首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromal cell-derived factor (SDF)-1 and its receptor, CXCR4, have been identified in both neurones and glia of many brain areas. Previous studies have mainly focused on the role of SDF-1 and CXCR4 in modulating the hypothalamic-pituitary axis and their possible involvement in the development of pituitary adenomas. An alternative SDF-1 receptor, CXCR7, has recently been identified, but it has not been studied in the context of pituitary adenomas. The present study aimed to investigate the distribution and function of CXCR7 in pituitary adenomas. The expression of CXCR7, normalised to β-actin, was assessed by tissue microarray analysis of 62 adenomas, including 23 growth hormone (GH)-producing adenomas, 22 nonfunctioning adenomas, seven prolactin (PRL)-producing adenomas, six adrenocorticotrophic hormone-producing adenomas and four thyroid-stimulating hormone-producing adenomas. In vitro functional studies used RNA interference (RNAi) and cDNA microarray analysis to evaluate the CXCR7 signalling pathway in AtT-20 mouse pituitary adenoma cells treated with recombinant mouse SDF-1α and transfected with RNAi against Cxcr7 or control RNAi. In tissue microarray analysis, prominent expression of CXCR7 was observed in GH-producing adenomas and PRL-producing adenomas, and in macroadenomas (P < 0.05). Intracellular signalling via CXCR7 up-regulated Bub1, Cdc29 and Ccnb1, and down-regulated Asns, Gpt, Pycr1, Cars and Dars. The present study demonstrates that the SDF-1α/CXCR7 signalling pathway regulates genes involved in cell cycle control, amino acid metabolism and ligase activity, which comprise targets that are distinct from those of CXCR4.  相似文献   

2.
3.
The effect of the α-subunit of luteinizing hormone (LHα) on lactotroph growth in 14-day-old rat pituitary was studied in vitro using a reaggregate pituitary cell culture system. LHα significantly expanded both the total population of cells expressing prolactin mRNA and the number of [3H]thymidine incorporating prolactin mRNA expressing cells. No such effect could be elicited by LH. Both effects were inhibited by simultaneous addition of an anti-LHα antiserum but not by normal rabbit serum. Anti-LHα antiserum added alone to the cultures caused a small decrease in the number of prolactin mRNA expressing cells and in [3H]thymidine labelling of the latter. It is concluded that LHα may be a trophic factor of lactotrophs not only during fetal development, as suggested by others previously, but also during the rapid expansion of this cell type during postnatal life in the rat.  相似文献   

4.

Introduction

Exposure of vascular smooth muscle cells (VSMC) to homocysteine, at concentrations associated with an increased risk of cardiovascular events, enhances synthesis and secretion of Matrix Metalloproteinase-2 (MMP-2), which is involved in atherosclerotic plaque instabilization. This effect was prevented by inhibitors of Mitogen Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3-K) pathways, allowing to hypothesize that homocysteine activates both these pathways, likely via a receptor-mediated mechanism. One possible receptor is N-methyl-D-aspartate receptor (NMDAr), which is expressed in VSMC and is involved in homocysteine effects in other cell types.

Materials and Methods

VSMC exposed to DL-homocysteine or NMDA (100 μmol/L for both; 5 min-8 hours), were investigated by measuring: i) phosphorylation of ERK1/2, p38MAPK (signaling molecules of MAPK pathway) and Akt and p70S6K (signaling molecules of PI3-K pathway) by western blot; ii) synthesis and secretion of MMP-2 (western blot); iii) activation of MMP-2 (gelatin zimography). To evaluate NMDAr involvement in the homocysteine effects, the experiments were repeated in the presence of a non-competitive NMDAr-antagonist MK-801 (50 μmol/L) or L-glycine (10 μmol/L), which inhibits NMDAr function by promoting its internalization.

Results

DL-homocysteine and NMDA time-dependently increased: i) the phosphorylation of ERK1/2, p38 MAPK, Akt and p70S6K (ANOVA, p < 0.0001); ii) the synthesis, secretion and activation of MMP-2. DL-homocysteine and NMDA effects were prevented by VSMC pre-incubation with MK-801 or high L-glycine concentrations.

