首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Rapid, non-genomic effects of glucocorticoids on extracellular adenosine 5'-triphosphate (ATP)-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) changes and nitric oxide (NO) production were investigated in type I spiral ganglion neurons (SGNs) of the guinea-pig cochlea using the Ca(2+)-sensitive dye fura-2 and the NO-sensitive dye 4,5-diaminofluorescein (DAF-2). Pretreatment of SGNs with 1 microM dexamethasone for 10 min, a synthetic glucocorticoid hormone, enhanced the ATP-induced [Ca(2+)](i) increase in SGNs. RU 38486, a competitive glucocorticoid receptor antagonist eliminated the effects of dexamethasone on the ATP-induced [Ca(2+)](i) increase in SGNs. These acute effects of dexamethasone were dependent on the presence of extracellular Ca(2+), thereby suggesting that dexamethasone may rapidly enhance the Ca(2+) influx through the activation of ionotropic P2X receptors which may interact with glucocorticoid-mediated membrane receptors. Extracellular ATP increased the intensity of DAF-2 fluorescence, indicating NO production in SGNs. The ATP-induced NO production was mainly due to the Ca(2+) influx through the activation of P2 receptors. S-nitroso-N-acetylpenicillamine, a NO donor, enhanced the ATP-induced [Ca(2+)](i) increase in SGNs while L-N(G)-nitroarginine methyl ester (L-NAME), a NO synthesis inhibitor, inhibited it. Dexamethasone enhanced the ATP-induced NO production in SGNs. The augmentation of dexamethasone on ATP-induced NO production was abolished in the presence of l-NAME. It is concluded that the ATP-induced [Ca(2+)](i) increase induces NO production which enhances a [Ca(2+)](i) increase in SGNs by a positive-feedback mechanism. Dexamethasone enhances the ATP-induced [Ca(2+)](i) increase in SGNs which results in the augmentation of NO production. The present study suggests that NO may play an important role in auditory signal transduction. Our results also indicate that glucocorticoids may rapidly affect auditory neurotransmission due to a novel non-genomic mechanism.  相似文献   

2.
N-methyl-D-aspartate (NMDA)receptors (NMDARs) located on peripheral terminals of primary afferents are involved in the transduction of noxious mechanical stimuli. Exploiting the fact that both NMDARs and stretch-activated channels are retained in short-term culture and expressed on the soma of dorsal root ganglia (DRG) neurons, we examined the effect of NMDA on mechanically mediated changes in intracellular calcium concentration ([Ca2+]i). Our aims were to determine whether NMDARs modulate the mechanosensitivity of DRG neurons. Primary cultures of adult rat lumbosacral DRG cells were cultured for 1-3 days. [Ca2+]i responses were determined by Fura-2 ratio fluorescence. Somas were mechanically stimulated with fire-polished glass pipettes that depressed the cell membrane for 0.5 s. Voltage-activated inward Ca2+ currents were measured by the whole cell patch clamp. Stimulation of neurons with 100 microM NMDA in the presence, but not the absence, of co-agonist (10 microM D-serine) caused transient [Ca2+]i responses (101+/-9 nM) and potentiated [Ca2+]i peak responses to subsequent mechanical stimulation more than two-fold (P < 0.001). NMDA-mediated potentiation of mechanically induced [Ca2+]i responses was inhibited by the selective protein kinase C (PKC) inhibitor GF109203X (GFX; 10 microM), which had no independent effects on NMDA- or mechanically induced responses. Short-term treatment with the PKC activator phorbol dibutyrate (1 microM PDBu for 1-2 min) also potentiated mechanically induced [Ca2+]i responses nearly two-fold (P < 0.001), while longer exposure (>10 min) inhibited the [Ca2+]i transients by 44% (P < 0.001). Both effects of PDBu were prevented by prior treatment with GFX. Inhibition of voltage-dependent Ca2+ channels with 25 microM La3+ had no effect on mechanically induced [Ca2+]i transients prior to NMDA, but prevented enhancement of the transients by NMDA and PDBu. NMDA pretreatment transiently enhanced nifedipine-sensitive, voltage-activated Ca2+ currents by a process that was sensitive to GFX. In conclusion, activation of NMDARs on cultured DRG neurons sensitize voltage-dependent L-type Ca2+ channels which contribute to mechanically induced [Ca2+]i transients through a PKC-mediated process.  相似文献   

