首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gastrointestinal stromal tumors (GISTs) are often associated with activating KIT mutations, affecting regulatory domains of the KIT tyrosine kinase. Sporadic mastocytosis in adults is usually also caused by KIT mutations that, however, activate KIT by affecting the intracellular enzymatic site of the molecule. Most GISTs respond to KIT inhibitors that bind to the enzymatic site; in most cases of mastocytosis, however, the modified enzymatic site is not affected by these drugs. We present a kindred with both familial GISTs and mastocytosis that express a novel germline KIT mutation in exon 8, resulting in deletion of codon 419 and affecting the extracellular domain of KIT. This mutation activates KIT, and the mutant KIT is inhibited by the tyrosine kinase inhibitor imatinib mesylate. Our studies identify a new regulatory region in the KIT molecule and strongly suggest that patients with extracellular KIT mutations respond to tyrosine kinase inhibitors.  相似文献   

2.
Gain-of-function mutations of kit tyrosine kinase receptor are associated with mastocytosis. Two subclones of the HMC1 mast leukaemia cell line were used; both express an identical KIT allele-specific regulatory type mutation (V560G), but differ in that one also expresses an enzymatic site type mutation (D816V) that confers on them resistance to imatinib mesylate tyrosine kinase inhibitor. In both cell lines, proliferation was suppressed and apoptosis induced by the combination of KIT gene silencing and α-tocopherol succinate (α-TOS), a derivate of α-tocopherol, also known as vitamin E. Furthermore, HMC1 cells with decreased kit levels by KIT silencing, failed to form tumours when xenotransplanted into immunocompromised mice and the animals were treated systemically with α-TOS. Targeting kit in the presence of α-TOS represents a new approach against proliferation of human mast leukaemia cell lines.  相似文献   

3.
BACKGROUND AND AIMS: Resistance is a major challenge in the treatment of patients with gastrointestinal stromal tumors (GISTs). We investigated the mechanisms of resistance in patients with progressive GISTs with primary KIT mutations and the efficacy of the kinase inhibitor PKC412 for the inhibition of imatinib-resistant mutants. METHODS: We performed a cytogenetic analysis and screened for mutations of the KIT and PDGFRA kinase domains in 26 resistant GISTs. KIT autophosphorylation status was assessed by Western immunoblotting. Imatinib-resistant GIST cells and Ba/F3 cells expressing these mutant proteins were tested for sensitivity to imatinib and PKC412. RESULTS: Six distinct secondary mutations in KIT were detected in 12 progressive tumors, with V654A and T670I found to be recurrent. One progressive tumor showed acquired PDGFRA -D842V mutation. Amplification of KIT or KIT / PDGFRA was found in 2 patients. Eight of 10 progressive tumors available for analysis showed phosphorylated KIT. Two remaining progressive tumors lost KIT protein expression. GIST cells carrying KIT -del557-558/T670I or KIT -InsAY502-503/V654A mutations were resistant to imatinib, while PKC412 significantly inhibited autophosporylation of these mutants. Resistance to imatinib and sensitivity to PKC412 of KIT -T670I and PDGFRA -D842V mutants was confirmed using Ba/F3 cells. CONCLUSIONS: This study shows the high frequency of KIT/PDGFRA kinase domain mutations in patients with secondary resistance and defines genomic amplification of KIT / PDGFRA as an alternative cause of resistance to the drug. In a subset of patients, cancer cells lost their dependence on the targeted tyrosine kinase. Our findings show the sensitivity of the imatinib-resistant KIT -T670I and KIT -V654A and of PDGFRA -D842V mutants to PKC412.  相似文献   

4.
Most gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor. Sunitinib has shown efficacy against certain imatinib-resistant mutants, although a subset that resides in the activation loop, including D816H/V, remains resistant. Biochemical and structural studies were undertaken to determine the molecular basis of sunitinib resistance. Our results show that sunitinib targets the autoinhibited conformation of WT KIT and that the D816H mutant undergoes a shift in conformational equilibrium toward the active state. These findings provide a structural and enzymologic explanation for the resistance profile observed with the KIT inhibitors. Prospectively, they have implications for understanding oncogenic kinase mutants and for circumventing drug resistance.  相似文献   

