首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal organic frameworks (MOFs) with two dimensional (2D) nanosheets have attracted special attention for supercapacitor application due to their exceptional large surface area and high surface-to-volume atom ratios. However, their electrochemical performance is greatly hindered by their poor electrical conductivity. Herein, we report a 2D nanosheet nickel cobalt based MOF (NiCo-MOF)/reduced graphene oxide heterostructure as an electrode material for supercapacitors. The NiCo-MOF 2D nanosheets are in situ grown on rGO surfaces by simple room temperature precipitation. In such hybrid structure the MOF ultrathin nanosheets provide large surface area with abundant channels for fast mass transport of ions while the rGO conductive and physical support provides rapid electron transport. Thus, using the synergistic advantage of rGO and NiCo-MOF nanosheets an excellent specific capacitance of 1553 F g−1 at a current density of 1 A g−1 is obtained. Additionally, the as synthesized hybrid material showed excellent cycling capacity of 83.6% after 5000 cycles of charge–discharge. Interestingly, the assembled asymmetric device showed an excellent energy density of 44 W h kg−1 at a power density of 3168 W kg−1. The electrochemical performance obtained in this report illustrates hybridization of MOF nanosheets with carbon materials is promising for next generation supercapacitors.

In this 2D NiCo-MOF/rGO hybrid, the MOF nanosheets provide abundant active sites while the conductive rGO provide rapid electron transport.  相似文献   

2.
A novel modified glassy carbon electrode (GCE) was successfully fabricated with a tetra-component nanocomposite consisting of (1,1′-(1,4-butanediyl)dipyridinium) ionic liquid (bdpy), SiW11O39Ni(H2O) (SiW11Ni) Keggin-type polyoxometalate (POM), and phosphorus-doped electrochemically reduced graphene oxide (P-ERGO) by electrodeposition technique. The (bdpy)SiW11Ni/GO hybrid nanocomposite was synthesized by a one-pot hydrothermal method and characterized by UV-vis absorption, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric-differential thermal analysis (TGA/DTA), and transmission electron microscopy (TEM). The morphology, electrochemical performance, and electrocatalysis activity of the nanocomposite modified glassy carbon electrode ((bdpy)SiW11Ni/P-ERGO/GCE) were analyzed by field emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), cyclic voltammetry (CV), square wave voltammetry (SWV), and amperometry, respectively. Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity of 28.1 μA mM−1 and good selectivity for iodate (IO3) reduction, enabling the detection of IO3 within a linear range of 10–1600 μmol L−1 (R2 = 0.9999) with a limit of detection (LOD) of 0.47 nmol L−1 (S/N = 3). The proposed electrochemical sensor exhibited good reproducibility, and repeatability, high stability, and excellent anti-interference ability, as well as analytical performance in mineral water, tap water, and commercial edible iodized salt which might provide a capable platform for the determination of IO3.

Constructing a sensitive electrochemical sensor based on (bdpy)SiW11Ni/P-ERGO/GCE for IO3 detection at the nanomolar level with noticeable selectivity.  相似文献   

3.
Correction for ‘Electrochemical investigation and amperometry determination iodate based on ionic liquid/polyoxotungstate/P-doped electrochemically reduced graphene oxide multi-component nanocomposite modified glassy carbon electrode’ by Minoo Sharifi et al., RSC Adv., 2021, 11, 8993–9007, DOI: 10.1039/D1RA00845E.

The authors regret that eqn (3) and (4) were shown incorrectly in the original article.The corrected equations are shown below.3H4SiW4VW7VINi(H2O)O396− + IO3 → 3H2SiW2VW9VINi(H2O)O396− + I + 3H2O (3)3H6SiW6VW5VINi(H2O)O396− + IO3 → 3H4SiW4VW7VINi(H2O)O396− + I + 3H2O (4)The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

4.
Derivatives based on metal frameworks (MOFs) are attracting more and more attention in various research fields. MOF-based derivatives x% MnOx–ZnO are easily synthesized by the thermal decomposition of Mn/MOF-5 precursors. Multiple technological characterizations have been conducted to ascertain the strengthening interaction between Mn species (Mn2+ or Mn3+) and Zn2+ (e.g., XRD, FTIR, TG, XPS, SEM, H2-TPR and Py-FTIR). The 5% MnOx–ZnO exhibits the highest NO conversion of 75.5% under C3H6-SCR. In situ FTIR and NO-TPD analysis showed that monodentate nitrates, bidentate nitrates, bridged bidentate nitrates, nitrosyl groups and CxHyOz species were formed on the surface, and further hydrocarbonates or carbonates were formed as intermediates, directly generating N2, CO2 and H2O.