Conclusions

In human VSMC homocysteine-at concentrations associated with increased cardiovascular risk- activates MAPK and PI3-K pathways and MMP-2 synthesis and secretion through NMDA receptor, a potential mechanism involved in intracellular signaling in response to homocysteine in VSMC.  相似文献   

5.
Extracellular signal regulated kinases (ERK) are important components of the Ras-Raf-MEK-ERK signaling pathway cascades that mediate intracellular stimuli transduction and gene expression. ERK1 (44 kDa) and ERK2 (42 kDa) are homologous subtypes of the ERK family, which participate in regulation of a variety of cell activities, including cell proliferation, migration and differentiation, especially in the central nervous systerm (CNS). Hence, they exert critical effects on neuron and astrocyte development. Astrocytes are critically involved in maintaining CNS homeostasis and supporting neuron growth. When exposed to an extracellular stimulus, such as inflammation or oxidative stress, the corresponding cell response can be regulated by the ERK1/2 signaling pathway. Furthermore, several lines of evidence have demonstrated a correlation between astrocyte activity and the Ras-Raf-MEK-ERK signaling pathway. However many questions remain unanswered regarding the role of ERK1/2 in astrocyte development. This review summarizes the possible role of ERK1/2 signaling cascades in modulating the proliferation, differentiation and apoptosis of astrocytes in both physiological and pathological conditions. In addition, this review also briefly elucidates the participation of ERK1/2 in the process of human brain glia tumor oncogenesis and metastasis, which will provide some concepts for treatment strategies to delay the process of tumor evolution.  相似文献   

6.
Elucidation of the mechanism of dopamine signaling to ERK that underlies plasticity in dopamine D1 receptor-expressing neurons leading to acquired cocaine preference is incomplete. NCS-Rapgef2 is a novel cAMP effector, expressed in neuronal and endocrine cells in adult mammals, that is required for D1 dopamine receptor-dependent ERK phosphorylation in mouse brain. In this report, we studied the effects of abrogating NCS-Rapgef2 expression on cAMP-dependent ERK→Egr-1/Zif268 signaling in cultured neuroendocrine cells; in D1 medium spiny neurons of NAc slices; and in either male or female mouse brain in a region-specific manner. NCS-Rapgef2 gene deletion in the NAc in adult mice, using adeno-associated virus-mediated expression of cre recombinase, eliminated cocaine-induced ERK phosphorylation and Egr-1/Zif268 upregulation in D1-medium spiny neurons and cocaine-induced behaviors, including locomotor sensitization and conditioned place preference. Abrogation of NCS-Rapgef2 gene expression in mPFC and BLA, by crossing mice bearing a floxed Rapgef2 allele with a cre mouse line driven by calcium/calmodulin-dependent kinase IIα promoter also eliminated cocaine-induced phospho-ERK activation and Egr-1/Zif268 induction, but without effect on the cocaine-induced behaviors. Our results indicate that NCS-Rapgef2 signaling to ERK in dopamine D1 receptor-expressing neurons in the NAc, but not in corticolimbic areas, contributes to cocaine-induced locomotor sensitization and conditioned place preference. Ablation of cocaine-dependent ERK activation by elimination of NCS-Rapgef2 occurred with no effect on phosphorylation of CREB in D1 dopaminoceptive neurons of NAc. This study reveals a new cAMP-dependent signaling pathway for cocaine-induced behavioral adaptations, mediated through NCS-Rapgef2/phospho-ERK activation, independently of PKA/CREB signaling.SIGNIFICANCE STATEMENT ERK phosphorylation in dopamine D1 receptor-expressing neurons exerts a pivotal role in psychostimulant-induced neuronal gene regulation and behavioral adaptation, including locomotor sensitization and drug preference in rodents. In this study, we examined the role of dopamine signaling through the D1 receptor via a novel pathway initiated through the cAMP-activated guanine nucleotide exchange factor NCS-Rapgef2 in mice. NCS-Rapgef2 in the NAc is required for activation of ERK and Egr-1/Zif268 in D1 dopaminoceptive neurons after acute cocaine administration, and subsequent enhanced locomotor response and drug seeking behavior after repeated cocaine administration. This novel component in dopamine signaling provides a potential new target for intervention in psychostimulant-shaped behaviors, and new understanding of how D1-medium spiny neurons encode the experience of psychomotor stimulant exposure.  相似文献   

