首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nicotine and cotinine N-glucuronidations in human liver microsomes were characterized. The Eadie-Hofstee plots of nicotine N-glucuronidation in human liver microsomes were clearly biphasic, indicating the involvement of multiple enzymes. The apparent K(m) and V(max) values were 33.1 +/- 28.1 micro M and 60.0 +/- 21.0 pmol/min/mg and 284.7 +/- 122.0 micro M and 124.0 +/- 44.0 pmol/min/mg for the high- and low-affinity components, respectively, in human liver microsomes (n = 4). However, the Eadie-Hofstee plots of cotinine N-glucuronidation in human liver microsomes were monophasic (apparent K(m) = 1.9 +/- 0.3 mM, V(max) = 655.6 +/- 312.3 pmol/min/mg). The nicotine and cotinine N-glucuronidations in the recombinant human UDP-glucuronosyltransferases (UGTs) (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15) expressed in baculovirus-infected insect cells or human B-lymphoblastoid cells that are commercially available were determined. However, no recombinant UGT isoforms showed detectable nicotine and cotinine N-glucuronides (the concentrations of nicotine and cotinine were 0.5 and 2 mM, respectively). Nicotine and cotinine N-glucuronidations in pooled human liver microsomes were competitively inhibited by bilirubin as a substrate for UGT1A1 (K(i) = 3.9 and 3.3 micro M), imipramine as a substrate for UGT1A4 (K(i) = 6.1 and 2.7 micro M), and propofol as a substrate for UGT1A9 (K(i) = 6.0 and 12.0 micro M). The nicotine N-glucuronidation (50 micro M nicotine) in 14 human liver microsomes was significantly (r = 0.950, P < 0.0001) correlated with the cotinine N-glucuronidation (0.2 mM cotinine), indicating that the same isoform(s) is involved in both glucuronidations. Furthermore, weak correlations between imipramine N-glucuronidation and nicotine N-glucuronidation (r = 0.425) or cotinine N-glucuronidation (r = 0.517) were observed. In conclusion, the involvement of UGT1A1 and UGT1A9 as well as UGT1A4 in nicotine and cotinine N-glucuronidations in human liver microsomes was suggested, although the contributions of each UGT isoform could not be determined conclusively.  相似文献   

2.
Afloqualone (AFQ) is one of the centrally acting muscle relaxants. AFQ N-glucuronide is the most abundant metabolite in human urine when administered orally, whereas it was not detected in the urine when administered to rats, dogs, and monkeys. Species differences in AFQ N-glucuronidation were investigated with liver microsomes obtained from humans and experimental animals. The kinetics of AFQ N-glucuronidation in human liver microsomes showed a typical Michaelis-Menten plot. The K(m) and V(max) values accounted for 2019 +/- 85.9 muM and 871.2 +/- 17.9 pmol/min/mg protein, respectively. The V(max) and intrinsic clearance (CL(int)) values of AFQ N-glucuronidation in human liver were approximately 4- to 10-fold and 2- to 4-fold higher than those in rat, dog, and monkey, respectively. Among 12 recombinant human UDP-glucuronosyltransferase (UGT) isoforms, both UGT1A4 and UGT1A3 exhibited high AFQ N-glucuronosyltransferase activities. The K(m) value of AFQ N-glucuronidation in recombinant UGT1A4 microsomes was very close to that in human liver microsomes. The formation of AFQ N-glucuronidation by human liver, jejunum, and recombinant UGT1A4 microsomes was effectively inhibited by trifluoperazine, a known specific substrate for UGT1A4. The AFQ N-glucuronidation activities in seven human liver microsomes were significantly correlated with trifluoperazine N-glucuronidation activities (r(2) = 0.798, p < 0.01). In contrast, the K(m) value of AFQ N-glucuronidation in recombinant UGT1A3 microsomes was relatively close to that in human jejunum microsomes. These results demonstrate that AFQ N-glucuronidation in human is mainly catalyzed by UGT1A4 in the liver and by UGT1A3, as well as UGT1A4 in the intestine.  相似文献   

