首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on local circulation and apoptosis in the midbrain were investigated in zebrafish (Danio rerio) embryos during early development. Embryos were exposed to TCDD from 24 h post fertilization (hpf) until observation, in water maintained at 28.5 degrees C. TCDD decreased blood flow in the mesencephalic vein, the only vessel perfusing the dorsal midbrain of the embryo. At 50 hpf, blood flow was maximally reduced in this vessel and gradually returned to the control level at 60 hpf. In contrast, blood flows in the trunk and in other vessels of the head of the embryo did not significantly change until 72 hpf. Furthermore, TCDD exposure caused apoptosis in the midbrain at 60 hpf, and the TCDD dose response relationship for this effect was similar to that for reduced blood flow in the mesencephalic vein at 50 hpf. The effects of TCDD on apoptosis in the midbrain, but not on blood flow, were abolished by Z-VAD-FMK, a general caspase inhibitor. TCDD effects on both endpoints were mimicked by beta-naphthoflavone (BNF), an aryl hydrocarbon receptor (AHR) agonist, and almost abolished by concomitant exposure to TCDD and alpha-naphthoflavone (ANF), an AHR antagonist. Concomitant exposure to TCDD and either an inhibitor of cytochrome P450 (CYP) (SKF525A or miconazole) or an antioxidant (N-acetylcysteine or ascorbic acid) inhibited these effects of TCDD. The incidence of apoptosis in the midbrain was inversely related to blood flow in this brain region following these various treatments and graded TCDD exposure concentrations (r = -0.91). The same range of TCDD exposure concentrations that reduced blood flow and increased apoptosis in the midbrain greatly enhanced CYP1A mRNA expression and immunoreactivity at 50 hpf in endothelial cells of blood vessels including the mesencephalic vein and the heart, but not the brain parenchyma. Taken together, these results suggest that TCDD induces apoptosis in the midbrain of the zebrafish embryo secondary to local circulation failure, which could be related to AHR activation, induction of CYP1A, and oxidative stress.  相似文献   

2.
In the embryo-larval stages of fish, alkylphenanthrenes such as retene (7-isopropyl-1-methylphenanthrene) produce a suite of developmental abnormalities typical of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including pericardial and yolk sac edema, cardiovascular dysfunction, and skeletal deformities. To investigate the mechanism and target tissue of retene toxicity, we used observational, histological, and protein knockdown techniques in zebrafish (Danio rerio) embryos. The primary overt signs of toxicity are pericardial edema and reduced blood flow, first observed at 36 h post-fertilization (hpf). The most pronounced effects at this stage are a reduced layer of cardiac jelly in the atrium and reduced diastolic filling. Conversely, an increased layer of cardiac jelly is observed at 72 hpf in retene-exposed embryos. Induction of cytochrome P4501A (CYP1A) is apparent in a subset of cardiomyocytes by 48 hpf suggesting that early cardiac effects may be due to AhR activation in the myocardium. Myocardial CYP1A induction is transient, with only endocardial induction observed at 72 hpf. Knockdown of cyp1a by morpholino oligonucleotides does not affect retene toxicity; however, ahr2 knockdown prevents toxicity. Thus, the mechanism of retene cardiotoxicity is AhR2-mediated and CYP1A-independent, similar to TCDD; however, the onset and proximate signs of retene toxicity differ from those of TCDD. Retene cardiotoxicity also differs mechanistically from the cardiac effects of non-alkylated phenanthrane, illustrating that alkyl groups can alter toxic action. These findings have implications for understanding the toxicity of complex mixtures containing alkylated and non-alkylated polycyclic aromatic hydrocarbons.  相似文献   

3.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and potent developmental toxicant in various animals, with developing fish being the most sensitive organisms. Although the expression of aryl hydrocarbon receptor (AHR) as well as the partner molecule, AHR nuclear translocator (ARNT) in the brain has been reported, the effect of TCDD on the brain remains to be clarified in detail. Previously, we reported local circulation failure and apoptosis in dorsal midbrain caused by TCDD in developing zebrafish. In the present experiments, we investigated the effects of morpholino antisense oligos against aryl hydrocarbon receptor 2 (zfAHR2) (AHR2-MO) on toxicological endpoints caused by TCDD in developing zebrafish. AHR2-MO but not its negative homologue (4mis-AHR2-MO) improved TCDD-evoked circulation failure in mesencephalic vein and reduced the occurrence of apoptosis in dorsal midbrain, with concomitant inhibition of CYP1A induction in vascular endothelium. Injection of bovine serum albumin (BSA) into the general circulation, followed by immunohistochemistry with anti-BSA, showed that TCDD raised vascular permeability to albumin in dorsal midbrain, which was blocked by AHR2-MO and N-acetlycystein. In the absence of TCDD, development of embryos injected with AHR2-MO appeared normal at least until 60 h after fertilization. It is concluded that AHR2 activation in the vascular endothelium of the zebrafish embryo midbrain is involved in the mesencephalic circulation failure and apoptosis elicited by TCDD. This is the further evidence that vascular endothelium is the target of TCDD in relation to local circulation failure and apoptosis in dorsal midbrain.  相似文献   

