening soft tissue was seen. In alpha-ALC-implanted tibiae, a gap was always observed between the alpha-ALC and the bonelike tissue. These results indicate that the ABC has osteoconductivity, although the precise mechanism is still unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号