首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
In the past few years, laser powder-bed fusion (LPBF) of bulk metallic glasses (BMGs) has gained significant interest because of the high heating and cooling rates inherent to the process, providing the means to bypass the crystallization threshold. In this study, (for the first time) the tensile and Charpy impact toughness properties of a Zr-based BMG fabricated via LPBF were investigated. The presence of defects and lack of fusion (LoF) in the near-surface region of the samples resulted in low properties. Increasing the laser power at the borders mitigated LoF formation in the near-surface region, leading to an almost 27% increase in tensile yield strength and impact toughness. Comparatively, increasing the core laser power did not have a significant influence. It was therefore confirmed that, for BMGs like for crystalline alloys, near-surface LoFs are more detrimental than core LoFs. Although increasing the border and core laser power resulted in a higher crystallized fraction, detrimental to the mechanical properties, reducing the formation of LoF defects (confirmed using micro-computed tomography, Micro-CT) was comparatively more important.  相似文献   

2.
With the development and popularization of additive manufacturing, attempts have been made to implement this technology into the production processes of machine parts, including gears. In the case of the additive manufacturing of gears, the availability of dedicated materials for this type of application is low. This paper summarizes the results of research on the implementation of 21NiCrMo2 low-alloy steel, which is conventionally used to produce gears as a feedstock in the PBF-LB/M process. The work presents research on the selection of process parameters based on porosity measurements, static tensile tests, and hardness measurements. In addition, the article includes a mathematical model based on the quadratic regression model, which allows the estimation of the percentage of voids in the material depending on the assumed values of independent variables (laser power, scanning velocity, and hatch distance). The paper includes a range of process parameters that enable the production of elements made of 21NiCrMo2 steel with a density of over 99.7%. Additionally, comparative tests were carried out on PBF-LB/M-manufactured steel (in the state after printing and the state after heat treatment) and conventionally manufactured steel in terms of its mechanical and microstructural properties. The results showed that the steel exhibited similar mechanical properties to other carburizing steels (20MnCr5 and 16MnCr5) that have been used to date in PBF-LB/M processes and it can be used as an alternative to these materials.  相似文献   

3.
For this article, we studied the microstructure and solute segregation seen around the melt pool boundary of orientation-controlled 316L austenitic stainless steel produced by laser powder bed fusion, using transmission electron microscopy and energy-dispersive x-ray spectroscopy. We found that the solidification cellular microstructures could be visualized with the aid of solute segregation (Cr and Mo) during solidification. Mn–Si–O inclusions (10–15 nm in diameter) were distributed along the lamellar boundaries, as well as in the dislocation cell walls. It is believed that the grain growth of the inclusions can be effectively suppressed by rapid quenching during the laser powder-bed fusion process. A thin region without cellular microstructures was observed at the melt-pool boundary. The cellular spacing widened near the bottom of the melt-pool boundary, owing to the decrease in the cooling rate. Atomic-structure analysis at the lamellar boundary by high-resolution transmission electron microscopy revealed a local interfacial structure, which is complementary to the results of electron back-scatter diffraction.  相似文献   

4.
Duplex stainless steel powders for laser additive manufacturing have not been developed extensively. In this study, the melts of a super duplex stainless steel X2CrNiMoCuWN25-7-4 (AISI F55, 1.4501) were atomized with different process gases (Ar or N2) at different atomization gas temperatures. The process gas N2 in the melting chamber leads to a higher nitrogen dissolution in the steel and a higher nitrogen content of the atomized powders. The argon-atomized powders have more gas porosity inside the particles than the nitrogen-atomized powders. In addition, the higher the atomization gas temperature, the finer the powder particles. The duplex stainless steel powders showed good processability during PBF-LB/M (Laser powder bed fusion). The gas entrapment in the powder particles, regardless of the gas chemistry and the gas content, appears to have a negligible effect on the porosity of the as-built parts.  相似文献   