4.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by β-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo.  相似文献   

5.
Halogenated agonists for the aryl hydrocarbon receptor (AHR), such as 3,3',4,4',5-pentachlorobiphenyl (PCB126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause developmental toxicity in fish. AHR dependence of these effects is known for TCDD but only presumed for PCB126, and the AHR-regulated genes involved are known only in part. We defined the role of AHR in regulation of four cytochrome P450 1 (CYP1) genes and the effect of PCB126 on cell cycle genes (i.e., PCNA and cyclin E) in zebra fish (Danio rerio) embryos. Basal and PCB126-induced expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2 was examined over time as well as in relation to cell cycle gene expression and morphological effects of PCB126 in developing zebra fish. The four CYP1 genes differed in the time for maximal basal and induced expression, i.e., CYP1B1 peaked within 2 days postfertilization (dpf), the CYP1Cs around hatching (3 dpf), and CYP1A after hatching (14-21 dpf). These results indicate developmental periods when the CYP1s may play physiological roles. PCB126 (0.3-100nM) caused concentration-dependent CYP1 gene induction (EC50: 1.4-2.7nM, Lowest observed effect concentration [LOEC]: 0.3-1nM) and pericardial edema (EC50: 4.4nM, LOEC: 3nM) in 3-dpf embryos. Blockage of AHR2 translation significantly inhibited these effects of PCB126 and TCDD. PCNA gene expression was reduced by PCB126 in a concentration-dependent manner, suggesting that PCB126 could suppress cell proliferation. Our results indicate that the four CYP1 genes examined are regulated by AHR2 and that the effect of PCB126 on morphology in zebra fish embryos is AHR2 dependent. Moreover, the developmental patterns of expression and induction suggest that CYP1 enzymes could function in normal development and in developmental toxicity of PCB126 in fish embryos.  相似文献   

6.
Adult zebrafish completely regenerate their caudal fins following partial amputation. Fin regrowth can easily be monitored in vivo and regenerating tissues can be used to study this dynamic developmental process. In this study we determined that fin regeneration is significantly affected by exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Zebrafish caudal fins were partially amputated, and the fish received intraperitoneal (ip) injection of 2.8, 14, or 70 ng/g weight TCDD or vehicle control. By 7 days postamputation, fish exposed to the highest concentration of TCDD regenerated 15% of their fin compared to 65% regrowth in control fish. To determine if this effect was stage specific, zebrafish were exposed to 70 ng/g TCDD on 1, 2, 3, or 4 days postamputation. Fin regeneration was significantly inhibited at all time points following TCDD exposure. TCDD exposure also induced hyperpigmentation in de novo tissue. Zebrafish were dosed with BrdU, following fin amputation and TCDD exposure, to study changes in cell proliferation. By 4 days postamputation, cell proliferation rates were significantly lower in TCDD-exposed fish. TCDD toxicity is mediated through the aryl hydrocarbon receptor (AHR), and RT-PCR experiments confirmed AHR2, ARNT2b, and TCDD-dependent CYP1A expression in the regenerating tissue. These results demonstrate that zebrafish caudal fin regeneration is a unique model to investigate molecular mechanism(s) of TCDD toxicity.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent developmental toxicant in most vertebrates. However, frogs are relatively insensitive to TCDD toxicity, especially during early life stages. Toxicity of TCDD and related halogenated aromatic hydrocarbons is mediated by the aryl hydrocarbon receptor (AhR), and specific differences in properties of the AhR signaling pathway can underlie in TCDD toxicity in different species. This study investigated the role of AhR in frog TCDD insensitivity, using Xenopus laevis as a model system. X. laevis, a pseudotetraploid species, expresses two distinct AhR1 genes, AhR1alpha and AhR1beta. Sharing 86% amino acid identity, these likely represent distinct genes, both orthologous to mammalian AhR and paralogous to the AhR2 gene(s) in most fish. Both AhR1alpha and AhR1beta exhibit TCDD-dependent binding of cognate DNA sequences, but they bind TCDD with at least 20-fold lower affinity than the mouse AhR(b-1) protein, and they are similarly less responsive in TCDD-induced reporter gene induction in conjunction with the mouse CYP1A1 promoter. Furthermore, CYP1A6 and CYP1A7 induction by TCDD in cultured X. laevis A6 cells appears much less responsive than CYP1A induction in cell lines derived from more sensitive animals. Taken together, these data suggest that low affinity binding by X. laevis AhRs plays an important mechanistic role in the insensitivity of frogs to TCDD. An understanding of these molecular mechanisms should aid amphibian ecotoxicology and refine the use of frog embryos as a model [e.g. in FETAX (Frog Embryo Teratogenesis Assay-Xenopus)] for determining developmental toxicity of samples containing dioxin-like compounds.  相似文献   

16.
Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic vein blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.  相似文献   