3.
Extracellular ATP in micromolar concentrations evokes a transient elevation in intracellular free Ca(2+) concentration ([Ca(2+)](i)), which arises primarily from a release of Ca(2+) from intracellular stores in rat brown adipocytes. We investigated the mechanisms underlying this transient nature of [Ca(2+)](i) elevation during exposure to ATP by using fura-2 fluorescence measurements together with the P2 receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) and suramin. Extracellular ATP (10 microM) almost completely depressed the thapsigargin (100 nM)-evoked [Ca(2+)](i) elevation mediated through store-operated Ca(2+) entry. The inhibitory effect of ATP was antagonized by PPADS with IC(50) of 0.7 microM. In the presence of PPADS at concentrations of more than 5 microM, the ATP-induced [Ca(2+)](i) elevation became sustained during the entire duration of the agonist application, although the magnitude of the sustained [Ca(2+)](i) elevation was reduced in a concentration-dependent manner by PPADS with an IC(50) of 200 microM. In contrast, the ATP-induced [Ca(2+)](i) elevation was blocked by suramin in a concentration range similar to that required to antagonize the inhibitory effect of ATP on the store-operated pathway. These results suggest that the [Ca(2+)](i) responses to extracellular ATP in rat brown adipocytes are mediated through the activation of at least two distinct P2 receptors exhibiting different sensitivities to PPADS but similar sensitivities to suramin. Extracellular ATP stimulates the PPADS-resistant P2 receptor to mobilize intracellular Ca(2+) stores, which is probably followed by the activation of store-operated Ca(2+) entry. Extracellular ATP, however, would inhibit this Ca(2+) entry process through the stimulation of the PPADS-sensitive P2-receptor, which may underlie the transient nature of [Ca(2+)](i) elevation in response to extracellular ATP.  相似文献   

4.
Fujii S  Kato H  Kuroda Y 《Neuroscience》2002,113(3):617-628
The mechanism of ATP-induced long-term potentiation (LTP) was studied pharmacologically using guinea-pig hippocampal slices. LTP, induced in CA1 neurons by 10 min application of 10 microM ATP, was blocked by co-application of the N-methyl-D-aspartate (NMDA) receptor antagonist, D,L-2-amino-5-phosphonovalerate (5 or 50 microM). In ATP-induced LTP, the delivery of test synaptic inputs (once every 20 s) to CA1 neurons could be replaced by co-application of NMDA (100 nM) during ATP perfusion. These results suggest that, in CA1 neurons, a co-operative effect between extracellular ATP and activation of NMDA receptors is required to trigger the process involved in ATP-induced LTP. In addition, ATP-induced LTP was blocked by co-application of an ecto-protein kinase inhibitor, K-252b (40 or 200 nM), whereas a P2X purinoceptor antagonist, pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid 4-sodium (50 microM), or a P2Y purinoceptor antagonist, basilen blue (10 microM), had no effect.The results of the present study, therefore, indicate that the mechanisms of ATP-induced LTP involve the modulation of NMDA receptors/Ca(2+) channels and the phosphorylation of extracellular domains of synaptic membrane proteins, one of which could be the NMDA receptor/Ca(2+) channel.  相似文献   

5.
As an endogenous agonist at the cannabinoid receptor CB1 and the capsaicin-receptor TRPV1, anandamide may exert both anti- and pronociceptive actions. Therefore we studied the effects of anandamide and other activators of both receptors on changes in free cytosolic calcium ([Ca(2+)](i)) in acutely dissociated small dorsal root ganglion neurons (diameter: < or =30 microm). Anandamide (10 microM) increased [Ca(2+)](i) in 76% of the neurons. The EC(50) was 7.41 microM, the Hill slope was 2.15 +/- 0.43 (mean +/- SE). This increase was blocked by the competitive TRPV1-antagonist capsazepine (10 microM) and in Ca(2+)-free extracellular solution. Neither exclusion of voltage-gated sodium channels nor additional blockade of voltage-gated calcium channels of the L-, N-, and/or T-type, significantly reduced the anandamide-induced [Ca(2+)](i) increase or capsaicin-induced [Ca(2+)](i) transients (0.2 microM). The CB1-agonist HU210 (10 microM) inhibited the anandamide-induced rise in [Ca(2+)](i). Conversely, the CB1-antagonist AM251 (3 microM) induced a leftward shift of the concentration-response relationship by approximately 4 microM (P < 0.001; Hill slope, 2.17 +/- 0.75). Intracellular calcium transients in response to noxious heat (47 degrees C for 10 s) were highly correlated with the anandamide-induced [Ca(2+)](i) increases (r = 0.84, P < 0.001). Heat-induced [Ca(2+)](i) transients were facilitated by preincubation with subthreshold concentrations of anandamide (3 microM), an effect that was further enhanced by 3 microM AM251. Although anandamide acts on both TRPV1 and CB1 receptors in the same nociceptive DRG neurons, its pronociceptive effects dominate. Anandamide triggers an influx of calcium through TRPV1 but no intracellular store depletion. It facilitates the heat responsiveness of TRPV1 in a calcium-independent manner. These effects of anandamide differ from those of the classical exogenous TRPV1-agonist capsaicin and suggest a primarily modulatory mode of action of anandamide.  相似文献   

