首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Magnocellular contributions to impaired motion processing in schizophrenia   总被引:2,自引:0,他引:2  
Patients with schizophrenia show impairments in motion processing, along with deficits in lower level processing primarily involving the magnocellular visual pathway. The present study investigates potential magnocellular contributions to impaired motion processing in schizophrenia using a combined neurophysiological and behavioral approach. As compared to prior motion studies in schizophrenia, thresholds were determined for both incoherent and coherent visual motion. In this study, velocity discrimination thresholds were measured for schizophrenia patients (n=14) and age-matched normal control subjects (n=16) using a staircase procedure. Early visual processing was evaluated using steady-state visual evoked potentials (ssVEP), with stimuli biased toward activation of either the magnocellular or parvocellular visual pathways through luminance contrast manipulation. Patients with schizophrenia showed poor velocity discrimination for both incoherent and coherent motion, with no significant group x task interaction. Further, when coherent motion performance was measured at individually determined incoherent motion thresholds, accuracy levels for patients were similar to controls, also indicating similarity of deficit for incoherent vs. coherent motion discrimination. Impairments in velocity discrimination correlated significantly with reduced amplitude of ssVEP elicited by magnocellular -- but not parvocellular -- selective stimuli. This study demonstrates that deficits in motion processing in schizophrenia are significantly related to reduced activation of the magnocellular visual system. Further, this study supports and extends prior reports of impaired motion processing in schizophrenia, and indicates significant bottom-up contributions to higher-order cognitive impairments.  相似文献   

2.
OBJECTIVE: Patients with schizophrenia demonstrate significant impairments of early visual processing, potentially implicating dysfunction of the magnocellular visual pathway. The present study evaluates transient visual evoked potential (tVEP) responses to stimuli biased toward the magnocellular (M) or parvocellular (P) systems in patients with schizophrenia vs. normal volunteers first to evaluate relative contributions of M and P systems to specific tVEP components in schizophrenia and, second, to evaluate integrity of early M and P processing in schizophrenia. METHODS: Seventy-four patients with schizophrenia and schizoaffective disorder were compared with 59 control subjects using separate stimuli to assess the tVEP response to M, P and mixed M/P conditions. Stimuli were biased toward M vs. P processing by manipulation of chromatic and achromatic contrast. C1, P1, N1 and P2 components were compared between patients and controls. All subjects showed 20/32 vision or better. RESULTS: Waveforms were obtained to low contrast (M), chromatic contrast (P) and high contrast (mixed M/P) stimuli in both patients and controls. C1 was present to P and mixed M/P stimuli. Patients showed a significant reduction in amplitude and an increase in latency of the C1 component. P1 was elicited primarily by M and mixed M/P stimuli, whereas N1 was elicited primarily by P and mixed M/P stimuli. Patients showed reductions in both P1 and N1 amplitudes across conditions. However, only reductions in P1 amplitude survived covariation for between group differences in visual acuity. Further, P1 amplitude reductions in the M condition correlated with a proxy measure of global outcome. CONCLUSIONS: M- and P-selective stimuli elicit differential components of the tVEP. Patients with schizophrenia show significant reductions in response even to simple visual stimuli. Deficits, particularly within the M system, may correlate significantly with global outcome and level of community functioning. SIGNIFICANCE: Whereas deficits in high-order cognitive processing have been extensively documented in schizophrenia, integrity of early-stage sensory processing has been studied to a lesser degree. The present findings suggest that deficits in early-stage visual processing are significantly related to overall clinical outcome in schizophrenia. Further, between-group differences in visual acuity may influence VEP results, even for subjects with 'normal' vision (20/32 or better).  相似文献   