Derivatives based on metal frameworks (MOFs) are attracting more and more attention in various research fields.  相似文献   

5.
A highly conductive electrochemical sensor was constructed for the simultaneous electrochemical determination of levodopa and piroxicam by modification of a glassy carbon electrode with a ZnO–Pd/CNT nanocomposite (GCE/ZnO–Pd/CNTs). The ZnO–Pd/CNT nanocomposite was synthesized by the sol–gel procedure and was characterized by EDAX, MAP and SEM. The sensor was shown to improve the oxidation signal of levodopa and piroxicam by ∼70.2-fold and ∼41.5-fold, respectively. This marks the first time that the electrochemical behavior of levodopa and piroxicam have been investigated at the surface of GCE/ZnO–Pd/CNTs. The voltammogram showed a quasi-reversible signal and an irreversible redox signal for electro-oxidation of levodopa and piroxicam, respectively. The GCE/ZnO–Pd/CNTs showed a linear dynamic range of 0.6 to 100.0 μM (at a potential of ∼180 mV) and 0.1 to 90 μM (at a potential of ∼480 mV) with detection limits of 0.08 and 0.04 μM for the determination of levodopa and piroxicam, respectively. GCE/ZnO–Pd/CNTs were then applied for the determination of levodopa and piroxicam in real samples.

A highly conductive electrochemical sensor was constructed for the simultaneous electrochemical determination of levodopa and piroxicam by modification of a glassy carbon electrode with a ZnO–Pd/CNT nanocomposite (GCE/ZnO–Pd/CNTs).  相似文献   

6.
In this paper, a composite composed of carboxylated multi-wall carbon nanotubes (cMWCNT) incorporated in a metal–organic framework (MOF-199) has been synthesized using 1,3,5-benzoic acid as a ligand through a simple solvothermal method. The synthesized cMWCNT/MOF-199 composite was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffractometry (XRD). The cMWCNT/MOF-199 hybrids were modified on the surface of glassy carbon electrodes (GCE) to prepare a molecularly imprinted electrochemical sensor (MIECS) for specific recognition of 3-chloro-1,2-propanediol (3-MCPD). The electrodes were characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under optimal conditions, the electrochemical sensor exhibited an excellent sensitivity and high selectivity with a good linear response range from 1.0 × 10−9 to 1.0 × 10−5 mol L−1 and an estimated detection limit of 4.3 × 10−10 mol L−1. Furthermore, this method has been successfully applied to the detection of 3-MCPD in soy sauce, and the recovery ranged from 96% to 108%, with RSD lower than 5.5% (n = 3), showing great potential for the selective analysis of 3-MCPD in foodstuffs.

In this study, cMWCNT/MOF-199 composites were used as the modified electrodes, and a MIECS having specific recognition of 3-MCPD was prepared by electrochemical polymerization for selective analysis of 3-MCPD in foodstuffs.  相似文献   

7.
Cerium metal–organic framework based composites (Ce-MOF/GO and Ce-MOF/CNT) were synthesized by a wet chemical route and characterized with different techniques to characterize their crystal nature, morphology, functional groups, and porosity. The obtained Ce-MOF in the composites exhibit a nanorod structure with a size of ∼150 nm. The electrochemical performance of the composites was investigated in 3 M KOH and 3 M KOH + 0.2 M K3Fe(CN)6 electrolytes. Enhanced electrochemical behavior was obtained for the Ce-MOF/GO composite in both electrolytes and exhibited a maximum specific capacitance of 2221.2 F g−1 with an energy density of 111.05 W h kg−1 at a current density of 1 A g−1. The large mesoporous structure and the presence of oxygen functional groups in Ce-MOF/GO could facilitate ion transport in the electrode/electrolyte interface, and the results suggested that the Ce-MOF/GO composite could be used as a high-performance supercapacitor electrode material.

