首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many species of Proteobacteria communicate by using LuxI-LuxR-type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodulating bradyrhizobia, direct production of the aryl-HSLs p-coumaroyl-HSL and cinnamoyl-HSL, respectively. Here we report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to RpaI and BtaI and catalyzes the synthesis of isovaleryl-HSL (IV-HSL), a branched-chain fatty acyl-HSL. We show that IV-HSL induces expression of bjaI, and in this way IV-HSL functions like many other acyl-HSL quorum-sensing signals. Purified histidine-tagged BjaI was an IV-HSL synthase, which was active with isovaleryl-CoA but not detectably so with isovaleryl-ACP. This suggests that the RpaI-BtaI-BjaI subfamily of acyl-HSL synthases may use CoA- rather than ACP-linked substrates for acyl-HSL synthesis. The bjaI-linked bjaR(1) gene is involved in the response to IV-HSL, and BjaR(1) is sensitive to IV-HSL at concentrations as low as 10 pM. Low but sufficient levels of IV-HSL (about 5 nM) accumulate in B. japonicum culture fluid. The low levels of IV-HSL synthesis have likely contributed to the fact that the quorum-sensing signal from this bacterium has not been described elsewhere.  相似文献   

3.
4.
Many bacteria use acyl homoserine lactone signals to monitor cell density in a type of gene regulation termed quorum sensing and response. Synthesis of these signals is directed by homologs of the luxi gene of Vibrio fischeri. This communication resolves two critical issues concerning the synthesis of the V. fischeri signal. (i) The luxI product is directly involved in signal synthesis-the protein is an acyl homoserine lactone synthase; and (ii) the substrates for acyl homoserine lactone synthesis are not amino acids from biosynthetic pathways or fatty acid degradation products, but rather they are S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway. We purified a maltose binding protein-LuxI fusion polypeptide and showed that, when provided with the appropriate substrates, it catalyzes the synthesis of an acyl homoserine lactone. In V. fischeri, luxi directs the synthesis of N-(3-oxohexanoyl) homoserine lactone and hexanoyl homoserine lactone. The purified maltose binding protein-LuxI fusion protein catalyzes the synthesis of hexanoyl homoserine lactone from hexanoyl-ACP and SAM. There is a high level of specificity for hexanoyl-ACP over ACPs with differing acyl group lengths, and hexanoyl homoserine lactone was not synthesized when SAM was replaced with other amino acids, such as methionine, S-adenosylhomocysteine, homoserine, or homoserine lactone, or when hexanoyl-SAM was provided as the substrate. This provides direct evidence that the LuxI protein is an auto-inducer synthase that catalyzes the formation of an amide bond between SAM and a fatty acyl-ACP and then catalyzes the formation of the acyl homoserine lactone from the acyl-SAM intermediate.  相似文献   

5.
Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.  相似文献   

6.
Bacteria communicate with each other to coordinate expression of specific genes in a cell density-dependent fashion, a phenomenon called quorum sensing and response. Although we know that quorum sensing via acyl-homoserine lactone (HSL) signals controls expression of several virulence genes in the human pathogen Pseudomonas aeruginosa, the number and types of genes controlled by quorum sensing have not been studied systematically. We have constructed a library of random insertions in the chromosome of a P. aeruginosa acyl-HSL synthesis mutant by using a transposon containing a promoterless lacZ. This library was screened for acyl-HSL induction of lacZ. Thirty-nine quorum sensing-regulated genes were identified. The genes were organized into classes depending on the pattern of regulation. About half of the genes appear to be in seven operons, some seem organized in large patches on the genome. Many of the quorum sensing-regulated genes code for putative virulence factors or production of secondary metabolites. Many of the genes identified showed a high level of induction by acyl-HSL signaling.  相似文献   

7.
8.
Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti–quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach.  相似文献   