5.
Laser welding is an innovative method that is frequently used and required by different disciplines and represents a technique of choice in a wide range of applications due to important advantages such as precision, speed, and flexibility. However, the welding method must be used properly otherwise it may deteriorate the mechanical properties of the welded metal and its environment. Therefore, the laser parameters should be precisely determined and carefully applied to the sample. The primary objective of this study was to investigate and propose optimal welding parameters that should be adjusted during the neodymium-doped yttrium aluminum garnet (Nd: YAG)-pulsed laser welding of austenitic stainless steel 316L in an air welding environment by using Argon shielding gas and in wet welding settings in serum medium. The investigation of the welding process in serum medium was conducted in order to propose the most suitable welding parameters being important for future possible medical applications of laser welding in in-vivo settings and thus to investigate the possibilities of the welding process inside the human body. In order to evaluate the quality of welding in air and of wet welding (in serum), a detailed parameter study has been conducted by variation of the laser energy, the welding speed and the focal position. The relationship between the depth of penetration and specific point energy (SPE) was also evaluated. The microstructure of the welded metal was examined by an optical microscope and scanning electron microscope (SEM). Based on the microscopy results, it was found that the largest depth of penetration (1380 µm) was achieved with 19 J laser energy in air medium, while the depth reached the largest value (1240 µm) in serum medium at 28 J laser energy. The increasing energy level showed opposite behavior for air and serum. The results of our study imply that when welding of 316L stainless steel is implemented properly in the body fluid, it would be a promising start for future in-vivo studies.  相似文献   

6.
In this study, ultra-high-strength steels, namely, cold-hardened austenitic stainless steel AISI 301 and martensitic abrasion-resistant steel AR600, as base metals (BMs) were butt-welded using a disk laser to evaluate the microstructure, mechanical properties, and effect of post-weld heat treatment (PWHT) at 250 °C of the dissimilar joints. The welding processes were conducted at different energy inputs (EIs; 50–320 J/mm). The microstructural evolution of the fusion zones (FZ) in the welded joints was examined using electron backscattering diffraction (EBSD) and laser scanning confocal microscopy. The hardness profiles across the weldments and tensile properties of the as-welded joints and the corresponding PWHT joints were measured using a microhardness tester and universal material testing equipment. The EBSD results showed that the microstructures of the welded joints were relatively similar since the microstructure of the FZ was composed of a lath martensite matrix with a small fraction of austenite. The welded structure exhibited significantly higher microhardness at the lower EIs of 50 and 100 J/mm (640 HV). However, tempered martensite was promoted at the high EI of 320 J/mm, significantly reducing the hardness of the FZ to 520 HV. The mechanical tensile properties were considerably affected by the EI of the as-welded joints. Moreover, the PWHT enhanced the tensile properties by increasing the deformation capacity due to promoting the tempered martensite in the FZ.  相似文献   

7.
Laser metal deposition (LMD) is one of the manufacturing processes in the industries, which is used to enhance the properties of components besides producing and repairing important engineering components. In this study, Stellite 6 was deposited on precipitation-hardened martensitic stainless steel (17-4 PH) by using the LMD process, which employed a pulsed Nd:YAG laser. To realize a favor deposited sample, the effects of three LMD parameters (focal length, scanning speed, and frequency) were investigated, as well as microstructure studies and the results of a microhardness test. Some cracks were observed in the deposited layers with a low scanning speed, which were eliminated by an augment of the scanning speed. Furthermore, some defects were found in the deposited layers with a high scanning speed and a low frequency, which can be related to the insufficient laser energy density and a low overlapping factor. Moreover, various morphologies were observed within the microstructure of the samples, which can be attributed to the differences in the stability criterion and cooling rate across the layer. In the long run, a defect-free sample (S-120-5.5-25) possessing suitable geometrical attributes (wetting angle of 57° and dilution of 25.1%) and a better microhardness property at the surface (≈335 Hv) has been introduced as a desirable LMDed sample.  相似文献   