3.
BACKGROUND: Patients with schizophrenia show deficits in early-stage visual processing, potentially reflecting dysfunction of the magnocellular visual pathway. The magnocellular system operates normally in a nonlinear amplification mode mediated by glutamatergic (N-methyl-D-aspartate) receptors. Investigating magnocellular dysfunction in schizophrenia therefore permits evaluation of underlying etiologic hypotheses. OBJECTIVES: To evaluate magnocellular dysfunction in schizophrenia, relative to known neurochemical and neuroanatomical substrates, and to examine relationships between electrophysiological and behavioral measures of visual pathway dysfunction and relationships with higher cognitive deficits. DESIGN, SETTING, AND PARTICIPANTS: Between-group study at an inpatient state psychiatric hospital and outpatient county psychiatric facilities. Thirty-three patients met DSM-IV criteria for schizophrenia or schizoaffective disorder, and 21 nonpsychiatric volunteers of similar ages composed the control group. MAIN OUTCOME MEASURES: (1) Magnocellular and parvocellular evoked potentials, analyzed using nonlinear (Michaelis-Menten) and linear contrast gain approaches; (2) behavioral contrast sensitivity measures; (3) white matter integrity; (4) visual and nonvisual neuropsychological measures, and (5) clinical symptom and community functioning measures. RESULTS: Patients generated evoked potentials that were significantly reduced in response to magnocellular-biased, but not parvocellular-biased, stimuli (P = .001). Michaelis-Menten analyses demonstrated reduced contrast gain of the magnocellular system (P = .001). Patients showed decreased contrast sensitivity to magnocellular-biased stimuli (P<.001). Evoked potential deficits were significantly related to decreased white matter integrity in the optic radiations (P<.03). Evoked potential deficits predicted impaired contrast sensitivity (P = .002), which was in turn related to deficits in complex visual processing (P< or =.04). Both evoked potential (P< or =.04) and contrast sensitivity (P = .01) measures significantly predicted community functioning. CONCLUSIONS: These findings confirm the existence of early-stage visual processing dysfunction in schizophrenia and provide the first evidence that such deficits are due to decreased nonlinear signal amplification, consistent with glutamatergic theories. Neuroimaging studies support the hypothesis of dysfunction within low-level visual pathways involving thalamocortical radiations. Deficits in early-stage visual processing significantly predict higher cognitive deficits.  相似文献   

4.
Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective.  相似文献   

5.
Paired associates learning is impaired in both schizophrenia and amnestic mild cognitive impairment (aMCI), which may reflect hippocampal pathology. In addition, schizophrenia is characterized by the dysfunction of the retino-geniculo-striatal magnocellular (M) visual pathway. The purpose of this study was to investigate the interaction between visual perceptual and memory dysfunctions. We administered a modified version of the CANTAB paired associates learning task to patients with schizophrenia (n=20), aMCI (n=20), and two groups of matched healthy controls (n=20 for each patient group). The stimuli in the paired associates learning task biased information processing toward the M pathways (low contrast, low spatial frequency) and parvocellular (P) pathways (high contrast, high spatial frequency). Results revealed that patients with schizophrenia exhibited a more pronounced learning deficit for M-biased relative to P-biased stimuli. In aMCI, there were similar memory deficits for both types of stimuli. Orientation discrimination for M- and P-biased stimuli was intact in both groups of patients. The number of errors in the M-biased memory condition significantly and inversely correlated with the volume of the right hippocampus in schizophrenia. These results suggest an interaction between M-biased perceptual processing and short-term relational memory in schizophrenia, which may be associated with the structural alteration of the right hippocampus.  相似文献   

6.
Patients with schizophrenia have repeatedly shown deficits in visual processing. These deficits have been well documented using visual backward masking (VBM). The VBM deficit in schizophrenia is thought to be due to aberrant interactions between magnocellular (M) and parvocellular (P) visual pathways. To date, no study has studied these claims with rigorous stimuli isolating M and P pathway responses. This study examined the function of each pathway and their interactions by creating M- and P-biased targets based on their known physiological properties. The M system responds to very low luminance contrast whereas the P system does not, and the P system responds to color contrast whereas the M system generally does not. Thus, to activate the P system, target letters and masks utilized color contrast, and to activate the M system, target letters and masks utilized very low luminance contrast. Four conditions were presented such that M- and P-biased targets were paired with both M- and P-biased masks. A significant Group x Mask Condition interaction was found when a P target was used in combination with an M or P mask, but not when an M target was used. In particular, schizophrenia patients needed significantly longer interstimulus intervals (ISIs) than controls to escape from masking in the P target/M mask condition, but not in any of the other three conditions. In addition, the critical stimulus durations (CSDs) for unmasked stimuli were significantly increased for both M and P targets in patients relative to controls.These findings demonstrate a significant impairment in M, but not P pathway, function in patients with schizophrenia. Furthermore, deficits of letter identification, including those of P targets, may also reflect impairment of the M pathway given the priming function of the dorsal stream.  相似文献   