7.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has recently been shown to be a hypophysiotropic factor in the goldfish. In this study, we examined the mechanisms of PACAP action on goldfish maturational gonadotropin (GTH-II) release using primary cultures of pituitary cells. The GTH-II response to mammalian PACAP1-38 (mPACAP) was inhibited by a PACAP receptor antagonist suggesting a receptor-mediated action. Addition of either an adenylate cyclase inhibitor or a protein kinase A (PKA) inhibitor reduced the mPACAP-induced GTH-II release. In addition, when GTH-II release was already stimulated by either forskolin or 8-bromo-cAMP (8Br-cAMP), mPACAP did not further increase GTH-II secretion. These results strongly implicated the involvement of an adenylate cyclase/cAMP/PKA pathway in PACAP-stimulated GTH-II release. Although mPACAP induced a rise in intracellular Ca2+ level in identified gonadotropes, results with voltage-sensitive Ca2+ channel inhibitors indicated that the GTH-II responses to mPACAP, forskolin and 8Br-cAMP did not depend upon Ca2+ entry through these channels. Two protein kinase C (PKC) inhibitors did not affect mPACAP-elicited GTH-II release, and mPACAP further increased GTH-II secretion in the presence of PKC activators. These results indicate that PKC-dependent elements are not essential for the stimulatory action of mPACAP in gonadotropes. Interestingly, while GTH-II responses to a stimulatory concentration of mPACAP were additive to responses elicited by maximal effective concentrations of two endogenous gonadotropin releasing hormones (GnRHs), a subthreshold concentration of mPACAP potentiated GnRH and PKC activator stimulation of GTH-II secretion. Similarly, submaximal concentrations of forskolin potentiated the GTH-II response to the PKC activator, tetradecanoyl phorbol acetate. These data suggest that PACAP and its cAMP-dependent signalling mechanisms provide an alternate stimulatory input to goldfish gonadotropes and may influence the effectiveness of the major neuroendocrine control exerted by the PKC-dependent GnRH signalling pathway.  相似文献   

8.
9.
Post-translational modifications of vasopressin and oxytocin in pituitary and brain were investigated in view of recent evidence that oxytocin is partly Nα-acetyfated in the bovine pineal gland. Two peptides were isolated from the neurointermediate lobe of the rat pituitary gland and characterized as Nα-acetyl-vasopressin and Nα-acetyl-oxytocin, based on chromatographic and immunological properties as well as the blocked N-terminus. In the neurointermediate pituitary the acetylated forms represented approximately 1% of the vasopressin and oxytocin contents. These two peptides were also detected in some, but not all, investigated brain areas. The highest degree of acetylation was found in the pineal gland. In all regions acetylation of oxytocin was more abundant than that of vasopressin. The data indicate that acetylation of vasopressin and oxytocin generally occurs as a post-translational modification. They support the concept that acetylation may represent a mechanism aimed to control bioactivity of the neurohypophyseal hormones.  相似文献   

10.
STriatal Enriched protein tyrosine Phosphatase (STEP) is a brain-specific protein that is thought to play a role in synaptic plasticity. This hypothesis is based on previous findings demonstrating a role for STEP in the regulation of the extracellular signal-regulated kinase1/2 (ERK1/2). We have now generated a STEP knockout mouse and investigated the effect of knocking out STEP in the regulation of ERK1/2 activity. Here, we show that the STEP knockout mice are viable and fertile and have no detectable cytoarchitectural abnormalities in the brain. The homozygous knockout mice lack the expression of all STEP isoforms, whereas the heterozygous mice have reduced STEP protein levels when compared with the wild-type mice. The STEP knockout mice show enhanced phosphorylation of ERK1/2 in the striatum, CA2 region of the hippocampus, as well as central and lateral nuclei of the amygdala. In addition, the cultured neurons from KO mice showed significantly higher levels of pERK1/2 following synaptic stimulation when compared with wild-type controls. These data demonstrate more conclusively the role of STEP in the regulation of ERK1/2 activity.  相似文献   