17.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an extremely potentenvironmental contaminant that produces a wide range of adversebiological effects, including the induction of cytochrome P4501A1(CYP1A1) that may enhance the toxic effects of TCDD. Severalstudies indicated that concurrent supplementation of vitaminA could reduce the toxicity, and potentially inhibit CYP1A1activity (measured as ethoxyresorufin-O-deethylase [EROD] activity).In the present study, we investigated the in vivo effects ofvitamin A on EROD activities and the expression of CYP1A1 inthe liver of TCDD-treated mice. In Experiment I, the mice weregiven a single oral dose of 40 µg TCDD/kg body weightwith or without the continuous administration of 2500 IU vitaminA/kg body weight/day, and were killed on day 1, 3, 7, 14, or28. In Experiment II, the mice were given daily an oral doseof 0.1 µg TCDD/kg body weight with or without supplementof 2000 IU vitamin A/kg body weight, and were killed on day14, 28, or 42. In both experiments, TCDD caused liver damageand increase in relative liver weights, augmented the EROD activitiesand CYP1A1 expression, and increased the aryl hydrocarbon receptor(AhR) mRNA expression, but did not alter the AhR nuclear translocator(ARNT) mRNA expression. CYP1A1 mRNA expression and AhR mRNAexpression showed a similar time course. The liver damage inTCDD + vitamin A–treated mice was less severe than thatin TCDD-treated mice. EROD activities, CYP1A1 expression, andAhR mRNA expression in vitamin A + TCDD–treated mice werelower than those in TCDD-treated mice, indicating that supplementationof vitamin A might attenuate the liver damage caused by TCDD.  相似文献   

18.
19.
Dioxin‐like PCB126 is a persistent organic pollutant that causes a range of syndromes including developmental toxicity. Dioxins have a high affinity for aryl hydrocarbon receptor (AhR) and induce cytochrome P4501A (CYP1A). However, the role of CYP1A activity in developmental toxicity is less clear. To better understand dioxin induced developmental toxicity, we exposed zebrafish (Danio rerio) embryos to PCB126 at concentrations of 0, 16, 32, 64, and 128 μg L?1 from 3‐h post‐fertilization (hpf) to 168 hpf. The embryonic survival rate decreased at 144 and 168 hpf. The fry at 96 hpf displayed gross developmental malformations, including pericardial and yolk sac edema, spinal curvature, abnormal lower jaw growth, and non‐inflated swim bladder. The pericardial and yolk sac edema rate significantly increased and the heart rate declined from 96 hpf compared with the controls. PCB126 did not alter the hatching rate. To elucidate the mechanism of PCB126‐induced developmental toxicity, we conducted ethoxyresorufin‐O‐deethylase (EROD) in vivo assay to determine CYP1A enzyme activity, and real‐time PCR to study the induction of CYP1A mRNA gene expression in embryo/larval zebrafish at 24, 72, 96, and 132 hpf. In vivo EROD activity was induced by PCB126 at 16 μg L?1 concentration as early as 72 hpf but significant increases were observed only in zebrafish exposed to 64 and 128 μg L?1 doses (p < 0.005) at 72, 96, and 132 hpf. Induction of CYP1A mRNA expression was significantly upregulated in zebrafish exposed to 32 and 64 μg L?1 at 24, 72, 96, and 132 hpf. Overall, the severe pericardial and yolk sac edema and reduced heart rate suggest that heart defects are a sensitive endpoint, and the general trend of dose‐dependent increase in EROD activity and induction of CYP1A mRNA gene expression provide evidence that the developmental toxicity of PCB126 to zebrafish embryos is mediated by activation of AhR. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 201–210, 2016.  相似文献   

20.
Changes in the expression of the aryl hydrocarbon receptor (AHR) have been documented in several systems and in response to a variety of treatments. The significance of these findings is unclear, because the effects of such changes on subsequent responses to AHR ligands seldom have been measured. We tested the ability of changes in serum used in cell culture medium to alter expression of the AHR and induction of cytochrome P4501A (CYP1A) in PLHC-1 teleost hepatoma cells. Culture of early-passage cells in serum-free medium for 2 days led to a loss of CYP1A inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In contrast, culture in 10% delipidated calf serum increased the TCDD-induced levels of both CYP1A protein and enzymatic activity relative to levels in cells cultured in 10% complete calf serum. These effects were consistent between 8 and 24hr post-treatment, indicating that the kinetics of induction were unaffected. In cells cultured in serum-free medium for 1 and 2 days there was a progressive loss of CYP1A inducibility. This loss of response paralleled a time-dependent decline in AHR protein, as measured by specific binding of [3H]TCDD. Using an operational model for AHR action in PLHC-1 cells, the measured reduction in AHR could be shown to predict the loss of CYP1A induction. Expression of AHR protein was unaffected by culture in 10% delipidated serum. The effects of serum-free medium and delipidated serum were found only in early-passage cells; inducibility of CYP1A and expression of AHR protein in late-passage cells were unaffected by serum withdrawal. Comparison of early- and late-passage cells revealed a 2-fold greater rate of proliferation in the latter, suggesting that a growth advantage is coincident with loss of the serum-dependency of AHR expression. These results provide a quantitative link between changes in receptor expression and a downstream response, establishing a foundation for future studies of receptor expression and sensitivity to toxic responses in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号