9.
目的:探讨在急性下呼吸道感染患者体内铜绿假单胞菌群体感应系统中Las系统和Rhl系统的表达及与其生物被膜形成的相关性。方法:以铜绿假单胞菌临床分离株为研究对象,检测群体感应系统中Las系统和Rhl系统相对表达量及生物被膜形成能力.分析Las系统和Rhl系统表达量与生物被膜形成能力的相互关系。结果:测定的120株铜绿假单胞菌临床菌株中.Las信号系统的Lasl和LasR基因相对表达与生物被膜形成均呈正相关fP〈0.001),其中第1天分离的临床株中Lasl和LasR基因相对表达量与生物被膜生成量呈正相关(P〈0.01).第14天分离的临床株中Lasl基因相对表达量与生物被膜生成量有密切正相关性(P〈0.001).LasR基因相对表达量与生物被膜生成量呈正相关(P〈0.05)。Rh1信号系统的Rh11和.R^艉基因相对表达量与生物被膜生成量密切正相关(P〈0.001).其中第1天分离的菌株中Rh11和Rh1R基因相对表达量与生物被膜生成量密切正相关(P〈0.001),而第14天分离的菌株中Rh11和Rh1R基因相对表达量与生物被膜生成量无相关性。结论:铜绿假单胞菌的群体感应系统中Las信号系统和Rh1信号系统与生物被膜形成密切相关.在生物被膜的形成过程起到关键作用.  相似文献   

10.
Mammalian airways protect themselves from bacterial infection by using multiple defense mechanisms including antimicrobial peptides, mucociliary clearance, and phagocytic cells. We asked whether airways might also target a key bacterial cell-cell communication system, quorum-sensing. The opportunistic pathogen Pseudomonas aeruginosa uses two quorum-sensing molecules, N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), to control production of extracellular virulence factors and biofilm formation. We found that differentiated human airway epithelia inactivated 3OC12-HSL. Inactivation was selective for acyl-HSLs with certain acyl side chains, and C4-HSL was not inactivated. In addition, the capacity for inactivation varied widely in different cell types. 3OC12-HSL was inactivated by a cell-associated activity rather than a secreted factor. These data suggest that the ability of human airway epithelia to inactivate quorum-sensing signal molecules could play a role in the innate defense against bacterial infection.  相似文献   

11.
The opportunistic human pathogen Pseudomonas aeruginosa produces a variety of virulence factors, including exotoxin A, elastase, alkaline protease, alginate, phospholipases, and extracellular rhamnolipids. The previously characterized rhlABR gene cluster encodes a regulatory protein (RhlR) and a rhamnosyltransferase (RhlAB), both of which are required for rhamnolipid synthesis. Another gene, rhII, has now been identified downstream of the rhlABR gene cluster. The putative RhlI protein shares significant sequence similarity with bacterial autoinducer synthetases of the LuxI type. A P. aeruginosa rhlI mutant strain carrying a disrupted rhlI gene was unable to produce rhamnolipids and lacked rhamnosyltransferase activity. Rhamnolipid synthesis was restored by introducing a wild-type rhlI gene into such strains or, alternatively, by adding either the cell-free spent supernatant from a P. aeruginosa wild-type strain or synthetic N-acylhomoserine lactones. Half-maximal induction of rhamnolipid synthesis in the rhlI mutant strain required 0.5 microM N-butyrylhomoserine lactone or 10 microM N-(3-oxohexanoyl)homoserine lactone. The P. aeruginosa rhlA promoter was active in the heterologous host Pseudomonas putida when both the rhlR and rhlI genes were present or when the rhlR gene alone was supplied together with synthetic N-acylhomoserine lactones. The RhlR-RhlI regulatory system was found to be essential for the production of elastase as well, and cross-communication between the RhlR-RhlI rhamnolipid regulatory system and the LasR-LasI elastase regulatory system was demonstrated.  相似文献   

12.
Rhizobium meliloti interacts symbiotically with alfalfa by forming root nodules in which the bacteria fix nitrogen. The Rhizobium nodulation genes nodABC are involved in the synthesis of lipooligosaccharide symbiotic signal molecules, which are mono-N-acylated chitooligosaccharides. These bacterial signals elicit nodule organogenesis in roots of legumes. To elucidate the role of the NodA protein in lipooligosaccharide biosynthesis, we prepared a radiolabeled tetrasaccharide precursor carrying an amino group as a potential attachment site for N-acylation at the nonreducing glucosamine residue. Various criteria demonstrate that NodA is involved in the attachment of a fatty acyl chain to this tetrasaccharide precursor, yielding a biologically active nodulation factor.  相似文献   