8.
It is of great importance to study the microstructure and textural evolution of laser powder bed fusion (LPBF) formed Hastelloy-X alloys, in order to establish a close relationship between the process, microstructure, and properties through the regulation of the Hastelloy-X formation process parameters. In this paper, components of a Hastelloy-X alloy were formed with different laser energy densities (also known as the volume energy density VED). The densification mechanism of Hastelloy-X was studied, and the causes of defects, such as pores and cracks, were analyzed. The influence of different energy densities on grain size, texture, and orientation was investigated using an electron backscatter diffraction technique. The results show that the average grain size, primary dendrite arm spacing, and number of low angle grain boundaries increased with the increase of energy density. At the same time, the VED can strengthen the texture. The textural intensity increases with the increase of energy density. The best mechanical properties were obtained at the VED of 96 J·mm−3.  相似文献   

9.
Metal additive manufacturing (AM) has been evolving in response to industrial and social challenges. However, new materials are hindered in these technologies due to the complexity of direct additive manufacturing technologies, particularly selective laser melting (SLM). Stainless steel (SS) 316L, due to its very low carbon content, has been used as a standard powder in SLM, highlighting the role of alloying elements present in steels. However, reliable research on the chemical impact of carbon content in steel alloys has been rarely conducted, despite being the most prevalent element in steel. Considering the temperatures involved in the SLM process, the laser–powder interaction can lead to a significant carbon decrease, whatever the processing atmosphere. In the present study, four stainless steels with increasing carbon content—AISI 316L, 630 (17-4PH), 420 and 440C—were processed under the same SLM parameters. In addition to roughness and surface topography, the relationship with the microstructure (including grain size and orientation), defects and mechanical properties (hardness and tensile strength) were established, highlighting the role of carbon. It was shown that the production by SLM of stainless steels with similar packing densities and different carbon contents does not oblige the changing of processing parameters. Moreover, alterations in material response in stainless steels produced under the same volumetric energy density mainly result from microstructural evolution during the process.  相似文献   

10.
X6CrNiMoVNb11-2 supermartensitic stainless steel, a special type of stainless steel, is commonly used in the production of gas turbine discs in liquid rocket engines and compressor disks in aero engines. By optimizing the parameters of the heat-treatment process, its mechanical properties are specially adjusted to meet the performance requirement in that particular practical application during the advanced composite casting-rolling forming process. The relationship between the microstructure and mechanical properties after quenching from 1040 °C and tempering at 300–670 °C was studied, where the yield strength, tensile strength, elongation and impact toughness under different cooling conditions are obtained by means of mechanical property tests. A certain amount of high-density nanophase precipitation is found in the martensite phase transformation through the heat treatment involved in the quenching and tempering processes, where M23C6 carbides are dispersed in lamellar martensite, with the close-packed Ni3Mo and Ni3Nb phases of high-density co-lattice nanocrystalline precipitation created during the tempering process. The ideal process parameters are to quench at 1040 °C in an oil-cooling medium and to temper at 650 °C by air-cooling; final hardness is averaged about 313 HV, with an elongation of 17.9%, the cross-area reduction ratio is 52%, and the impact toughness is about 65 J, respectively. Moreover, the tempered hardness equation, considering various tempering temperatures, is precisely fitted. This investigation helps us to better understand the strengthening mechanism and performance controlling scheme of martensite stainless steel during the cast-rolling forming process in future applications.  相似文献   

11.
To prevent the contamination of the marine environment caused by ship exhaust gas, the demand for LNG (liquefied natural gas) fueled ships is increasing worldwide. A tank to store LNG at cryogenic temperatures is indispensable to such LNG-fueled ships. Since the materials used for LNG fuel propulsion tanks must have excellent mechanical properties such as impact toughness at cryogenic temperatures, the International Maritime Organization limits the IGC Code only to four types. Most of the tank materials for LNG-fueled ships ordered recently are adopting ASTM A553-1 material, but a systematic study to analyze the problem of quality degradation that may occur when welding A553-1 steel is required to secure the safety of cryogenic tanks. Therefore, in this study, among various quality problems, the tendency of weld solidification crack vulnerability is identified, and a decision system and optimization procedure are developed. In addition, a method of securing the welding quality of A553-1 steel was proposed by setting quality deterioration standards.  相似文献   