5.
6.
Protein kinase inhibitors can be effective in treating selected cancers, but most suppress several kinases. Imatinib mesylate has been useful in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia and B cell acute lymphoblastic leukemia through the inhibition of BCR-ABL tyrosine kinase activity. Imatinib mesylate has also been shown to inhibit KIT, ARG, and platelet-derived growth factor receptors alpha and beta, and potentially other tyrosine kinases. We have produced a mutant allele of BCR-ABL (T315A) that is uniquely inhibitable by the small molecule 4-amino-1-tert-butyl-3-(1-naphthyl)pyrazolo[3,4-d]pyrimidine and used it to demonstrate that sole suppression of BCR-ABL activity was insufficient to eliminate BCR-ABL(+) KIT(+)-expressing immature murine myeloid leukemic cells. In contrast, imatinib mesylate effectively eliminated BCR-ABL(+) KIT(+)-expressing leukemic cells. In the cellular context of mature myeloid cells and Pro/Pre B cells that do not express KIT, monospecific BCR-ABL inhibition was quantitatively as effective as imatinib mesylate in suppressing cell growth and inducing apoptosis. These results suggest that the therapeutic effectiveness of small molecule drugs such as imatinib mesylate could be due to the inhibitor's ability to suppress protein kinases in addition to the dominant target.  相似文献   

7.
The deregulated, oncogenic tyrosine kinase Bcr-Abl causes chronic myeloid leukemia (CML). Imatinib mesylate (Gleevec, STI571), a Bcr-Abl kinase inhibitor, selectively inhibits proliferation and promotes apoptosis of CML cells. Despite the success of imatinib mesylate in the treatment of CML, resistance is observed, particularly in advanced disease. The most common imatinib mesylate resistance mechanism involves Bcr-Abl kinase domain mutations that impart varying degrees of drug insensitivity. AP23464, a potent adenosine 5'-triphosphate (ATP)-based inhibitor of Src and Abl kinases, displays antiproliferative activity against a human CML cell line and Bcr-Abl-transduced Ba/F3 cells (IC(50) = 14 nM; imatinib mesylate IC(50) = 350 nM). AP23464 ablates Bcr-Abl tyrosine phosphorylation, blocks cell cycle progression, and promotes apoptosis of Bcr-Abl-expressing cells. Biochemical assays with purified glutathione S transferase (GST)-Abl kinase domain confirmed that AP23464 directly inhibits Abl activity. Importantly, the low nanomolar cellular and biochemical inhibitory properties of AP23464 extend to frequently observed imatinib mesylate-resistant Bcr-Abl mutants, including nucleotide binding P-loop mutants Q252H, Y253F, E255K, C-terminal loop mutant M351T, and activation loop mutant H396P. AP23464 was ineffective against mutant T315I, an imatinib mesylate contact residue. The potency of AP23464 against imatinib mesylate-refractory Bcr-Abl and its distinct binding mode relative to imatinib mesylate warrant further investigation of AP23464 for the treatment of CML.  相似文献   

8.
BACKGROUND & AIMS: Most gastrointestinal stromal tumors (GISTs) have gain-of-function mutations of c-kit receptor tyrosine kinase (KIT) gene, but some GISTs do not. We investigated the cause of GISTs without KIT mutations. Because GISTs apparently expressed platelet-derived growth factor receptor (PDGFR) alpha, we examined whether GISTs without KIT mutations had a mutation of PDGFR alpha. METHODS: Whole coding region of PDGFR alpha complementary DNA (cDNA) was sequenced in GISTs with or without KIT mutations. Mutant PDGFR alpha cDNA was transfected into 293T human embryonic kidney cells, and autophosphorylation of PDGFR alpha was examined. Proliferation of Ba/F3 murine lymphoid cells stably transfected with mutant PDGFR alpha cDNA was estimated by tritium thymidine incorporation. Wild-type KIT cDNA was cotransfected with mutant PDGFR alpha cDNA, and immunoprecipitation by anti-KIT antibody was performed. Inhibitory effect of Imatinib mesylate on activated PDGFR alpha was examined. RESULTS: We found 2 types of constitutively activated mutations of PDGFR alpha, Val-561 to Asp or Asp-842 to Val, in 5 of 8 GISTs without KIT mutations but not in 10 GISTs with KIT mutations. Stable transfection of each mutation induced autonomous proliferation of Ba/F3 cells. Constitutively activated mutant PDGFR alpha bound and activated the cotransfected wild-type KIT. The constitutive activation of PDGFR alpha with Val-561 to Asp was inhibited effectively by Imatinib mesylate but that of PDGFR alpha with Asp-842 to Val was inhibited only weakly, even at the concentration of 10 micromol/L. CONCLUSIONS: The gain-of-function mutations of PDGFR alpha appear to play an important role in development of GISTs without KIT mutations.  相似文献   