7.
PURPOSE OF REVIEW: While cognitive dysfunction including memory and attentional deficits are well known in schizophrenia, recent work has also shown basic sensory processing deficits. Deficits are particularly prominent in the visual system and may be related to cognitive deficits and outcome. This article reviews studies of early-stage visual processing in schizophrenia published during the past year. These studies reflect the growing interest and importance of sensory processing deficits in schizophrenia. RECENT FINDINGS: The visual system is divided into magnocellular and parvocellular pathways which project to dorsal and ventral visual areas. Recent electrophysiological and behavioral investigations have found preferential magnocellular/dorsal stream dysfunction, with some deficits in parvocellular function as well. These early-stage deficits appear to be related to higher level cognitive, social, and community function. Structural studies of occipital cortex and particularly optic radiations provide anatomical support for early visual processing dysfunction. SUMMARY: These findings highlight the importance of sensory processing deficits, in addition to higher cognitive dysfunction, for understanding the pathophysiology of schizophrenia. Understanding the nature of sensory processing deficits may provide insight into mechanisms of pathology in schizophrenia, such as N-methyl-D-aspartate dysfunction or impaired signal amplification, and could lead to treatment strategies including sensory processing rehabilitation that may improve outcome.  相似文献   

8.
Visual processing studies have repeatedly shown impairment in patients with schizophrenia compared to healthy controls. Electroencephalography (EEG) and, specifically, visual evoked potential (VEP) studies have identified an early marker of this impairment in the form of a decrement in the P1 component of the VEP in patients and their clinically unaffected first-degree relatives. Much behavioral and neuroimaging research has implicated specific dysfunction of either the subcortical magnocellular pathway or the cortical visual dorsal stream in this impairment. In this study, EEG responses were obtained to the contrast modulation of checkerboard stimuli using the VESPA (Visual Evoked Spread Spectrum Analysis) method. This was done for a high contrast condition and, in order to bias the stimuli towards the magnocellular pathway, a low contrast condition. Standard VEPs were also obtained using high contrast pattern reversing checkerboards. Responses were measured using high-density electrical scalp recordings in 29 individuals meeting DSM-IV criteria for schizophrenia and in 18 control subjects. Replicating previous research, a large (Cohen's d=1.11) reduction in the P1 component of the VEP was seen in patients when compared with controls with no corresponding difference in the VESPA response to high contrast stimuli. In addition, the low-contrast VESPA displayed no difference between patients and controls. Furthermore, no differences were seen between patients and controls for the C1 components of either the VEP or the high-contrast VESPA. Based on the differing acquisition methods between VEP and VESPA, we discuss these results in terms of contrast gain control and the possibility of dysfunction at the cortical level with initial afferent activity into V1 along the magnocellular pathway being intact when processing is biased towards that pathway using low contrast stimuli.  相似文献   

9.
Schizophrenia is associated with severe neurocognitive deficits that constitute a core feature of the disorder. Deficits have been most extensively studied in relationship to higher-order processes. This study evaluated the integrity of early visual processing in order to evaluate the overall pattern of visual dysfunction in schizophrenia. Steady-state visual-evoked potentials (ssVEPs) were recorded over the occipital cortex (Oz) in patients with schizophrenia and schizoaffective disorder (N=26) and in age-matched comparison volunteers (N=22). Two stimuli were used: windmill-dartboard and partial-windmill, which are contrast-reversing ( approximately 4 Hz), radial patterns with dominant low spatial-frequency content. Each stimulus was presented for 1 min. Fourier analysis was performed on the ssVEP data to extract the relevant temporal frequency (i.e., harmonic) components. Magnitude-squared coherence (MSC) was computed to estimate the relative signal level for each frequency component. The patients showed reduced amplitude and coherence of second harmonic responses in both conditions, but intact first harmonic responses in the windmill-dartboard condition. This finding of a differential deficit may indicate a significant loss in the magnocellular pathway, which contributes to the generation of the second harmonic component under these conditions. Early sensory deficits may lead to impairments in subsequent stages of processing.  相似文献   