12.
Factorial Design-of-Experiment analyses were applied for conventional and beam oscillation fiber laser cutting of 10 mm thick AISI 304 stainless steel. Considered factors in case of the conventional process with a static beam involve both laser and cutting gas parameters, in particular the laser power, the focal plane position, the cutting gas pressure, the nozzle stand-off distance as well as the nozzle diameter. The conducted trials were evaluated with respect to the achievable cutting speed, the cut kerf geometry and the cut edge roughness. Noticeable correlations between cut edge roughness and cut kerf geometry stimulated the development of a corresponding Computational Fluid Dynamics (CFD) model of the cutting gas flow through the kerf. A specific approach of data synchronization revealed that the experimentally determined roughness values do well correlate with numerically computed values of the backward directed component of the gas-induced shear stress and that the cut kerf geometry as internal process-inherent boundary condition influences relevant cutting characteristics more than controllable external cutting gas parameters. Finally, effects of circular beam oscillation were investigated by an additional factorial analysis considering the laser power, the focal plane position, the oscillation frequency and the oscillation amplitude as factors. The results demonstrate the potential of beam oscillation techniques for quality improvements in laser cutting.  相似文献   

13.
An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-built products, utilizing optimized processing parameters, had a Rockwell-C scale (HRC) hardness of 44.6. Following heat treatments which included annealing at 704 °C, HIP at ~926 °C (average), and HIP + anneal, the HRC hardnesses were observed to be 43.9, 40.7, and 40.4, respectively. The corresponding tensile yield stress, UTS, and elongation for these heat treatments averaged 1.19 GPa, 1.22 GPa, 8.7%; 1.03 GPa, 1.08 GPa, 16.7%; 1.04 GPa, 1.09 GPa, 16.1%, respectively. The HIP yield strength and elongation of 1.03 GPa and 16.7% are comparable to the best commercial, wrought Ti-6Al-4V products. The corresponding HIP component microstructures consisted of elongated small grains (~125 microns diameter) containing fine, alpha/beta lamellae.  相似文献   

14.
Laser powder bed fusion (LPBF) is being increasingly used in the fabrication of complex-shaped structure parts with high precision. It is easy to form martensitic microstructure in Ti-6Al-4V alloy during manufacturing. Pre-heating the powder bed can enhance the thermal field produced by cyclic laser heating during LPBF, which can tailor the microstructure and further improve the mechanical properties. In the present study, all the Ti-6Al-4V alloy samples manufactured by LPBF at different powder bed temperatures exhibit a near-full densification state, with the densification ratio of above 99.4%. When the powder bed temperature is lower than 400 °C, the specimens are composed of a single α′ martensite. As the temperature elevates to higher than 400 °C, the α and β phase precipitate at the α′ martensite boundaries by the diffusion and redistribution of V element. In addition, the α/α′ lath coarsening is presented with the increasing powder bed temperature. The specimens manufactured at the temperature lower than 400 °C exhibit high strength but bad ductility. Moreover, the ultimate tensile strength and yield strength reduce slightly, whereas the ductility is improved dramatically with the increasing temperature, when it is higher than 400 °C.  相似文献   

15.
In order to track the free interface of the melt pool and understand the evolution of the melt pool, the flow of fluid, and the interface behavior of gas and liquid, a physical model is developed by using the VOF method in this paper. Its characteristics are a combined heat source model, including a parabolic rotation and a cylindrical distribution, and a powder bed stochastic distributed model with powder particle size. The unit interface between the metallic and gas phase in the laser–powder interaction zone can only be loaded by the heat source. Only the first and second laser scanning tracks are simulated to reduce the calculation time. The simulation results show that process parameters such as laser power and scanning speed have significant effects on the fluid flow and surface morphology in the melt pool, which are in good agreement with the experimental results. Compared with the first track, the second track has larger melt pool geometry, higher melt temperature, and faster fluid flow. The melt flows intensely at the initial position due to the high flow rate in the limited melt space. Because there is enough space for the metal flow, the second track can obtain smooth surface morphology more easily compared to the first track. The melt pool temperature at the laser beam center fluctuates during the laser scanning process. This depends on the effects of the interaction between heat conduction or heat accumulation or the interaction between heat accumulation and violent fluid flow. The temperature distribution and fluid flow in the melt pool benefit the analysis and understanding of the evolution mechanism of the melt pool geometry and surface topography and further allow regulation of the L-PBF process of Ti6Al4V.  相似文献   