9.
10.
Cammenga J  Horn S  Bergholz U  Sommer G  Besmer P  Fiedler W  Stocking C 《Blood》2005,106(12):3958-3961
Multiple genetic alterations are required to induce acute myelogenous leukemia (AML). Mutations in the extracellular domain of the KIT receptor are almost exclusively found in patients with AML carrying translocations or inversions affecting members of the core binding factor (CBF) gene family and correlate with a high risk of relapse. We demonstrate that these complex insertion and deletion mutations lead to constitutive activation of the KIT receptor, which induces factor-independent growth of interleukin-3 (IL-3)-dependent cells. Mutation of the evolutionary conserved amino acid D419 within the extracellular domain was sufficient to constitutively activate the KIT receptor, although high expression levels were required. Dose-dependent growth inhibition and apoptosis were observed using either the protein tyrosine kinase inhibitor imatinib mesylate (STI571, Gleevec) or by blocking the phosphoinositide-3-kinase (PI3K)-AKT pathway. Our data show that the addition of kinase inhibitors to conventional chemotherapy might be a new therapeutic option for CBF-AML expressing mutant KIT.  相似文献   

11.
GIST is the most common mesenchymal tumor of the gastrointestinal tract. The discovery of KIT proto-oncogene mutations in the pathogenesis of this tumor, and the development of imatinib mesylate, a specific inhibitor of KIT tyrosine kinase function have revolutionized the treatment of GIST. We present the clinical case of a patient with an upper digestive bleeding secondary to a jejunal GIST. Therapeutic options are highlighted.  相似文献   

12.
BACKGROUND & AIMS: Imatinib, a tyrosine kinase inhibitor of BCR-ABL, KIT, and platelet-derived growth factor receptor, is used in patients with chronic myelogenous leukemia (CML) and gastrointestinal stromal tumors (GIST). Primary and acquired resistance to the drug can occur in both diseases. Molecular mechanisms have been reported in CML and GIST for primary resistance, whereas extensive studies on the mechanisms responsible for secondary resistance have been almost exclusively reported for CML. METHODS: In a patient with advanced GIST undergoing imatinib therapy, an isolated progressing peritoneal mass was excised, along with 2 still-responding lesions. Complementary DNA and genomic DNA were analyzed by sequencing for c-Kit gene mutations. KIT receptor expression and phosphorylation status were assessed by immunoprecipitation and Western blot. Transient-transfection experiments were performed with mutagenized KIT constructs, and their activation status was assessed. RESULTS: In addition to an exon 11 mutation, shared among all of the analyzed lesions, a novel point mutation in c-Kit exon 14 resulting in T670I substitution was found only in the progressing lesion, which harbored a phosphorylated receptor, as opposed to the finding of an inactive receptor in responding lesions. Functional analyses showed that KIT/T670I is insensitive to imatinib and that T670I mutation, introduced in a receptor responding to imatinib, subverted its sensitivity to the drug. CONCLUSIONS: This new mutation was confined to the progressing lesion; the resulting amino acidic substitution, T670I, affecting the ATP/imatinib pocket of KIT, makes it insensitive to the drug. Interestingly, this substitution is a homologue to the T315I mutation already reported in CML, where it is responsible for acquired resistance to imatinib.  相似文献   