10.
The effects of ablating the visual pathway that passes through the parvocellular (dorsal) LGN were tested in 2 macaque monkeys by measuring acuity and both luminance and chromatic contrast sensitivity. Thresholds were tested monocularly before and after ibotenic acid was used to lesion parvocellular layers 4 and 6 of the contralateral geniculate. The injections were centered at the representation of 6 degrees in the temporal field on the horizontal meridian, and vision was tested with localized stimuli at this location. In addition, in one of the monkeys, a lesion was made in magnocellular layer 1 of the opposite geniculate, and the same thresholds were tested. Physiological and anatomical reconstructions demonstrated complete destruction of the target layers in 1 parvocellular lesions and in the magnocellular lesion, and sparing of the nontarget layers in the tested region. Parvocellular lesions caused a 3-4-fold reduction in visual acuity within the affected part of the visual field, while the magnocellular lesion did not affect acuity. Both luminance and chromatic contrast sensitivity, tested with stationary gratings of 2 c/degree, were severely reduced by parvocellular lesions, but not affected by the magnocellular lesion. However, when luminance contrast sensitivity was tested with 1 c/degree gratings, counterphase modulated at 10 Hz, it was reduced by both parvocellular and magnocellular lesions. This study demonstrates that the parvocellular pathway dominates chromatic vision, acuity, and contrast detection at low temporal and high spatial frequencies, while the magnocellular pathway may mediate contrast detection at higher temporal and lower spatial frequencies.  相似文献   

11.
Reduction of volume and neuronal number has been found in several association nuclei of the thalamus in schizophrenic subjects. Recent evidence suggests that schizophrenic patients exhibit abnormalities in early visual processing and that many of the observed perceptual deficits are consistent with dysfunction of the magnocellular pathway, i.e. the visual relay from peripheral retinal cells to the two ventrally located magnocellular layers of the lateral geniculate nucleus (LGN). The present study was undertaken to determine whether abnormalities in cell number and volume of the LGN are associated with schizophrenia and whether the structural alterations are restricted to either the magnocellular or parvocellular subdivisions of the LGN. Series of Nissl-stained sections spanning the LGN were obtained from 15 schizophrenic and 15 normal control subjects. The optical disector/fractionator sampling method was used to estimate total neuronal number, total glial number and volume of the magnocellular and parvocellular subdivisions of the LGN. Cell number and volume of the LGN in schizophrenic subjects were not abnormal. Volume of both parvocellular and magnocellular layers of the LGN decreased with age. These findings do not support the hypothesis that early visual processing deficits in schizophrenic subjects are due to reduction of neuronal number in the LGN.  相似文献   

12.
Electrophysiological research has shown clear dysfunction of early visual processing mechanisms in patients with schizophrenia. In particular, the P1 component of the visual evoked potential (VEP) is substantially reduced in amplitude in patients. A novel visual evoked response known as the VESPA (Visual Evoked Spread Spectrum Analysis) was recently described. This response has a notably different scalp topography from that of the traditional VEP, suggesting preferential activation of a distinct subpopulation of cells. As such, this method constitutes a potentially useful candidate for investigating cellular contributions to early visual processing deficits. In this paper we compare the VEP and VESPA responses between a group of healthy control subjects and a group of schizophrenia patients. We also introduce an extension of the VESPA method to incorporate nonlinear processing in the visual system. A significantly reduced P1 component was found in patients using the VEP (with a large effect size; Cohen's d=1.6), while there was no difference whatsoever in amplitude between groups for either the linear or nonlinear VESPA. This pattern of results points to a highly specific cellular substrate of early visual processing deficits in schizophrenia, suggesting that these deficits are based on dysfunction of magnocellular pathways with parvocellular processing remaining largely intact.  相似文献   

13.
BACKGROUND: Abnormalities in early-stage visual processing might contribute to observed higher neurocognitive deficits in schizophrenia, but to date no clear link has been established. Schizophrenia has been associated with deficits in the magnocellular visual pathway, suggesting a relative bias for processing elemental (local) as opposed to configural (global) aspects of a hierarchical stimulus; however, global-local paradigm studies in schizophrenia have yielded mixed results. METHODS: In the current study, global-local and event-related potential (ERP) procedures were concomitantly used to assess temporal and spatial characteristics of hierarchical visual stimulus processing abnormalities. RESULTS: Patients (n = 24) had slower and less accurate responses to global stimuli than a healthy comparison group (n = 29). They exhibited a marked decrement in N150 ERP amplitude, which correlated with speed of response to global stimuli. They also failed to show an augmented P300 response to local stimuli. CONCLUSIONS: Behavioral and physiological data are consistent and support a global visual processing deficit in schizophrenia. This is manifest at a relatively early stage of visual processing and might relate to physiological disturbances in areas V3/V3a of the extrastriate cortex.  相似文献   