11.
We recently cloned a paired-related homeodomain protein Prx2 as a novel factor in the pituitary. In the present study, we investigated the ontogenic profiles of Prx2 and another cognate Prx1 in the rat embryonic pituitary. Quantitative real-time polymerase chain reaction showed low expression of Prx2 and a marked increase of Prx1 on rat embryonic day (E)20.5. Immunohistochemical analyses using an antibody that recognises both proteins, with the aim of investigating their roles in pituitary organogenesis, demonstrated that PRXs first appear in the Rathke's pouch on E13.5 in the pituitary stem/progenitor cells expressing Prop1 and Sox2. After E16.5, the number of Prx-expressing cells was increased in both anterior and intermediate lobes. SOX2(+) stem/progenitor cells in the intermediate lobe started to produce PRXs, and PRX(+) /SOX2(+) /PROP1(+) -cells were present on the anterior side of the marginal cell layer and were scattered in the parenchyma of the anterior lobe. On the other hand, PRX(+) -cells negative for PROP1 and SOX2 were located in the anterior lobe. Analysis of the relationship with pituitary endocrine cells revealed that a part of PRX(+) /PROP1(-) /SOX2(-) -cells in the anterior lobe co-expressed all types of hormones. The proportion of co-localisation of PRXs and hormones was highest on the day each hormone first appeared. These data indicate that PRXs are produced in the pituitary progenitor cells and may play roles in the process of terminal differentiation during early pituitary organogenesis. An in vitro small interfering RNA-knockdown experiment in the pituitary-derived cell line, TtT/GF, revealed that PRX1 and PRX2 play roles in proliferation by different mechanisms because knockdown of Prx2, but not Prx1, induced the p21 expression. Furthermore, immunohistochemical analysis demonstrated that 76% of PRXs(+) cells were positive for a cell proliferation marker Ki67 in the E18.5 pituitary. This is the first report of the involvement of PRX1 and PRX2 in organogenesis of tissue originating from the ectoderm other than the mesoderm.  相似文献   

12.
The presence of adrenergic and histaminergic receptors in Bergmann glial cells from cerebellar slices from mice aged 20–25 days was determined using fura-2 Ca2+ microfluorimetry. To measure the cytoplasmic concentration of Ca2+ ([Ca2+]i), either individual cells were loaded with the Ca2+-sensitive probe fura-2 using the whole-cell patch-clamp technique or slices were incubated with a membrane-permeable form of the dye (fura-2/AM) and the microfluorimetric system was focused on individual cells. The monoamines adrenalin and noradrenalin (0.1-10 μM) and histamine (10-100 μM) triggered a transient increase in [Ca2+]i. The involvement of the α1-adrenoreceptor was inferred from the observations that monoamine-triggered [Ca2+]i responses were blocked by the selective α1-adreno-antagonist prazosin and were mimicked by the α1-adreno-agonist phenylephrine. The monoamine-induced [Ca2+]i signals were not affected by β- and α2-adrenoreceptor antagonists (propranolol and yohimbine), and were not mimicked by β- and α2-adrenoreceptor agonists (isoproterenol and clonidine). Histamine-induced [Ca2+]i responses demonstrated specific sensitivity to only H1 histamine receptor modulators. [Ca2+]i responses to monoamines and histamine did not require the presence of extracellular Ca2+ and they were blocked by preincubation of slices with thapsigargin (500 nM), indicating that the [Ca2+]i increase is due to release from intracellular pools. No [Ca2+]i responses were recorded after application of aspartate, bradykinin, dopamine, GABA, glycine, oxytocin, serotonin, somatostatin, substance P, taurine or vasopressin. We conclude that cerebellar Bergmann glial cells are endowed with α1 -adrenoreceptors and H1 histamine receptors which induce the generation of intracellular [Ca2+]i signals via activation of Ca2+ release from inositol-l,4,5-trisphosphate-sensitive intracellular stores.  相似文献   

13.
病理性疼痛通常指由组织损伤引起的炎性痛和神经损伤引起的神经病理性痛。损伤和强烈的伤害刺激能导致痛过敏。痛过敏现象的产生是由外周敏化(初级伤害感受器的敏感性增加)和中枢敏化(脊髓背角以及其他中枢神经元敏感性增加)引起的。有些蛋白激酶通过翻译后的调节如关键膜受体和通道蛋白磷酸化而参与外周和中枢敏化的形成。特别的是多种信号通路可汇聚而激活MAPK(mitogen—activated protein kinase)。伤害性刺激、生长因子以及炎性介质均能在初级和二级痛感受神经元中激活MAPK家族成员ERK和P38。ERK和P38的激活不仅能够引起转录后过程发生改变,而且还能够通过对转录和非转录水平的调节增加多种基因的表达,从而导致损伤后痛过敏的形成和维持。  相似文献   