13.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. The name "GIST" was proposed in 1983, but the cell origin of GIST remained unclear until 1998, when my colleagues and I reported immunohistochemical evidence that GIST originated from interstitial cells of Cajal or their precursors. At the same time, we reported gain-of-function mutations of the Kit gene in GISTs. The Kit gene encodes KIT receptor tyrosine kinase, whose structure is similar to that of platelet-derived growth factor receptor (PDGFR). Imatinib mesylate was initially developed as an inhibitor of PDGFR. Then, it was found to be a potent inhibitor of BCR-ABL. Imatinib was successfully used for the treatment of chronic myeloid leukemia. When we reported gain-of-function mutations of the Kit gene in GISTs, the inhibitory effect of imatinib on KIT was already known. Imatinib was then successfully applied to the treatment of GISTs. The interrelationship between the type of Kit gain-of-function mutation and the therapeutic effect of imatinib has been well characterized in GISTs. Although various mutations of Kit and Pdgfr-alpha genes have been found in GISTs, most GISTs are luckily imatinibsensitive. After long-term administration of imatinib, however, new imatinib-resistant clones develop a secondary mutation of the Kit or Pdgfr-alpha gene. New drugs and adjuvant regimens against such secondary progression are now being intensively explored.  相似文献   

14.
Rubin BP  Heinrich MC  Corless CL 《Lancet》2007,369(9574):1731-1741
Gastrointestinal stromal tumours are the most common mesenchymal neoplasm of the gastrointestinal tract and are highly resistant to conventional chemotherapy and radiotherapy. Such tumours usually have activating mutations in either KIT (75-80%) or PDGFRA (5-10%), two closely related receptor tyrosine kinases. These mutations lead to ligand-independent activation and signal transduction mediated by constitutively activated KIT or PDGFRA. Targeting these activated proteins with imatinib mesylate, a small-molecule kinase inhibitor, has proven useful in the treatment of recurrent or metastatic gastrointestinal stromal tumours and is now being tested as an adjuvant or neoadjuvant. However, resistance to imatinib is a growing problem and other targeted therapeutics such as sunitinib are available. The important interplay between the molecular genetics of gastrontestinal stromal tumour and responses to targeted therapeutics serves as a model for the study of targeted therapies in other solid tumours.  相似文献   

15.
Tseng PH  Lin HP  Zhu J  Chen KF  Hade EM  Young DC  Byrd JC  Grever M  Johnson K  Druker BJ  Chen CS 《Blood》2005,105(10):4021-4027
Resistance to the Ableson protein tyrosine (Abl) kinase inhibitor imatinib mesylate has become a critical issue for patients in advanced phases of chronic myelogenous leukemia. Imatinib-resistant tumor cells develop, in part, as a result of point mutations within the Abl kinase domain. As protein kinase B (Akt) plays a pivotal role in Abl oncogene-mediated cell survival, we hypothesize that concurrent inhibition of Akt will sensitize resistant cells to the residual apoptotic activity of imatinib mesylate, thereby overcoming the resistance. Here, we examined the effect of OSU-03012, a celecoxib-derived phosphoinositide-dependent kinase-1 (PDK-1) inhibitor, on imatinib mesylate-induced apoptosis in 2 clinically relevant breakpoint cluster region (Bcr)-Abl mutant cell lines, Ba/F3p210(E255K) and Ba/F3p210(T315I). The 50% inhibitory concentration (IC50) values of imatinib mesylate to inhibit the proliferation of Ba/F3p210(E255K) and Ba/F3p210(T315I) were 14 +/- 4 and 30 +/- 2 microM, respectively. There was no cross-resistance to OSU-03012 in these mutant cells with an IC50 of 5 microM irrespective of mutations. Nevertheless, in the presence of OSU-03012 the susceptibility of these mutant cells to imatinib-induced apoptosis was significantly enhanced. This synergistic action was, at least in part, mediated through the concerted effect on phospho-Akt. Together these data provide a novel therapeutic strategy to overcome imatinib mesylate resistance, especially with the Abl mutant T315I.  相似文献   