14.
A few remarks on attention and magnocellular deficits in schizophrenia   总被引:1,自引:0,他引:1  
In connection with schizophrenia, it has been proposed that the magnocellular system is specifically linked to the guiding of covert visual attention. The argument is that the magnocellular pathway provides input to the dorsal cortical stream which then projects back to area V1. We review problems with this model. (1) It requires that responses in the magnocellular system have a lead time over responses in the parvocellular system. However, measurements indicate that the actual response time difference between the two systems is small or negligible when entering the visual cortex. (2) Attention can be modified by stimuli that do not activate the magnocellular system. And, (3) lesions to area MT in the dorsal stream impair smooth pursuit eye movements, but not saccadic eye movements which are associated with shifts in attention. For these reasons, it is difficult to link attention defects in schizophrenia to potential magnocellular deficits.  相似文献   

15.
Individuals with schizophrenia show magnocellular visual pathway abnormalities similar to those described in dyslexia, predicting that reading disturbance should be a common concomitant of schizophrenia. To date, however, reading deficits have not been well established, and, in fact, reading is often thought to be normal in schizophrenia based upon results of tests such as the WRAT, which evaluate single word reading. This study evaluated "real world" reading ability in schizophrenia, relative to functioning of the magnocellular visual pathway. Standardized psychoeducational reading tests and contrast sensitivity measures were administered to 19 patients and 10 controls. Analyses of between group differences were further refined by classification of participants into reading vs. non-reading impaired groups using a priori and derived theoretical models. Patients with schizophrenia, as a group, showed highly significant impairments in reading (p<0.04-p<0.001), with particular deficits on tests of rate, comprehension and phonological awareness. Between 21% and 63% of patients met criteria for dyslexia depending upon diagnostic model vs. 0-20% of the controls. The degree of deficit correlated significantly with independent measures of magnocellular dysfunction. Reading impairment in schizophrenia reaches the level of dyslexia and is associated with compromised magnocellular processing as hypothesized. Findings related to symptoms, functioning and recommendations for reading ability assessment are discussed.  相似文献   

16.
Many lines of evidence suggest that the visual signals relayed through the magnocellular and parvocellular subdivisions of the primate dorsal LGN remain largely segregated through several levels of cortical processing. It has been suggested that this segregation persists through to the highest stages of the visual cortex, and that the pronounced differences between the neuronal response properties in the parietal cortex and inferotemporal cortex may be attributed to differential contributions from magnocellular and parvocellular signals. We have examined this hypothesis directly by recording the responses of cortical neurons while selectively blocking responses in the magnocellular or parvocellular layers of the LGN. Responses were recorded from single units or multiunit clusters in the middle temporal visual area (MT), which is part of the pathway leading to parietal cortex and thought to receive primarily magnocellular inputs. Responses in the MT were consistently reduced when the magnocellular subdivision of the LGN was inactivated. The reduction was almost always pronounced and often complete. In contrast, parvocellular block rarely produced striking changes in MT responses and typically had very little effect. Nevertheless, unequivocal parvocellular contributions could be demonstrated for a minority of MT responses. At a few MT sites, responses were recorded while magnocellular and parvocellular blocks were made simultaneously. Responses were essentially eliminated for all these paired blocks. These results provide direct evidence for segregation of magnocellular and parvocellular contributions in the extrastriate visual cortex and support the suggestion that these signals remain largely segregated through the highest levels of cortical processing.  相似文献   