6.
Bickler PE  Fahlman CS 《Neuroscience》2004,127(3):673-683
Although large increases in neuronal intracellular calcium concentrations ([Ca(2+)](i)) are lethal, moderate increases in [Ca(2+)](i) of 50-200 nM may induce immediate or long-term tolerance of ischemia or other stresses. In neurons in rat hippocampal slice cultures, we determined the relationship between [Ca(2+)](i), cell death, and Ca(2+)-dependent neuroprotective signals before and after a 45 min period of oxygen and glucose deprivation (OGD). Thirty minutes before OGD, [Ca(2+)](i) was increased in CA1 neurons by 40-200 nM with 1 nM-1 microM of a Ca(2+)-selective ionophore (calcimycin or ionomycin-"Ca(2+) preconditioning"). Ca(2+) preconditioning greatly reduced cell death in CA1, CA3 and dentate during the following 7 days, even though [Ca(2+)](i) was similar (approximately 2 microM) in preconditioned and control neurons 1 h after the OGD. When pre-OGD [Ca(2+)](i) was lowered to 25 nM (10 nM ionophore in Ca(2+)-free medium) or increased to 8 microM (10 microM ionophore), more than 90% of neurons died. Increased levels of the anti-apoptotic protein protein kinase B (Akt) and the MAP kinase ERK (p42/44) were present in preconditioned slices after OGD. Reducing Ca(2+) influx, inhibiting calmodulin, and preventing Akt or MAP kinase p42/44 upregulation prevented Ca(2+) preconditioning, supporting a specific role for Ca(2+) in the neuroprotective process. Further, in continuously oxygenated cultured hippocampal/cortical neurons, preconditioning for 30 min with 10 nM ionomycin reduced cell death following a 4 microM increase in [Ca(2+)](i) elicited by 1 microM ionomycin. Thus, a zone of moderately increased [Ca(2+)](i) before a potentially lethal insult promotes cell survival, uncoupling subsequent large increases in [Ca(2+)](i) from initiating cell death processes.  相似文献   

7.
In airway smooth muscle (ASM), ATP induces a contraction associated with the increase of [Ca(2+)](i). Cytosolic Ca(2+) is extruded to the extracellular space by the Na(+)/Ca(2+) exchanger (NCX) in its normal mode. Some agonists activate the reverse mode of the NCX (NCX(REV)), inducing Ca(2+) entry. We investigated whether ATP, via P2X receptors, activates the NCX(REV) and whether the increment in [Ca(2+)](i) is used for contraction or for the sarcoplasmic reticulum (SR) refilling in guinea pig ASM. ATP contracted the ASM and this effect was blocked by indomethacin. Suramin and RB2 diminished the contraction induced by ATP; PPADS did not modify this response. In myocytes, ATP produces an increase in [Ca(2+)](i) not modified by indomethacin. In tracheal strips, using simultaneous measurements, ATP induced a biphasic change in [Ca(2+)](i), (a Ca(2+) peak followed by a plateau) accompanied by a contraction. Indomethacin or epithelium removal abolished this contraction, but not the Ca(2+) peak, whereas the plateau was decreased by indomethacin. In myocytes, the ATP-induced [Ca(2+)](i) increment was inhibited by suramin (~96%), PPADS (~40%), and RB2 (~57%). ATP augmented the NCX(REV) and this effect was abolished by SKF 96365 and TNP-ATP (P2X(1) and P2X(3) receptors antagonist). P2X(1) and P2X(3) receptors were corroborated by immunoblotting of ASM. NCX(REV) activation and ATP in the presence of RB2 favor the SR Ca(2+) refilling. In tracheal rings, successive ATP stimulations were reduced with KB-R7943. Therefore, ATP: (1) indirectly promotes muscle contraction via epithelial P2Y receptors and prostaglandins release; (2) increases the [Ca(2+)](i) through a prostaglandin-independent manner by activating P2X and P2Y receptors in smooth muscle; and (3) activates P2X(1) and P2X(3) receptors and the NCX(REV) which refills the SR.  相似文献   