The presence of oxygen functional groups in GO enhances the charge storage behavior of Ce-MOF/GO composites for use as supercapacitor electrode materials.  相似文献   

8.
Designing advanced nanocatalysts for effectively catalyzing the oxygen reduction reaction (ORR) is of great importance for practical applications of direct methanol fuel cells (DMFCs). In this work, the reduced graphene oxide (rGO)-supported palladium–nickel (Pd–Ni/rGO) alloy modified by the novel polyoxometalate (POM) with Keggin structure (Pd–Ni/rGO-POM) is efficiently fabricated via an impregnation technique. The physical characterizations such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (FESEM-EDX), and transmission electron microscopy (TEM) are utilized to confirm the structure, morphology, and chemical composition of the fabricated samples. The XRD results verify the formation of the POM-modified Pd8Ni2/rGO alloy electro-catalyst with the face-centered-cubic (fcc) structure and average crystallite size of 5.54 nm. The electro-catalytic activities of the nanocatalysts towards ORR in alkaline conditions are evaluated by cyclic voltammetry (CV), rotating disk electrode (RDE), and chronoamperometry (CA) analyses. The synthesized Pd8Ni2/rGO-POM nanomaterial shows remarkably greater ORR catalytic activity and better methanol resistance compared with the Pd8Ni2/rGO and Pd/rGO electro-catalysts. The promoted ORR activity of the Pd8Ni2/rGO-POM sample is attributed to the alloying of Pd and Ni components, the uniform scattering of Pd–Ni nanoparticles on rGO, and the alloyed catalyst being modified with POM. Moreover, these findings demonstrate that the resultant Pd8Ni2/rGO-POM material is attractive as a suitable and cost-effective cathodic catalyst for DMFCs, in which the decorated POMs play a vital role for the enhancement in the catalytic abilities of the nanocatalyst.

A novel nanocatalyst, polyoxometalate-modified palladium–nickel/reduced graphene oxide (Pd8Ni2/rGO-POM), is prepared and served as an effective ORR nanomaterial in alkaline media.  相似文献   

9.
Metal–organic frameworks (MOFs) are promising materials for biosensing applications due to their large surface to volume ratio, easy assembly as thin films, and better biocompatibility than other nanomaterials. Their application in electrochemical biosensing devices can be realized by integrating them with other conducting materials, like polyaniline (PANI). In the present research, a composite of a copper-MOF (i.e., Cu3(BTC)2) with PANI has been explored to develop an impedimetric sensor for cardiac marker troponin I (cTnI). The solvothermally synthesized Cu3(BTC)2/PANI composite has been coated as a thin layer on the screen-printed carbon electrodes (SPE). This electroconductive thin film was conjugated with anti-cTnI antibodies. The above formed immunosensor has allowed the impedimetric detection of cTnI antigen over a clinically important concentration range of 1–400 ng mL−1. The whole process of antigen analysis could be completed within 5 min. The detection method was specific to cTnI even in the co-presence of other possibly interfering proteins.

A Cu-MOF/PANI modified screen-printed electrode based immunosensing technique is described for the sensitive detection of cardiac troponin I. The sensor provides detection over a wide concentration range with a limit of detection of 0.8 ng mL−1.  相似文献   

10.
The solvothermal reaction of a mixture of calcium acetylacetonate and 1,4-naphthalenedicarboxylic acid (H2NDC) in a solution containing ethanol and distilled water gave rise to a metal–organic framework (MOF), {(H3O+)2[Ca(NDC)(C2H5O)(OH)]}4·1.1H2O. This MOF possesses a new structure composed of calcium clusters and H2NDC linker anions and shows a unique fluorescence property; it exhibits a fluorescence peak at 395 nm (λex = 350 nm) at room temperature, which is blue-shifted compared with that exhibited by the free H2NDC ligand. One of the possible mechanisms for this fluorescence is likely attributable to a ligand-to-metal charge transfer (LMCT) transition and is the first example of a calcium-based MOF exhibiting blue-shifted fluorescence due to LMCT.

The solvothermal reaction of a mixture of calcium acetylacetonate and 1,4-naphthalenedicarboxylic acid (H2NDC) in a solution containing ethanol and distilled water gave rise to a metal–organic framework (MOF), {(H3O+)2[Ca(NDC)(C2H5O)(OH)]}4·1.1H2O.  相似文献   

11.
LiCoPO4 (LCP) is a promising high voltage cathode material but suffers from low conductivity and poor electrochemical properties. These properties can be improved by coating with a conductive carbon layer. Ongoing research is focused on the protective layer with good adhesion and inhibition of electrolyte decomposition reactions. In the present work, we suggest a new robust one-pot procedure, featuring the introduction of UiO-66 metal–organic framework (MOF) nanoparticles during LCP synthesis to create a metal–carbon layer upon annealing. The LiCoPO4/C@UiO-66 was synthesized via the microwave-assisted solvothermal route, and 147 mA h g−1 discharge capacity was obtained in the first cycle. The MOF acts as a source of both carbon and metal atoms, which improves conductivity. Using operando X-ray absorption spectroscopy upon cycling, we identify two Co-related phases in the sample and exclude the olivine structure degradation as an explanation for a long-term capacity fade.