16.
The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.  相似文献   

17.
The environment of the global shipbuilding market is changing rapidly. Recently, the International Maritime Organization (IMO) has tightened regulations on sulfur oxide content standards for marine fuels and tightened sulfur oxide emission standards for the entire coastal region of China to consider the environment globally and use LNG as a fuel. There is a tendency for the number of vessels to operate to increase significantly. To use cryogenic LNG fuel, various pieces of equipment, such as storage tanks or valves, are required, and equipment using steel, which has excellent impact toughness in cryogenic environments, is required. Four steel types are specified in the IGG Code, and 9% Ni steel is mostly used for LNG fuel equipment. However, to secure safety at cryogenic temperatures, a systematic study investigating the causes of quality deterioration occurring in the 9% Ni steel welding process is required and a discrimination function capable of quality evaluation is urgent. Therefore, this study proposes a plan where the uniform quality of 9% Nickel steel is secured by reviewing the tendency of the solidification crack susceptibility among the quality problems of cryogenic steel to establish the criteria for quality deterioration and to develop a system capable of quality discrimination and defect avoidance.  相似文献   

18.
In this study, the effects of pseudo-ternary oxides on mechanical properties and microstructure of 316L stainless steel tungsten inert gas (TIG) and activating tungsten inert gas (ATIG) welded joints were investigated. The novelty in this work is introducing a metaheuristic technique called the particle swarm optimization (PSO) method to develop a mathematical model of the ultimate tensile strength (UTS) in terms of proportions of oxides flux. A constrained optimization algorithm available in Matlab 2020 optimization toolbox is used to find the optimal percentages of the selected powders that provide the maximum UTS. The study indicates that the optimal composition of flux was: 32% Cr2O3, 43% ZrO2, 8% Si2O, and 17% CaF2. The UTS was 571 MPa for conventional TIG weld and rose to 600 MPa for the optimal ATIG flux. The obtained result of hardness for the optimal ATIG was 176 HV against 175 HV for conventional TIG weld. The energy absorbed in the weld zone during the impact test was 267 J/cm2 for the optimal ATIG weld and slightly higher than that of conventional TIG weld 256 J/cm2. Fracture surface examined by scanning electron microscope (SEM) shows ductile fracture for ATIG weld with small and multiple dimples in comparison for TIG weld. Moreover, the depth of optimized flux is greater than that of TIG weld by two times. The ratio D/W was improved by 3.13 times. Energy dispersive spectroscopy (EDS) analysis shows traces of the sulfur element in the TIG weld zone.  相似文献   

19.
Numerical models can be useful for analysis of the ability of structural engineering materials to withstand harsh environmental conditions such as dynamic loading. In the present study, a microstructure-variable-based numerical model for predicting the high strain rate and temperature properties of different microstructures of Ti6Al4V (ELI-Extra Low Interstitial) produced by laser-based powder bed fusion is proposed. The model was implemented in two different subroutines, VUMAT and VUHARD, available in ABAQUS/Explicit for simulating dynamic conditions. The two subroutines were then used to simulate the split Hopkinson pressure bar (SHPB) experiments to study the flow properties of various forms of the direct metal laser sintered Ti6Al4V(ELI) alloy at various conditions of strain rate and temperature. Comparison of the results obtained through simulation and those obtained from experimental testing showed high degrees of correlation and accuracy with correlation coefficients and absolute percentage errors >0.97 and <4%, respectively. The numerical model was also shown to give good predictions of the strain hardening and dynamic recovery phenomena that prevail for deformations at high strain rates and temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号