16.
Although imatinib has therapeutic activity for certain subsets of patients with mastocytosis, it is not always curative. Here, molecular mechanisms that confer imatinib resistance to neoplastic mast cells were investigated using an imatinib‐sensitive canine neoplastic mast cell line VI‐MC carrying a KIT c.1523A>T activating mutation. Two imatinib‐resistant sublines were established by culturing VI‐MC cells in increasing concentrations of imatinib (1 μM resistant, rVI‐MC1; 10 μM resistant, rVI‐MC10). Both sublines had a second KIT mutation c.2443G>C. Recombinant KIT with the second mutation was insensitive to 1 μM but sensitive to 10 μM imatinib. The effect of imatinib on the phosphorylation of KIT and its downstream signalling proteins was then examined using these sublines. KIT and ERK were constitutively phosphorylated in both sublines, and their phosphorylation was suppressed by 10 μM imatinib in rVI‐MC1 cells. However, KIT but not ERK phosphorylation was suppressed in rVI‐MC10 cells. The phosphorylation of ERK in rVI‐MC10 cells was also not diminished by the Src family kinase (SFK) inhibitor dasatinib. This second mutation in KIT may play an important role in imatinib resistance in neoplastic mast cells. Furthermore, KIT/SFK‐independent activation of ERK would be involved in imatinib resistance when the neoplastic cells are exposed to higher concentrations of imatinib.  相似文献   

17.
18.
KIT exon 8 mutations are located in the extracellular portion of the receptor and are strongly associated with core-binding factor (CBF)-acute myeloid leukemia (AML). To characterize the functional role of these mutants, we analyzed the proproliferative and antiapoptotic potential of 3 KIT exon 8 mutations in interleukin 3 (IL-3)-dependent Ba/F3 cells. All KIT exon 8 mutants induced receptor hyperactivation in response to stem cell factor (SCF) stimulation in terms of proliferation and resistance toward apoptotic cell death. A representative KIT exon 8 mutant showed spontaneous receptor dimerization, phosphorylation of mitogen-activated protein kinase (MAPK), and conferred IL-3-independent growth to Ba/F3 cells. MAPK and phosphatidylinositol 3-kinase (PI3-kinase) activation was essential for the phenotype of this mutant. Additionally, imatinib inhibited proliferation of KIT exon 8 mutant-expressing Ba/F3 cells. Our data show that KIT exon 8 mutations represent gain-of-function mutations and might represent a new molecular target for treatment of CBF leukemias.  相似文献   

19.
Voisset E  Lopez S  Dubreuil P  De Sepulveda P 《Blood》2007,110(7):2593-2599
KIT is a tyrosine kinase receptor that is aberrantly activated in several neoplasms. In human pathologies, the most frequent mutation of KIT occurs at codon 816. The resulting KIT mutant protein is activated in the absence of ligand and is resistant to the clinically available inhibitors of KIT. In this report, we provide evidence for an essential function of the cytoplasmic tyrosine kinase FES downstream of KIT(D816V). FES is phosphorylated on tyrosine residues in cells that carry KIT(D816V) mutation, and this phosphorylation is KIT dependent. Reduction of FES expression using RNA interference results in decreased cell proliferation in human or murine cells harboring KIT(D816V) or the homologous mouse mutation KIT(D814Y). The reduced cell growth can be rescued using another cytokine (granulocyte-macrophage colony-stimulating factor [GM-CSF]) and is not observed when the closely related fer gene is targeted. Finally, signaling downstream of KIT(D816V) is altered in cells lacking FES expression. This study shows a major function of FES downstream of activated KIT receptor and thereby points to FES as a novel target in KIT-related pathologies.  相似文献   

20.
The c-kit proto-oncogene encodes a receptor tyrosine kinase that is known to play a crucial role in hematopoiesis, especially in mast cell growth and differentiation. Although a number of dominant loss-of- function mutations of c-kit gene have been well characterized in mice, rats, and humans, little is known about the c-kit mutations contributing to ligand-independent activation of the c-kit receptor tyrosine kinase (KIT). In a murine mastocytoma cell line, P-815, KIT has been found to be constitutively phosphorylated on tyrosine and activated in a ligand-independent manner. Sequencing of the whole coding region of c-kit cDNA showed that c-kit cDNA of P-815 cells carries a point mutation in codon 814, resulting in amino acid substitution of Tyr for Asp. Murine wild-type c-kit cDNA and mutant- type c-kit cDNA encoding Tyr in codon 814 were expressed in cells of a human embryonic kidney cell line, 293T. In the transfected cells, mutant-form KITTyr814 was strikingly phosphorylated on tyrosine and activated in immune complex kinase reaction regardless of stimulation with a ligand for KIT (stem cell factor), whereas tyrosine phosphorylation and activation was barely detectable in wild-form KIT. The data presented here provide evidence for a novel activating mutation of c-kit gene that might be involved in neoplastic growth or oncogenesis of some cell types, including mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号