LiCoPO4 (LCP) is a promising high voltage cathode material but suffers from low conductivity and poor electrochemical properties.  相似文献   

12.
A platinum–silver graphene (Pt–Ag/Gr) nanocomposite modified electrode was fabricated for the electrochemical detection of dopamine (DA). Electrochemical studies of the Pt–Ag/Gr nanocomposite towards DA detection were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The CV analysis showed that Pt–Ag/Gr/GCE had enhanced electrocatalytic activity towards DA oxidation due to the synergistic effects between the platinum–silver nanoparticles and graphene. The DPV results showed that the modified sensor demonstrated a linear concentration range between 0.1 and 60 μM with a limit of detection of 0.012 μM. The Pt–Ag/Gr/GCE presented satisfactory results for reproducibility, stability and selectivity. The prepared sensor also showed acceptable recoveries for a real sample study.

A platinum–silver graphene nanocomposite was synthesized and characterized. A nanocomposite modified electrode was fabricated in order to investigate the electrochemical detection of dopamine.  相似文献   

13.
The morphologies and structures of nanostructured carbons generally influence their catalysis, electrochemical performance and adsorption properties. Metal–organic framework (MOF) nanocrystals usually have various morphologies, and can be considered as a template to construct nanostructured carbons with shaped nanocubes, nanorods, and hollow particles by thermal transformation. However, thermal carbonization of MOFs usually leads to collapse of MOF structures. Here, we report shape-preserved carbons (termed as CNRods) by thermal transformation of nickel catecholate framework (Ni-CAT) nanorods. Supercapacitors of CNRods treated at 800 °C were demonstrated to have enhanced performance due to their structural features that facilitate electron conduction and ion transport as well as abundant O content benefiting the wettability of the carbon materials. This may provide a potential way to explore novel carbon materials for supercapacitors with controllable morphologies and high capacitive performance.

The Ni-CAT-derived porous carbon materials at 800 °C remain regular with a rod-like morphology and exhibit enhanced capacitive performance.  相似文献   

14.
In the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate–graphene oxide (Cu–BTC/GO) composite. The sensor was prepared by drop-casting Cu–BTC/GO suspension onto the electrode surface followed by electrochemical reduction, leading to the generation of an electrochemically reduced graphene oxide network (ErGO). By combining the large specific area of the Cu–BTC matrix with the electrical percolation from the graphene network, the number of accessible reaction sites was strongly increased, which consequently improved the detection performance. The electrochemical characteristics of the composite were revealed by cyclic voltammetry and electrochemical impedance spectroscopy. For the detection of 2,4-DCP, differential pulse voltammetry was used to emphasize the faradaic reaction related to the oxidation of the analyte. The results displayed a low detection limit (83 × 10−9 M) and a linear range from 1.5 × 10−6 M to 24 × 10−6 M alongside high reproducibility (RSD = 2.5% for eight independent sensors) and good stability. Importantly, the prepared sensors were sufficiently selective against interference from other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting 2,4-DCP in real field samples with high accuracy (recovery range = 97.17–104.15%).

In the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate–graphene oxide (Cu–BTC/GO) composite.  相似文献   