8.
Hegg CC  Hu S  Peterson PK  Thayer SA 《Neuroscience》2000,98(1):191-199
Activation of beta-chemokine receptors, co-receptors for human immunodeficiency virus type-1 (HIV-1), stimulates movement and secretion in microglia, possibly through a Ca(2+)-dependent mechanism. We studied chemokine activation of Ca(2+) signaling processes in microglia. Human fetal microglia were grown in primary culture and chemokine-induced increases in intracellular calcium concentration ([Ca(2+)](i)) were measured in single cells using indo-1-based microfluorimetry. Application of 50 ng/ml regulated on activation, normal T expressed and secreted (RANTES; 120 s) evoked responses in 26% of the microglia (187/719 cells). [Ca(2+)](i) increased from a basal level of 66+/-6 nM to peak at 268+/-23 nM (n=187). Chemokine-evoked responses rapidly desensitized as indicated by the rapid return to basal [Ca(2+)](i) levels in the maintained presence of RANTES. The removal of extracellular Ca(2+) or stimulation in the presence of Ni(2+) (2mM) or La(3+) (100 microM) blocked the RANTES-elicited [Ca(2+)](i) increase. The L-type calcium channel antagonist nimodipine (10 microM) inhibited the RANTES-mediated increase in [Ca(2+)](i) by 80+/-16%. Thus, the RANTES-evoked calcium transient appears to result from Ca(2+) influx with little if any release from intracellular stores. Application of gp120(clade) (E) and gp120(CM235) (50 ng/ml) neither mimicked nor antagonized the RANTES-evoked response. Application of 50 ng/ml eotaxin (120 s) evoked an increase in [Ca(2+)](i) in 13% of the human microglia in culture (61/469 cells). The HIV-1 regulatory protein Tat (50 ng/ml) increased the [Ca(2+)](i) in a subset of eotaxin-responsive cells (16/30). The L-type calcium channel antagonist nimodipine (3 microM) inhibited eotaxin- and Tat-mediated increases in [Ca(2+)](i) by 88+/-6% and 93+/-6%, respectively. Thus, activation of CCR3 appears to evoke Ca(2+) influx through L-type Ca(2+) channels.These results indicate that beta-chemokines, RANTES and eotaxin, activate a nimodipine sensitive Ca(2+) influx pathway in human fetal microglia. HIV-1 Tat protein mimicked chemokine-mediated Ca(2+) signaling and may modulate the migratory and secretory responses of microglia.  相似文献   

9.
Dysfunction of the hypocretin/orexin (Hcrt/Orx) peptide system is closely linked to the sleep disorder narcolepsy, suggesting that it is also central to the normal regulation of sleep and wakefulness. Indeed, Hcrt/Orx peptides produce long-lasting excitation of arousal-related neurons, including those in the laterodorsal tegmentum (LDT) and the dorsal raphe (DR), although the mechanisms underlying these actions are not understood. Since Hcrt/Orx mobilizes intracellular calcium ([Ca(2+)](i)) in cells transfected with orexin receptors and since receptor-mediated Ca(2+) transients are ubiquitous signaling mechanisms, we investigated whether Hcrt/Orx regulates [Ca(2+)](i) in the LDT and DR. Changes in [Ca(2+)](i) were monitored by fluorescence changes of fura-2 AM loaded cells in young mouse brain slices. We found Hcrt/Orx (Orexin-A, 30-1,000 nM) evoked long-lasting increases in [Ca(2+)](i) with differing temporal profiles ranging from spiking to smooth plateaus. A fragment of Hcrt/Orx (16-33) failed to evoke changes in [Ca(2+)](i) and changes were not blocked by TTX or ionotropic glutamate receptor antagonists, suggesting they resulted from specific activation of postsynaptic orexin receptors. Unlike orexin receptor-transfected cells, Hcrt/Orx-responses were not attenuated by depletion of Ca(2+) stores with cyclopiazonic acid (CPA; 3-30 microM), thapsigargin (3 microM), or ryanodine (20 microM), although store-depletion by either CPA or ryanodine blocked Ca(2+) mobilization by the metabotropic glutamate receptor agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD; 30 microM). In contrast, Hcrt/Orx responses were strongly attenuated by lowering extracellular Ca(2+) ( approximately 20 microM) but were not inhibited by concentrations of KB-R7943 (10 microM) selective for blockade of sodium/calcium exchange. Nifedipine (10 microM), inhibited Hcrt/Orx responses but was more effective at abolishing spiking than plateau responses. Bay K 8644 (5-10 microM), an L-type calcium channel agonist, potentiated responses. Finally, responses were attenuated by inhibitors of protein kinase C (PKC) but not by inhibitors of adenylyl cyclase. Collectively, our findings indicate that Hcrt/Orx signaling in the reticular activating system involves elevation of [Ca(2+)](i) by a PKC-involved influx of Ca(2+) across the plasma membrane, in part, via L-type calcium channels. Thus the physiological release of Hcrt/Orx may help regulate Ca(2+)-dependent processes such as gene expression and NO production in the LDT and DR in relation with behavioral state. Accordingly, the loss of Hcrt/Orx signaling in narcolepsy would be expected to disrupt calcium-dependent processes in these and other target structures.  相似文献   