17.
《Clinical neurophysiology》2021,132(4):872-885
ObjectiveCognitive deficits and visual impairment in the magnocellular (M) pathway, have been independently reported in schizophrenia. The current study examined the association between neuropsychological (NPS) performance and visual evoked potentials (VEPs: N80/P1 to M- and P(parvocellular)-biased visual stimuli) in schizophrenia and healthy controls.MethodsNPS performance and VEPs were measured in n = 44 patients and n = 34 matched controls. Standardized NPS-scores were combined into Domains and a PCA (Principal Component Analysis) generated Composite. Group differences were assessed via (M)ANOVAs, association between NPS and VEP parameters via PCA, Pearson’s coefficient and bootstrapping. Logistic regression was employed to assess classification power.ResultsPatients showed general cognitive impairment, whereas group differences for VEP-parameters were non-significant. In patients, N80 latency across conditions loaded onto one factor with cognitive composite, showed significant negative correlations of medium effect sizes with NPS performance for M/P mixed stimuli and classified low and high performance with 70% accuracy.ConclusionThe study provides no evidence for early visual pathway impairment but suggests a heightened association between early visual processing and cognitive performance in schizophrenia.SignificanceOur results lend support to bottom-up models of cognitive function in schizophrenia and implicate visual N80 latency as a potential biomarker of cognitive deficits in schizophrenia.  相似文献   

18.
Li W  Meekins K  Schirillo J 《Neuropsychologia》2012,50(8):2068-2074
In an experimental paradigm adapted from Hari (1995), forty observers listened via headphones to 8 binaural clicks: 4 left-ear leading followed by 4 right-ear leading with either 38 or 140 ms interstimulus intervals (ISIs). Concurrently, they viewed either foveal or peripheral visual stimuli designed to activate either the parvocellular or magnocellular pathway. They then reported the perceived location of each click-pair. Our results replicated Hari's finding that observers mistake the perceived location of short ISI click-pairs more often than long. That is, when ISIs were short, the sounds seemed to play across the inside of the head in a phenomenon called illusory directional hearing. However, when click-pairs were accompanied by peripheral visual stimuli that activated the magnocellular pathway, observers were more accurate than when there were no visual stimuli. Conversely, parvocellular-activating foveal visual stimuli produced more illusory hearing than when there were no visual stimuli. These findings suggest that activating the slow sustained parvocellular system may result in a longer processing window. Thirty dyslexic observers who repeated the experimental paradigm had an even longer processing window than control observers indicating that dyslexics may have a magnocellular system deficit.  相似文献   

19.
It has been proposed that magnocellular and parvocellular sensitivity in schizophrenic individuals can be assessed using steady-state visually evoked potentials (VEPs) to either low-contrast stimuli or stimuli whose contrast is modulated around a high contrast "pedestal" (Green MF, Butler PD, Chen Y, et al. Schizophr Bull. 2009;35:163-181). This suggestion faces 2 difficulties: (1) To use low-contrast stimuli to activate the magnocellular system is inconsistent with lesion studies that have shown that under many conditions, the parvocellular system responds to the lowest contrasts and (2) To rely on contrast-response relationships to identify magnocellular and parvocellular responses is difficult because other neurons exist in the visual system that have contrast-response relationships similar to those of magnocellular and parvocellular cells.  相似文献   

20.
OBJECTIVE: Current trends are showing a rapid increase in the elderly population, particularly the subgroup that is 75 years of age or more. Considering the fact that several ocular diseases are more prevalent among the elderly, it is increasingly important to investigate normal visual function in this subgroup of our population. The objective of this study was to determine the effects of advanced aging on visual retinocortical function by evaluating the electrophysiological responses of the most rapidly increasing segment of the geriatric population. METHODS: Fifty-eight healthy subjects between the ages of 20--32 years (n=30) and 75--88 years (n=28) participated in this study. We recorded their pattern electroretinograms (ERGs) and cortical visual evoked potentials (VEPs) under stimulus conditions biased toward the preferential response of the magnocellular and parvocellular subdivisions of the visual system. RESULTS: Elderly subjects showed reduced ERG amplitudes relative to young participants. The amplitude of the VEPs also decreased with age, while their latency increased. The effect of senescence was most apparent under stimulus conditions combining the magnocellular and parvocellular pathway contributions and less pronounced when the stimulus conditions were biased to favor the response of either system. CONCLUSIONS: Our results demonstrate that visual retinal and cortical function deteriorates with old age. Our data further indicate that senescence has widespread effects on the visual system, altering the functioning of both the magnocellular and parvocellular visual pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号