15.
A new kind of chiral zirconium based metal–organic framework, l-Cys-PCN-222, was synthesized using l-cysteine (l-Cys) as a chiral modifier by a solvent-assisted ligand incorporation approach and utilized as the chiral stationary phase in the capillary electrochromatography system. l-Cys-PCN-222 was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential and so on. The results revealed that l-Cys-PCN-222 had the advantages of good crystallinity, high specific surface area (1818 m2 g−1), thermal stability and chiral recognition performance. Meanwhile, the l-Cys-PCN-222-bonded open-tubular column was prepared using l-Cys-PCN-222 particles as the solid phase by ‘thiol–ene’ click chemistry reaction and characterized by scanning electron microscopy, which proved the successful bonding of l-Cys-PCN-222 to the column inner wall. Finally, the stability, reproducibility and chiral separation performance of the l-Cys-PCN-222-bonded OT column were measured. Relative standard deviations (RSD) of the column efficiencies for run-to-run, day-to-day, column-to-column and runs were 1.39–6.62%, and did not obviously change after 200 runs. The enantiomeric separation of 17 kinds of chiral compounds including acidic, neutral and basic amino acids, imidazolinone and aryloxyphenoxypropionic pesticides, and fluoroquinolones were achieved in the l-Cys-PCN-222-bonded OT column. These results demonstrated that the chiral separation system of the chiral metal–organic frameworks (CMOFs) coupled with capillary electrochromatography has good application prospects.

A new kind of chiral zirconium-based metal–organic framework, l-Cys-PCN-222, was synthesized by the SALI method and utilized as the chiral stationary phase in a capillary electrochromatography system for enantioseparation.  相似文献   

16.
Synthesis of a metal–organic framework by plasma in liquid was demonstrated with HKUST-1 as an example. HKUST-1 synthesized by this method contains a higher amount of monovalent copper ions than that synthesized by other conventional methods. The enhanced water stability was also confirmed.

Plasma in liquid provides a method for the synthesis of HKUST-1 with increased reduced metal ions and high water stability.