13.
Many Proteobacteria possess LuxI-LuxR-type quorum-sensing systems that produce and detect fatty acyl-homoserine lactone (HSL) signals. The photoheterotroph Rhodopseudomonas palustris is unusual in that it produces and detects an aryl-HSL, p-coumaroyl-HSL, and signal production requires an exogenous source of p-coumarate. A photosynthetic stem-nodulating member of the genus Bradyrhizobium produces a small molecule signal that elicits an R. palustris quorum-sensing response. Here, we show that this signal is cinnamoyl-HSL and that cinnamoyl-HSL is produced by the LuxI homolog BraI and detected by BraR. Cinnamoyl-HSL reaches concentrations on the order of 50 nM in cultures of stem-nodulating bradyrhizobia grown in the presence or absence of cinnamate. Acyl-HSLs often reach concentrations of 0.1-30 μM in bacterial cultures, and generally, LuxR-type receptors respond to signals in a concentration range from 5 to a few hundred nanomolar. Our stem-nodulating Bradyrhizobium strain responds to picomolar concentrations of cinnamoyl-HSL and thus, produces cinnamoyl-HSL in excess of the levels required for a signal response without an exogenous source of cinnamate. The ability of Bradyrhizobium to produce and respond to cinnamoyl-HSL shows that aryl-HSL production is not unique to R. palustris, that the aromatic acid substrate for aryl-HSL synthesis does not have to be supplied exogenously, and that some acyl-HSL quorum-sensing systems may function at very low signal production and response levels.  相似文献   

14.
BACKGROUND & AIMS: Liver regeneration is a fundamental response of this organ to injury. Hepatocyte proliferation is triggered by growth factors, such as hepatocyte growth factor. However, hepatocytes need to be primed to react to mitogenic signals. It is known that nitrous oxide (NO), generated after partial hepatectomy, plays an important role in hepatocyte growth. Nevertheless, the molecular mechanisms behind this priming event are not completely known. S-adenosylmethionine (AdoMet) synthesis by methionine adenosyltransferase is the first step in methionine metabolism, and NO regulates hepatocyte S-adenosylmethionine levels through specific inhibition of this enzyme. We have studied the modulation of hepatocyte growth factor-induced proliferation by NO through the regulation of S-adenosylmethionine levels. METHODS: Studies were conducted in cultured rat hepatocytes isolated by collagenase perfusion, which triggers NO synthesis. RESULTS: The mitogenic response to hepatocyte growth factor was blunted when inducible NO synthase was inhibited; this process was overcome by the addition of an NO donor. This effect was dependent on methionine concentration in culture medium and intracellular S-adenosylmethionine levels. Accordingly, we found that S-adenosylmethionine inhibits hepatocyte growth factor-induced cyclin D1 and D2 expression, activator protein 1 induction, and hepatocyte proliferation. CONCLUSIONS: Together our findings indicate that NO may switch hepatocytes into a hepatocyte growth factor-responsive state through the down-regulation of S-adenosylmethionine levels.  相似文献   

15.
16.
The regulation of mevalonic acid synthesis requires both nonsterol isopentenoid and sterol regulatory signal molecules. A primary target of this multivalent control process is the enzyme which catalyzes mevalonate synthesis: 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34). In this report Staphylococcus aureus alpha-toxin perforated Chinese hamster ovary cells were used to facilitate the identification of isopentenoidogenic reactions and metabolites required for mevalonate-mediated loss of HMG-CoA reductase activity. alpha-Toxin-perforated cells retained the capacity to decrease, upon demand, HMG-CoA reductase activity and protein in response to mevalonate or isopentenoid pyrophosphate esters. Also, it was deduced with highly specific metabolic inhibitors, that conversion of farnesyl 1-diphosphate to squalene was required for mevalonate-mediated suppression of reductase activity. Since squalene (2 microM) did not downregulate reductase activity, pre-squalene pyrophosphate or a derivative, or polyprenyl-1-pyrophosphate-generated inorganic pyrophosphate, or a combination of these metabolites are proposed as candidate regulatory nonsterol isopentenoid signal molecules.  相似文献   

17.
Cystic fibrosis (CF) patients are highly susceptible to chronic lung infections by the environmental bacterium Pseudomonas aeruginosa. The overproduction and accumulation of dehydrated viscous respiratory mucus and excessive inflammation represents a defining feature of CF and constitutes the major environment encountered by P. aeruginosa during chronic infections. We applied whole-genome microarray technology to investigate the ability of P. aeruginosa to respond to signals found in muco-purulent airway liquids collected from chronically infected CF patients. Particularly notable was the activation of the Rhl-dependent quorum-sensing (QS) network and repression of fliC, which encodes flagellin. Activation of the Rhl branch of the QS network supports the observation that QS molecules are produced in the chronically infected CF lung. The shut-off of flagellin synthesis in response to CF airway liquids was rapid and independent of QS and the known regulatory networks controlling the hierarchical expression of flagellar genes. As flagellin is highly immunogenic and subject to detection by host pattern recognition receptors, its repression may represent an adaptive response that allows P. aeruginosa to avoid detection by host defense mechanisms and phagocytosis during the chronic phase of CF lung infections.  相似文献   