10.
The ATP-induced increase in the cytosolic Ca(2+) concentration ([Ca]i) and current in acutely dissociated ventromedial hypothalamic rats neurons were investigated using fura-2 microfluorometry and the nystatin-perforated patch recording method, respectively. The ATP-induced [Ca]i increase was mimicked by dimethyl-thio-ATP and ATPgammaS, and was inhibited by P2 purinoreceptor antagonists. The ATP-induced [Ca]i increase was markedly reduced by removal of external Na(+) or Ca(2+), and by addition of various Ca(2+) channel antagonists. ATP induced a transient inward current exhibiting a strong inward rectification at membrane potentials more positive than -20 mV. The ATP-induced current at a holding potential of -70 mV was concentration-dependent with a half-maximum effective concentration of 26 microM. Increasing the external Ca(2+) concentration to 10 mM shifted the dose-response relationship to the right. ATP induced only a small current and a small increase in [Ca]i, even at 10 mM Ca(2+), when external Na(+) was removed, suggesting the relatively low permeability to Ca(2+) of purinoceptor channels. These results suggest that ATP activates non-selective cation channels by acting on P2X purinoceptors on dissociated ventromedial hypothalamic neurons, which in turn increases [Ca]i by increasing Ca(2+) influx through voltage-dependent Ca(2+) channels.  相似文献   

11.
Adenosine-5'-triphosphate (ATP) plays a pivotal role in various tissues as an extracellular transmitter. ATP released from nerve endings and/or damaged cells may elicit reactions in adjacent cells. To identify such reactions, we investigated the dynamics of the intracellular calcium ion concentrations ([Ca2+]i) in the rabbit corneal epithelium during ATP-stimulation. Intact epithelial sheets isolated from corneal tissue were loaded with Fura-2, and [Ca2+]i dynamics in each cell layer were analyzed using a digital imaging system (Argus 50/CA). Normal architecture was preserved, suggesting that functional integrity remained intact. Perfusion with HEPES-buffered Ringer's solution containing ATP (10 microM) and uridine-5'-triphosphate (UTP; 10 microM) caused a biphasic [Ca2+]i increase in the superficial layer that manifested itself as a rapid initial spike followed by a long-lasting plateau phase. Adenosine-5'-diphate (10 microM) elevated the [Ca2+]i level, but induced only the initial spike, which was smaller than those induced by ATP and UTP. Adenosine (10 microM) did not elicit any [Ca2+]i changes in the epithelial cells. Suramin (10 microM; a P2 receptor antagonist) blocked the ATP-induced [Ca2+]i increase, whereas the P2X receptor agonists, alpha, beta-methylene ATP (10 microM), 2-methyl-thio ATP (10 microM) and Benzoylbenzoyl ATP (10 microM), did not elicit any increases in [Ca2+]i. In the basal cell layer, ATP-induced [Ca2+]i dynamics were biphasic, while oscillatory fluctuations of [Ca2+]i were induced in the wing cells of the mid layer of the corneal epithelium by ATP stimulation. Ca2+ oscillations were sometimes synchronized among adjacent wing cells, but these waves did not propagate to other cell layers. These results suggest that extracellular ATP elicits a [Ca2+]i increase mainly via P2Y receptors. In addition, synchronized Ca2+ oscillation in the wing cell layer indicates that intracellular events may spread to neighboring cells within the layer.  相似文献   

12.
Y Oshimi  S Miyazaki    S Oda 《Immunology》1999,98(2):220-227
The activation of macrophages by various stimuli leading to chemotactic migration and phagocytosis is known to be mediated by an increase in intracellular Ca2+ concentration ([Ca2+]i). We measured changes in [Ca2+]i using a Ca2+ imaging method in individual human macrophages differentiated from freshly prepared peripheral blood monocytes during culture of 1-2 days. A transient rise in [Ca2+]i (duration 3-4 min) occurred in 10-15 macrophages in the vicinity of a single tumour cell that was attacked and permeabilized by a natural killer cell in a dish. Similar Ca2+ transients were produced in 90% of macrophages by application of supernatant obtained after inducing the lysis of tumour cells with hypo-osmotic treatment. Ca2+ transients were also evoked by ATP in a dose-dependent manner between 0.1 and 100 microm. The ATP-induced [Ca2+]i rise was reduced to less than one-quarter in Ca2+-free medium, indicating that it is mainly due to Ca2+ entry and partly due to intracellular Ca2+ release. UTP (P2U purinoceptor agonist) was more potent than ATP or 2-chloro-ATP (P2Y agonist). Oxidized ATP (P2Z antagonist) had no inhibitory effect. Both cell lysate- and ATP-induced Ca2+ responses were inhibited by Reactive Blue 2 (P2Y and P2U antagonist) to the same extent, but were not affected by PPADS (P2X antagonist). Sequential stimuli by cell lysate and ATP underwent long-lasting desensitization in the Ca2+ response to the second stimulation. The present study supports the view that macrophages respond to signal messengers discharged from damaged or dying cells to be ingested, and ATP is at least one of the messengers and causes a [Ca2+]i rise via P2U and P2Y receptors.  相似文献   