14.
Vasopressin (VP) secreted within the brain modulates neuronal function acting as a neurotransmitter. Based on the observation that VP prevented serum deprivation-induced cell death in the neuronal cell line, H32, which expresses endogenous V1 receptors, we tested the hypothesis that VP has anti-apoptotic properties. Flow cytometry experiments showed that 10 nM VP prevented serum deprivation-induced cell death and annexin V binding. Serum deprivation increased caspase-3 activity in a time and serum concentration dependent manner, and VP prevented these effects through interaction with receptors of V1 subtype. The signaling pathways mediating the anti-apoptotic effect of VP involve mitogen activated protein (MAP) kinase and extracellular signal-regulated kinases (ERK), Ca2+/calmodulin dependent kinase (CaMK) and protein kinase C (PKC). Western blot analyses revealed time-dependent decreases of Bad phosphorylation and increases in cytosolic levels of cytochrome c following serum deprivation, effects which were prevented by 10 nM VP. These data demonstrate that activation of endogenous V1 VP receptors prevents serum deprivation-induced apoptosis, through phosphorylation-inactivation of the pro-apoptotic protein, Bad, and consequent decreases in cytosolic cytochrome c and caspase-3 activation. The data suggest that VP has anti-apoptotic activity in neurons and that VP may act as a neuroprotective agent in the brain.  相似文献   

15.
16.
17.
18.
AMP‐activated protein kinase (AMPK) is activated under conditions that deplete cellular ATP levels and elevate AMP levels. We have recently shown that AMPK can represent a valid target for improving the medical treatment of growth hormone (GH)‐secreting pituitary adenomas and the effects of its activation or inhibition in pituitary tumour cells are worthy of further characterisation. We aimed to determine whether AMPK may have a role in combined antiproliferative therapies based on multiple drugs targeting cell anabolic functions at different levels in pituitary tumour cells to overcome the risk of cell growth escape phenomena. Accordingly, we tried to determine whether a rationale exists in combining compounds activating AMPK with compounds targeting the phosphatidylinositol‐3‐kinase (PI3K)/Akt/mTOR/p70S6K signalling pathway. AMPK down‐regulation by specific small‐interfering RNAs confirmed that activated AMPK had a role in restraining growth of GH3 cells. Hence, we compared the effects of compounds directly targeting the mTOR‐p70S6K axis, namely the mTOR inhibitor rapamycin and the p70S6K inhibitor PF‐4708671, with the effects of the AMPK activator 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR) on cell signalling and cell growth, in rat pituitary GH3 cells. AICAR was able to reduce growth factor‐induced p70S6K activity, as shown by the decrease of phospho‐p70S6K levels. However, it was far less effective than rapamycin and PF‐4708671. We observed significant differences between the growth inhibitory effects of the three compounds in GH3 and GH1 cells. Interestingly, PF‐4708671 was devoid of any effect. AICAR was at least as effective as rapamycin and the co‐treatment was more effective than single treatments. AICAR induced apoptosis of GH3 cells, whereas rapamycin caused preferentially a decrease of cell proliferation. Finally, AICAR and rapamycin differed in their actions on growth factor‐induced extracellular signal regulated kinase 1/2 phosphorylation. In conclusion, the results of the present study suggest the increased efficacy of combined antiproliferative therapies, including rapamycin analogues and AMPK activators in GH‐secreting pituitary tumours, as a result of complementary and only partially overlapping mechanisms of action.  相似文献   

19.
Proliferation of Schwann cells in vitro, unlike most mammalian cells, is not induced by serum alone but additionally requires cAMP elevation and mitogenic stimulation. How these agents cooperate to promote progression through the G1 phase of the cell cycle is unclear. We studied the integrative effects of these compounds on receptor-mediated signaling pathways and regulators of G1 progression. We show that serum alone induces strong cyclical expression of cyclin D1 and E1, 6 and 12 h after addition, respectively. Serum also promotes strong but transient erbB2, ERK, and Akt phosphorylation, but Schwann cells remain arrested in G1 due to high levels of the inhibitor, p27(Kip). Forskolin with serum promotes G1 progression in 22% of Schwann cells between 18 and 24 h by inducing a steady decline in p27(Kip) levels that reaches a nadir at 12 h coinciding with peak cyclin E1 expression. Forskolin also delays neuregulin-induced loss of erbB2 receptors allowing strong acute activation of PI3K, sustained erbB2 phosphorylation and G1 progression in 31% of Schwann cells. We find that the ability of forskolin to decrease p27(Kip) is associated with its ability to decrease Krox-20 expression that is induced by serum and further increased by neuregulin. Our results explain why serum is required but insufficient to stimulate proliferation and identify two routes by which forskolin promotes proliferation in the presence of serum and neuregulin. These findings provide insights into how G1 progression and, cell cycle arrest leading to myelination are regulated in Schwann cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号