18.
Mammalian transmembrane adenylyl cyclases synthesize a restricted plasmalemmal cAMP pool that is intensely endothelial barrier protective. Bacteria have devised mechanisms of transferring eukaryotic factor-dependent adenylyl cyclases into mammalian cells. Pseudomonas aeruginosa ExoY is one such enzyme that catalyzes cytosolic cAMP synthesis, with unknown function. Pseudomonas aeruginosa genetically modified to introduce only the ExoY toxin elevated cAMP 800-fold in pulmonary microvascular endothelial cells over 4 hours, whereas a catalytically deficient (ExoY(K81M)) strain did not increase cAMP. ExoY-derived cAMP was localized to a cytosolic microdomain not regulated by phosphodiesterase activity. In contrast to the barrier-enhancing actions of plasmalemmal cAMP, the ExoY cytosolic cAMP pool induced endothelial gap formation and increased the filtration coefficient in the isolated perfused lung. These findings collectively illustrate a previously unrecognized mechanism of hyperpermeability induced by rises in cytosolic cAMP.  相似文献   

19.
Pseudomonas aeruginosa is an opportunistic pathogen that controls numerous virulence factors through intercellular signals. This bacterium has two quorum-sensing systems (las and rhl), which act through the intercellular signals N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C(12)-HSL) and N-butyryl-l-homoserine lactone (C(4)-HSL), respectively. P. aeruginosa also produces a third intercellular signal that is involved in virulence factor regulation. This signal, 2-heptyl-3-hydroxy-4-quinolone [referred to as the Pseudomonas quinolone signal (PQS)], is a secondary metabolite that is part of the P. aeruginosa quorum-sensing hierarchy. PQS can induce both lasB (encodes LasB elastase) and rhlI (encodes the C(4)-HSL synthase) in P. aeruginosa and is produced maximally during the late stationary phase of growth. Because PQS is an intercellular signal that is part of the quorum-sensing hierarchy and controls multiple virulence factors, we began basic studies designed to elucidate its biosynthetic pathway. First, we present data that strongly suggest that anthranilate is a precursor for PQS. P. aeruginosa converted radiolabeled anthranilate into radioactive PQS, which was bioactive. We also found that an anthranilate analog (methyl anthranilate) would inhibit the production of PQS. This analog was then shown to have a major negative effect on elastase production by P. aeruginosa. These data provide evidence that precursors of intercellular signals may provide viable targets for the development of therapeutic treatments that will reduce P. aeruginosa virulence.  相似文献   

20.
Wagner T  Soong G  Sokol S  Saiman L  Prince A 《Chest》2005,128(2):912-919
There is considerable interest in the use of azithromycin for the treatment of lung disease in patients with cystic fibrosis (CF). Although its mechanism of action as an inhibitor of bacterial protein synthesis has been well-established, it is less clear how azithromycin ameliorates the lung disease associated with Pseudomonas aeruginosa, which is considered to be resistant to the drug. We tested the effects of azithromycin on clinical isolates (CIs) from CF patients and compared them with laboratory reference strains to establish how this drug might interfere with the production of bacterial virulence factors that are relevant to the pathogenesis of airway disease in CF patients. Azithromycin inhibited P aeruginosa PAO1 protein synthesis by 80%, inhibiting bacterial growth and the expression of immunostimulatory exoproducts such as pyocyanin, as well as the gene products necessary for biofilm formation. In contrast, the effects of azithromycin on CIs of P aeruginosa were much more variable, due in large part to their slow growth and limited exoproduct expression. Culture supernatants for two of three clinical strains induced appreciable CXCL8 expression from cultured epithelial cells. Azithromycin treatment of the organisms inhibited 65 to 70% of this induction; azithromycin had no direct effect on the ability of either normal cells or CF epithelial cells to produce CXCL8. Azithromycin does decrease the P aeruginosa synthesis of immunostimulatory exoproducts and is likely to be most effective against planktonic, actively growing bacteria. This effect is less predictable against CIs than the prototypic strain PAO1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号