13.
Lee WT  Itoh T  Pleasure D 《Neuroscience》2002,113(3):699-708
3-Nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, induced ATP depletion and both necrosis and apoptosis in human NT2-N neurons. Necrosis occurred predominantly within the first two days, and increased in a dose-dependent fashion with the concentration of 3-NP, whereas apoptosis was observed after 24 h or later at a similar rate in 0.1 mM and 5 mM 3-NP. We focused our efforts on intracellular calcium homeostasis during the first 48 h in 1 mM 3-NP, a period during which 10% of the neurons died by necrosis and 3% by apoptosis. All NT2-N neurons showed a stereotyped [Ca(2+)](i) rise, from 48+/-2 to 140+/-12 nM (mean +/-S.E.M.), during the first 2 h in 3-NP. Despite severe ATP depletion, however, [Ca(2+)](i) remained above 100 nM in only 17% and 25% of the NT2-N neurons after 24 and 48 h in 3-NP, respectively, indicating that most neurons were able to recover from acute [Ca(2+)](i) rise, and suggesting that chronic [Ca(2+)](i) dysregulation is a better indicator of subsequent necrosis. Blockade of N-methyl-D-aspartate-glutamate receptor by MK-801 substantially ameliorated 3-NP-induced ATP depletion, subsequent chronic [Ca(2+)](i) elevation, and survival. Moreover, xestospongin C, an inhibitor of endoplasmic reticulum Ca(2+) release, enhanced the capacity of NT2-N neurons to maintain [Ca(2+)](i) homeostasis and resist necrosis while subjected to sustained energy deprivation. As far as we know, this report is the first to employ human neurons to study the pathophysiology of 3-NP neurotoxicity.  相似文献   

14.
Nitric oxide synthase (NOS)-containing mesopontine cholinergic (MPCh) neurons of the laterodorsal tegmental nucleus (LDT) are hypothesized to drive the behavioral states of waking and REM sleep through a tonic increase in firing rate which begins before and is maintained throughout these states. In principle, increased firing could elevate intracellular calcium levels and regulate numerous cellular processes including excitability, gene expression, and the activity of neuronal NOS in a state-dependent manner. We investigated whether repetitive firing, evoked by current injection and N-methyl-D-aspartate (NMDA) receptor activation, produces somatic and proximal dendritic [Ca(2+)](i) transients and whether these transients are modulated by serotonin, a transmitter thought to play a critical role in regulating the state-dependent firing of MPCh neurons. [Ca(2+)](i) was monitored optically from neurons filled with Ca(2+) indicators in guinea pig brain slices while measuring membrane potential with sharp microelectrodes or patch pipettes. Neither hyperpolarizing current steps nor subthreshold depolarizing steps altered [Ca(2+)](i). In contrast, suprathreshold currents caused large and rapid increases in [Ca(2+)](i) that were related to firing rate. TTX (1 microM) strongly attenuated this relation. Addition of tetraethylammonium (TEA, 20 mM), which resulted in Ca(2+) spiking on depolarization, restored the change in [Ca(2+)](i) to pre-TTX levels. Suprathreshold doses of NMDA also produced increases in [Ca(2+)](i) that were reduced by up to 60% by TTX. Application of 5-HT, which hyperpolarized LDT neurons without detectable changes in [Ca(2+)](i), suppressed both current- and NMDA-evoked increases in [Ca(2+)](i) by reducing the number of evoked spikes and by inhibiting spike-evoked Ca(2+) transients by approximately 40% in the soma and proximal dendrites. This inhibition was accompanied by a subtle increase in the spike repolarization rate and a decrease in spike width, as expected for inhibition of high-threshold Ca(2+) currents in these neurons. NADPH-diaphorase histochemistry confirmed that recorded cells were NOS-containing. These findings indicate the prime role of action potentials in elevating [Ca(2+)](i) in NOS-containing MPCh neurons. Moreover, they demonstrate that serotonin can inhibit somatic and proximal dendritic [Ca(2+)](i) increases both indirectly by reducing firing rate and directly by decreasing the spike-evoked transients. Functionally, these data suggest that spike-evoked Ca(2+) signals in MPCh neurons should be largest during REM sleep when serotonin inputs are expected to be lowest even if equivalent firing rates are reached during waking. Such Ca(2+) signals may function to trigger Ca(2+)-dependent processes including cfos expression and nitric oxide production in a REM-specific manner.  相似文献   