Metal–organic frameworks (MOFs) are a class of hybrid materials composed of organic linkers and metal nodes. They have high surface areas with tunable pore size and functionality.1,2 Because of these features, MOFs have potential applications in the fields of gas adsorption/storage,3,4 catalysis,5,6 drug delivery,7,8 and fabrication of luminescent materials.9,10 Many methods have been proposed for synthesizing MOFs; these include solvothermal methods,11,12 microwave-assisted methods,13,14 ultrasonic-assisted methods,15,16 mechanochemical methods,17 and electrosynthesis methods.18 Different synthesis methods result in the different crystallinity and size. Further, the synthesis method can influence the physicochemical and semiconductor properties.19Recently, a method for synthesizing MOFs in liquid contacting gas-phase dielectric barrier discharges has been reported.20,21 However, MOFs synthesized by plasma have not been sufficiently characterized yet, thereby demanding further research. Plasma is a unique reaction field and has the advantage of being able to reduce and functionalize species using electrons and radicals. These characteristics have been widely utilized even in liquid phase for the synthesis of various materials such as carbon materials22,23 and metal nanoparticles24,25 and for introducing functional groups in materials.26 Using plasma, it may be possible to synthesize functional MOFs with reduced metal ions or additional functional groups. Plasma in liquid generally have higher density of electrons and radicals than plasma in the gas phase,27 and the influence of reactive species can be observed more prominently.In this study, we focused on [Cu3(BTC)2]n (BTC = 1,3,5-benzenetricarboxylate). This is known as HKUST-1 and is one of the most widely researched MOFs. This MOF is assembled from copper nodes and BTC, with each copper coordinated with four oxygen atoms. HKUST-1 is a promising candidate for applications such as H2 and SO2 storage.28,29 However, the crystal structure of HKUST-1 is changed by water molecules, and its surface area decreases.30,31 To ensure the practical applications of HKUST-1, it is important to increase its resistance to water. To improve its stability to water, strategies such as incorporation of other materials, including graphite oxide32 and carboxyl-functionalized attapulgite,33 have been developed. In the post-processing using plasma, the adsorption of water molecules on HKUST-1 is inhibited by introducing hydrophobic groups with perfluorohexane.34 In another method, the adsorption of water molecules on unsaturated metal sites was prevented by irradiating the HKUST-1 with oxygen plasma.35 In addition, to improve the water tolerance, reduction of Cu(ii) ions in HKUST-1 was also proposed.36 However, in the above-mentioned methods, mixing of other materials or post-treatment steps was essential.In this work, we synthesized HKUST-1 containing Cu(i) by plasma in liquid; the method involved in situ plasma treatment during the synthesis activated also by plasma. Its resistance to water was compared with HKUST-1 synthesized by conventional methods such as heating or addition of triethylamine at room temperature.HKUST-1 was synthesized using the plasma generated by applying a bipolar pulse voltage to the electrode in an ethanol–water solution containing copper nitrate trihydrate and BTC (Fig. S1 and S2). Hereafter in this paper, the thus-synthesized HKUST-1 will be referred to as PL-HKUST-1. For comparison, HKUST-1 was synthesized by the conventional heating method and by the addition of triethylamine at room temperature,19 and the HKUST-1 formed are referred to as CH-HKUST-1 and RT-HKUST-1, respectively. The details of the synthetic methods are described in the ESI.All the samples were characterized by X-ray diffraction (XRD) and thermogravimetric analysis. The XRD patterns of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 are shown in Fig. 1. In all the cases, the characteristic diffraction peaks of HKUST-1 were identified, confirming the phase-pure formation of HKUST-1 samples irrespective of the synthetic method.37,38 Thermogravimetric analysis of HKUST-1 revealed that the thermal stability of PL-HKUST-1 was similar to those of CH-HKUST-1 and RT-HKUST-1 (Fig. S3).Open in a separate windowFig. 1XRD patterns of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 before and after immersion in water. Fig. 2 shows the fluorescence (FL) spectra of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 upon excitation at 310 nm at room temperature. Note that a broad peak around 520 nm was observed only for PL-HKUST-1 and not for CH-HKUST-1 and RT-HKUST-1. Such a behavior has been previously reported for Cu(i) complexes and is attributed to the metal-to-ligand charge transfer (MLCT) from Cu(i) to an empty antibonding π* orbital of the ligand.39–42 Thus, the FL spectrum indicates that a certain amount of Cu(i) is formed in PL-HKUST-1, which highly contrasted to CH-HKUST-1 and RT-HKUST-1.Open in a separate windowFig. 2FL spectra of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 (λex = 310 nm).The existence of Cu(i) in PL-HKUST-1 was also confirmed by X-ray photoelectron spectroscopy (XPS). The XPS spectrum of PL-HKUST-1 showed peaks at 932.2 and 934.6 eV, assignable to Cu(i) and Cu(ii), respectively (Fig. S4).43,44 Although the reduction to Cu(i) inevitably proceeded upon X-ray irradiation,45 the concentration of Cu(i) in PL-HKUST-1 was apparently higher than those in CH-HKUST-1 and RT-HKUST-1, which was consistent with the FL spectra. The plasma has ample free electrons and ions, which can reduce metal ions via electrochemical reactions.46 The temperature of the plasma in liquid could be as high as 1000–7000 K,27 and the reduction of Cu(ii) to Cu(i) by heat might occur.47To examine the water stability of the MOFs, HKUST-1 was immersed in water at room temperature for 12 h. The XRD patterns of the samples after immersion in water were compared with those of the as-synthesized samples. The water treatment resulted in the appearance of new peaks at 2θ ≈ 9.4°–9.7°, 10.1°, 11.1°, 17.3°, and 19.6° for CH-HKUST-1 and RT-HKUST-1 (Fig. 1). Notably, the XRD patterns of PL-HKUST-1 before and after immersion in water were identical, with no detectable changes.The effect of water treatment on the morphology of HKUST-1 was also investigated using scanning electron microscopy (SEM). Particles with octahedral shape were obtained by the plasma in liquid method, similar to those obtained by the conventional heating method (Fig. 3). After immersion in water, the formation of particles with a thread-like morphology was observed for CH-HKUST-1 and RT-HKUST-1, suggesting the decomposition of HKUST-1.30,48 In contrast, although PL-HKUST-1 contained a portion of the etched corners, the particle shape and size remained unchanged after water treatment.Open in a separate windowFig. 