15.
16.
Myenteric afterhyperpolarizing (AH) neurons are primary afferent neurons within the gastrointestinal tract. Stimulation of the intestinal mucosa evokes action potentials (AP) that are followed by a slow afterhyperpolarization (AHP(slow)) in the soma. The role of intracellular Ca(2+) ([Ca(2+)](i)) and ryanodine-sensitive Ca(2+) stores in modulating the electrical activity of myenteric AH neurons was investigated by recording membrane potential and bis-fura-2 fluorescence from 34 AH neurons. Mean resting [Ca(2+)](i) was approximately 200 nM. Depolarizing current pulses that elicited APs evoked AHP(slow) and an increase in [Ca(2+)](i), with similar time courses. The amplitudes and durations of AHP(slow) and the Ca(2+) transient were proportional to the number of evoked APs, with each AP increasing [Ca(2+)](i) by approximately 50 nM. Ryanodine (10 microM) significantly reduced both the amplitude and duration (by 60%) of the evoked Ca(2+) transient and AHP(slow) over the range of APs tested (1-15). Calcium-induced calcium release (CICR) was graded and proportional to the number of APs, with each AP triggering a rise in [Ca(2+)](i) of approximately 30 nM Ca(2+) via CICR. This indicates that CICR amplifies Ca(2+) influx. Similar changes in [Ca(2+)](i) and AHP(slow) were evoked by two APs in control and six APs in ryanodine. Thus, the magnitude of the change in bulk [Ca(2+)](i) and not the source of the Ca(2+) is the determinant of the magnitude of AHP(slow). Furthermore, lowering of free [Ca(2+)](i), either by reducing extracellular Ca(2+) or injecting high concentrations of Ca(2+) buffer, induced depolarization, increased excitability, and abolition of AHP(slow). In addition, activation of synaptic input to AH neurons elicited a slow excitatory postsynaptic potential (sEPSP) that was completely blocked in ryanodine. These results demonstrate the importance of [Ca(2+)](i) and CICR in sensory processing in AH neurons. Activity-dependent CICR may be a mechanism to grade the output of AH neurons according to the intensity of sensory input.  相似文献   

17.
Wu TW  Wang JM  Chen S  Brinton RD 《Neuroscience》2005,135(1):59-72
Our group and others have demonstrated that 17beta-estradiol (E2) induces neurotrophic and neuroprotective responses in hippocampal and cortical neurons which are dependent upon the Src/extracellular signal-regulated kinase (ERK) signaling pathways. The purpose of this study was to determine the upstream mechanism(s) that initiates the signaling cascade leading to E2-inducible neuroprotection. We tested the hypothesis that E2 activates rapid Ca(2+) influx in hippocampal neurons, which would lead to activation of the Src/ERK signaling cascade and up-regulation of Bcl-2 protein expression. Using fura-2 ratiometric Ca(2+) imaging, we demonstrated that E2 induced a rapid rise of intracellular Ca(2+) concentration ([Ca(2+)](i)) within minutes of exposure which was blocked by an L-type Ca(2+) channel antagonist. Inhibition of L-type Ca(2+) channels resulted in a loss of E2 activation of the Src/ERK cascade, activation of cyclic-AMP response element binding protein (CREB) and subsequent increase in Bcl-2. Real-time intracellular Ca(2+) imaging combined with pERK immunofluorescence, demonstrated that E2 induced [Ca(2+)](i) was coincident with ERK activation in the same neuron. Small interfering RNA knockdown of CREB resulted in a loss of E2 activation of CREB and subsequent E2-induced increase of Bcl-2 expression. We further demonstrated the presence of specific membrane E2 binding sites in hippocampal neurons. Together, these data indicate that E2-induced Ca(2+) influx via the L-type Ca(2+) channel is required for E2 activation of the Src/ERK/CREB/Bcl-2 signaling. Implications of these data for understanding estrogen action in brain and use of estrogen therapy for prevention of neurodegenerative disease are discussed.  相似文献   

18.
To clarify the changes that occur in gamma-aminobutyric acid type A (GABA(A)) receptor-mediated effects and contribute to alterations in the network activities after neuronal injury, we studied intracellular Ca(2+) concentration ([Ca(2+)](i)) dynamics in a rat facial-nerve-transection model. In facial motoneurons, an elevation of the resting [Ca(2+)](i), GABA-mediated [Ca(2+)](i) transients, enhancement of the glutamate-evoked [Ca(2+)](i) increases, and spontaneous [Ca(2+)](i) oscillations were induced by axotomy. All these axotomy-induced modifications were abolished by the GABA(A)-receptor antagonist bicuculline and N-methyl-d-aspartate (NMDA)-receptor antagonist d(-)-2-amino-5-phosphonopentanoic acid. A downregulation of K(+)-Cl(-) cotransporter (KCC2) mRNA, an increase in intracellular Cl(-) concentration ([Cl(-)](i)), and transformation of GABAergic hyperpolarization to depolarization were also induced by axotomy. We suggest that in axotomized neurons KCC2 downregulation impairs Cl(-) homeostasis and makes GABA act depolarizing, resulting in endogenous GABA inducing [Ca(2+)](i) oscillations via facilitation of NMDA-receptor activation. Such GABA(A)-receptor-mediated [Ca(2+)](i) oscillations may play a role in neural survival and regeneration.  相似文献   