3SEM images of (a and b) CH-HKUST-1, (c and d) RT-HKUST-1, and (e and f) PL-HKUST-1 before and after immersion in water.Fourier transform infrared (FTIR) spectra of HKUST-1 before and after the water treatment are shown in Fig. 4. All as-synthesized samples showed the typical characteristic peaks of HKUST-1. The bands from 1300 to 1700 cm−1 are associated with the carboxylate group of the BTC ligand.49 The two peaks in the range 1371–1448 cm−1 correspond to the symmetric stretching vibrations of the carboxylate group.50 The bands at 730 and 758 cm−1 correspond to the in-plane C–H bending mode.49 Peaks observed below 600 cm−1 correspond to the bonds involving copper ions.49 After immersion in water, the FTIR spectrum of PL-HKUST-1 did not show any significant change whereas those of CH-HKUST-1 and RT-HKUST-1 showed shifts in the peaks and formation of new peaks. When exposed to water, peaks corresponding to COO vibrations were observed for CH-HKUST-1 and RT-HKUST-1 between 1200 and 1700 cm−1 due to a change in the environments of the linker BTC.48 The peak around 1640 cm−1 shifted to longer wavelengths, and a new peak appeared around 1570 cm−1, which is consistent with previous research.38 The Raman spectra of CH-HKUST-1 and RT-HKUST-1 also showed the structural change in the coordination bonding upon the water treatment (Fig. S5).51Open in a separate windowFig. 4FTIR spectra of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 before and after immersion in water. Fig. 5). The BET surface areas of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 were 888, 574, and 739 m2 g−1, respectively. After immersion in water, the amount adsorbed by CH-HKUST-1 and RT-HKUST-1 was lowered compared to that before immersion, and their BET surface areas were 407 and 351 m2 g−1, respectively. By contrast, in the case of PL-HKUST-1, the adsorption amount remained high even after immersion in water, and its BET surface area was 811 m2 g−1.Brunauer–Emmett–Teller surface areas of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 before and after immersion in water
SynthesizedAfter immersion
CH-HKUST-1888 m2 g−1407 m2 g−1
RT-HKUST-1574 m2 g−1351 m2 g−1
PL-HKUST-1739 m2 g−1811 m2 g−1
Open in a separate windowOpen in a separate windowFig. 5N2 adsorption (solid symbols) and desorption (open symbols) isotherms of CH-HKUST-1, RT-HKUST-1, and PL-HKUST-1 before and after immersion in water.These results clearly indicate that PL-HKUST-1 was more resistant to water than CH-HKUST-1 and RT-HKUST-1, and its high surface area could be retained for a longer period. This is because PL-HKUST-1 after immersion in water was not decomposed at all or at least under the midway in the decomposition process of HKUST-1. According to Todaro et al., there are three stages in the decomposition of HKUST-1 during the adsorption of water molecules.31 The first stage does not involve hydrolysis during the interaction with water molecules, triggering an irreversible modification. Under the present experimental conditions, the BET surface of PL-HKUST-1 did not decrease after immersion in water, indicating that it had not advanced beyond the reversible first stage. For CH-HKUST-1 and RT-HKUST-1, the large decrease in BET surface after exposure to water suggests that the reaction had progressed to the second or third stage of irreversible hydrolysis of the Cu–O bonds.Various factors account for the higher water stability of PL-HKUST-1 compared to CH-HKUST-1 and RT-HKUST-1. One of the possible reasons is the higher concentration of Cu(i) in PL-HKUST-1. The mixture of Cu(ii) and Cu(i) ions coordinated with BTC showed higher water stability,36 although the structure changed due to the reduction. Our study indicates that PL-HKUST-1 still bears the HKUST-1 structure with Cu(i)-rich sites, similar to the MOF synthesized by reducing Cu(ii) in HKUST-1 by heating, X-ray irradiation45 or alcohol vapor treatment.52 This may be due to the generation of missing-linker defects inside the structure of HKUST-1.53 Due to the reduction, the state of open metal sites (OMS) might change, and their water adsorption might also be influenced.It has also been reported that treatment of HKUST-1 with oxygen plasma prevents adsorption of water molecules. This is because the adsorption of oxygen on the OMS during plasma treatment prevents the adsorption of water in HKUST-1.35 In this study, there were many radicals such as CH, OH, and O in the reaction field of plasma in liquid, which was confirmed from optical emission spectra (Fig. S6); it is also possible that some species were adsorbed on the OMS, resulting in high water stability of PL-HKUST-1.In conclusion, the results of this study revealed the applicability of plasma in liquid for MOF synthesis. Plasma was generated during the formation of HKUST-1, which allowed for uniform modification of the MOF crystals without using any additives. Therefore, this method enabled us to obtain HKUST-1 with a higher Cu(i) content and high water stability compared to those synthesized by conventional synthetic methods. Since Cu(i) in HKUST-1 binds more strongly to adsorbed gases like nitrogen oxide than Cu(ii),54 it is expected to have potential applications for the development of gas separators with good gas selectivity. It has also been reported that mixed-valence copper sites increase the density of states near the Fermi level and thus increase the electrical conductivity.45 In addition, MOFs with reduced Cu(i) ions are also expected to be used as catalysts for click reactions.44 It may be possible to control the amount of reduced metal ions simply by tuning parameters such as irradiation time and plasma generation power. Further development of such systems, as well as their contribution to the preparation of novel functionalized MOFs, is expected in the future.  相似文献   