19.
Mudpuppy parasympathetic neurons exhibit spontaneous miniature hyperpolarizations (SMHs) that are generated by potassium currents, which are spontaneous miniature outward currents (SMOCs), flowing through clusters of large conductance voltage- and calcium (Ca(2+))-activated potassium (BK) channels. The underlying SMOCs are initiated by a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Perforated-patch whole cell voltage recordings were used to determine whether activation of SMHs contributed to action potential (AP) repolarization or affected the latency to AP generation. Blockade of BK channels by iberiotoxin (IBX, 100 nM) slowed AP repolarization and increased AP duration. Treatment with omega-conotoxin GVIA (3 microM) or nifedipine (10 microM) to inhibit Ca(2+) influx through N- or L-type voltage-dependent calcium channels (VDCCs), respectively, also decreased the rate of AP repolarization and increased AP duration. Elimination of CICR by treatment with either thapsigargin (1 microM) or ryanodine (10 microM) produced no significant change in AP repolarization or duration. Blockade of BK channels with IBX and inhibition of N-type VDCCs with omega-conotoxin GVIA, but not inhibition of L-type VDCCs with nifedipine, decreased the latency of AP generation. A decrease in latency to AP generation occurred with elimination of SMHs by inhibition of CICR following treatment with thapsigargin. Ryanodine treatment decreased AP latency in three of six cells. Apamin (100 nM) had no affect on AP repolarization, duration, or latency to AP generation, but did decrease the hyperpolarizing afterpotential (HAP). Inhibition of L-type VDCCs by nifedipine also decreased HAP amplitude. Inhibition of CICR by either thapsigargin or ryanodine treatment increased the number of APs generated with long depolarizing current pulses, whereas exposure to IBX or omega-conotoxin GVIA depressed excitability. We conclude that CICR, the process responsible for SMH generation, represents a unique mechanism to modulate the response to subthreshold depolarizing currents that drive the membrane potential toward the threshold for AP initiation but does not contribute to AP repolarization. Subthreshold depolarizations would not activate sufficient numbers of VDCCs to allow Ca(2+) influx to elevate [Ca(2+)](i) to the extent needed to directly activate nearby BK channels. However, the elevation in [Ca(2+)](i) is sufficient to trigger CICR from ryanodine-sensitive Ca(2+) stores. Thus CICR acts as an amplification mechanism to trigger a local elevation of [Ca(2+)](i) near a cluster of BK channels to activate these channels at negative levels of membrane potential.  相似文献   

20.
Uteshev VV  Knot HJ 《Neuroscience》2005,134(1):133-143
Histaminergic tuberomammillary (TM) neurons of the posterior hypothalamus have been implicated in cognition, alertness and sleep-wakefulness cycles. Spontaneous firing of TM neurons has been associated with histamine release and wakefulness. The expression of alpha7 nicotinic acetylcholine receptors (nAChRs) in TM neurons suggests a role for endogenous choline and for nicotinic drugs in the regulation of intracellular Ca(2+) metabolism, normal TM neuronal activity and histamine release. First, we established the link between TM neuronal spontaneous firing frequency and cytosolic free Ca(2+) concentration ([Ca(2+)](i)). A strong correlation was observed: an onset of spontaneous firing (3-4Hz) was accompanied by a 20-fold increase in [Ca(2+)](i) from 56+/-18 nM to 1.0+/-0.6 microM. The same range of firing frequencies has been observed in TM neurons in vivo and is associated with wakefulness. Secondly, choline-induced activation of alpha7 nAChRs did not elevate [Ca(2+)](i) directly, i.e. in the absence of high-threshold voltage-gated Ca(2+) channel (HVGCC) activation. Cd(2+) (200 microM) completely blocked all Ca(2+) signals, but inhibited only 37+/-16% of alpha7 nAChR-mediated currents. Thirdly, the responsiveness of [Ca(2+)](i) to choline-mediated excitation was inhibited by hyperpolarization and enhanced by depolarization, sensitizing [Ca(2+)](i) at membrane voltages associated with normal TM neuronal activity. These properties of [Ca(2+)](i) define the ability of TM neurons to translate cholinergic stimuli of identical strengths into different cytosolic Ca(2+) effects, providing the physiological substrate for state-specific modulation of incoming cholinergic information and would be expected to play a very important role in determining activity profiles of TM neurons exposed to elevated concentrations of cholinergic agents, such as choline and nicotine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号