17.
A novel core–shell-type electrorheological (ER) composite material was fabricated via using polyaniline as an insulating layer to the outer surface of the core conductive metal–organic framework (MIL-125) with controlled size and morphology. MIL-125 was firstly synthesized by a solvothermal method, and then polyaniline was synthesized in a polar solvent and a tight coating was successfully achieved to form a MIL-125@PANI core–shell nanocomposite. This core–shell structure greatly enhances the polarization ability of dispersed particles, thereby improving their rheological properties. The morphology of pure MIL-125 and MIL-125@PANI has been characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Their structure was characterized by X-ray powder diffraction. Moreover, the ER activity of MIL-125-based and MIL-125@PANI-based ER fluids by dispersing the particles into silicone oil was studied using a rotational rheometer. The results show that the MIL-125@PANI composite particles have higher ER properties.

Core–shell-structured MIL-125@PANI nanocomposites were synthesized, which can exhibit smart electrorheological behavior under an external electric field.  相似文献   

18.
Metal–organic frameworks (MOFs), produced by metal ions coordinated to organic linkers, have attracted increasing attention in recent years. For the utilization in MOFs in numerous applications, achieving positioned MOF growth on surfaces is essential to fabricate multiple-functional devices. We develop a novel miniaturized method to realize surface-tension-confined assembly of HKUST-1 in femtoliter droplet arrays. HKUST-1 crystal arrays grown by evaporation-induced crystallization are observed, and five typical crystal morphologies (i.e., hexagonal, irregular hexagonal, triangular, arc-like and ribbon-like crystals) are found in the large area on the patterned substrate during crystallization. Our research provides a better understanding of the formation mechanism of MOF crystals in confined sessile droplets. The key factors determining HKUST-1 single-crystal growth are the internal flows in an evaporating droplet and consequently aggregation induced by the combination of metallic Cu(ii) and BTC ions. Understanding the formation of different morphologies of HKUST-1 crystals is useful to guide the production of crystals with desired shapes for various applications.

The key factors determining HKUST-1 single-crystal growth are the internal flows in an evaporating droplet and consequently aggregation induced by the combination of metallic Cu(ii) and BTC ions.  相似文献   

19.
Lithium–sulphur batteries attract increasing interest due to their high theoretical specific capacity, advantageous economy, and “eco-friendliness”. In this study, a metal–organic framework (MOF) GaTCPP containing a porphyrinic base ligand was used as a conductive additive for sulphur. GaTCPP was synthesized, characterized, and post-synthetically modified by the transition metal ions (Co2+/Ni2+). The doping of GaTCPP ensured an increase in the carbon dioxide adsorption capacities, which were measured under different conditions. Post-synthetic modification of GaTCPP with Co2+/Ni2+ ions has been shown to increase carbon dioxide storage capacity from 22.8 wt% for unmodified material to 23.1 wt% and 26.5 wt% at 0 °C and 1 bar for Co2+ and Ni2+-doped analogues, respectively. As a conductive part of cathode material, MOFs displayed successful sulphur capture and encapsulation proven by stable charge/discharge cycle performances, high-capacity retention, and coulombic efficiency. The electrodes with pristine GaTCPP showed a discharge capacity of 699 mA h g−1 at 0.2C in the fiftieth cycle. However, the doping of GaTCPP by Ni2+ has a positive impact on the electrochemical properties, the capacity increased to 778 mA h g−1 in the fiftieth cycle at 0.2C.

Metal–porphyrin framework GaTCPP was used for carbon dioxide adsorption and as a host for preparation of a Li–S battery cathode material.  相似文献   

20.
A facile and template-free solvothermal method was developed as a bottom-up approach to synthesize mesoporous/macroporous MOF nanosheets in a simple and scalable way. It was found that starting coordination complexes of different copper(ii)-ligand compounds mediated the controlled growth and morphology of MOF crystals. By controlling the size and shape of the MOF crystals, the possibility to adjust and tailor the structure and performances of the assemblies was demonstrated. This work provides a bottom-up approach to synthesize MOF films and nanosheets in a simple and scalable way, which may have potential in energy and biomedical applications.

A facile and template-free solvothermal method was developed as a bottom-up approach to synthesize mesoporous/macroporous MOF nanosheets in a simple and scalable way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号