3.
Trans-3'-hydroxycotinine is a major metabolite of nicotine in humans and is mainly excreted as O-glucuronide in smoker's urine. Incubation of human liver microsomes with UDP-glucuronic acid produces not only trans-3'-hydroxycotinine O-glucuronide but also N-glucuronide. The formation of N-glucuronide exceeds the formation of O-glucuronide in most human liver microsomes, although N-glucuronide has never been detected in human urine. Trans-3'-hydroxycotinine N-glucuronidation in human liver microsomes was significantly correlated with nicotine and cotinine N-glucuronidations, which are catalyzed mainly by UDP-glucuronosyltransferase (UGT)1A4 and was inhibited by imipramine and nicotine, which are substrates of UGT1A4. Recombinant UGT1A4 exhibited substantial trans-3'-hydroxycotinine N-glucuronosyltransferase activity. These results suggest that trans-3'-hydroxycotinine N-glucuronidation in human liver microsomes would be mainly catalyzed by UGT1A4. In the present study, trans-3'-hydroxycotinine O-glucuronidation in human liver microsomes was thoroughly characterized, since trans-3'-hydroxycotinine O-glucuronide is one of the major metabolites of nicotine. The kinetics were fitted to the Michaelis-Menten equation with a K(m) of 10.0 +/- 0.8 mM and a V(max) of 85.8 +/- 3.8 pmol/min/mg. Among 11 recombinant human UGT isoforms expressed in baculovirus-infected insect cells, UGT2B7 exhibited the highest trans-3'-hydroxycotinine O-glucuronosyltransferase activity (1.1 pmol/min/mg) followed by UGT1A9 (0.3 pmol/min/mg), UGT2B15 (0.2 pmol/min/mg), and UGT2B4 (0.2 pmol/min/mg) at a substrate concentration of 1 mM. Trans-3'-hydroxycotinine O-glucuronosyltransferase activity by recombinant UGT2B7 increased with an increase in the substrate concentration up to 16 mM (10.5 pmol/min/mg). The kinetics by recombinant UGT1A9 were fitted to the Michaelis-Menten equation with K(m) = 1.6 +/- 0.1 mM and V(max) = 0.69 +/- 0.02 pmol/min/mg of protein. Trans-3'-hydroxycotinine O-glucuronosyltransferase activities in 13 human liver microsomes ranged from 2.4 to 12.6 pmol/min/mg and were significantly correlated with valproic acid glucuronidation (r = 0.716, p < 0.01), which is catalyzed by UGT2B7, UGT1A6, and UGT1A9. Trans-3'-hydroxycotinine O-glucuronosyltransferase activity in human liver microsomes was inhibited by imipramine (a substrate of UGT1A4, IC(50) = 55 microM), androstanediol (a substrate of UGT2B15, IC(50) = 169 microM), and propofol (a substrate of UGT1A9, IC(50) = 296 microM). Interestingly, imipramine (IC(50) = 45 microM), androstanediol (IC(50) = 21 microM), and propofol (IC(50) = 41 microM) also inhibited trans-3'-hydroxycotinine O-glucuronosyltransferase activity by recombinant UGT2B7. These findings suggested that trans-3'-hydroxycotinine O-glucuronidation in human liver microsomes is catalyzed by mainly UGT2B7 and, to a minor extent, by UGT1A9.  相似文献   

4.
Investigation of human UDP-glucuronosyltransferase (UGT) isoforms has been limited by a lack of specific substrate probes. In this study serotonin was evaluated for use as a probe substrate for human UGT1A6 using recombinant human UGTs and tissue microsomes. Of the 10 commercially available recombinant UGT isoforms, only UGT1A6 catalyzed serotonin glucuronidation. Serotonin-UGT activity at 40 mM serotonin concentration varied more than 40-fold among human livers (n = 54), ranging from 0.77 to 32.9 nmol/min/mg of protein with a median activity of 7.1 nmol/min/mg of protein. Serotonin-UGT activity kinetics of representative human liver microsomes (n = 7) and pooled human kidney, intestinal and lung microsomes and recombinant human UGT1A6 typically followed one enzyme Michaelis-Menten kinetics. Serotonin glucuronidation activity in these human liver microsomes had widely varying V(max) values ranging from 0.62 to 51.3 nmol/min/mg of protein but very similar apparent K(m) values ranging from 5.2 to 8.8 mM. Pooled human kidney, intestine, and lung microsomes had V(max) values (mean +/- standard error of the estimates) of 8.8 +/- 0.4, 0.22 +/- 0.00, and 0.03 +/- 0.00 nmol/min/mg of protein (respectively) and apparent K(m) values of 6.5 +/- 0.9, 12.4 +/- 2.0, and 4.9 +/- 3.3 mM (respectively). In comparison, recombinant UGT1A6 had a V(max) of 4.5 +/- 0.1 nmol/min/mg of protein and an apparent K(m) of 5.0 +/- 0.4 mM. A highly significant correlation was found between immunoreactive UGT1A6 protein content and serotonin-UGT activity measured at 4 mM serotonin concentration in human liver microsomes (R(s) = 0.769; P < 0.001) (n = 52). In conclusion, these results indicate that serotonin is a highly selective in vitro probe substrate for human UGT1A6.  相似文献   

5.
Nicotine is considered the major addictive agent in tobacco. Tobacco users extensively metabolize nicotine to cotinine. Both nicotine and cotinine undergo N-glucuronidation. Human liver microsomes have been shown to catalyze the formation of these N-glucuronides. However, which UDP-glucuronosyltransferases contribute to this catalysis has not been identified. To identify these enzymes, we initially measured the rates of glucuronidation by 15 human liver microsome samples. Fourteen of the samples glucuronidated both nicotine and cotinine at rates ranging from 146 to 673 pmol/min/mg protein and 140 to 908 pmol/min/mg protein, respectively. The rates of nicotine glucuronidation and cotinine glucuronidation by these 14 samples were correlated, r = 0.97 (p < 0.0001). The glucuronidation of nicotine and cotinine by heterologously expressed UGT1A3, UGT1A4, and UGT1A9 was also determined. All three enzymes catalyzed the glucuronidation of nicotine. However, the rate of catalysis by UGT1A4 Supersomes was more than 30-fold greater than that by either UGT1A3 Supersomes or UGT1A9 Supersomes. Interestingly, when expressed per UGT1A protein, measured by a UGT1A specific antibody, cell lysate from V79-expressed UGT1A9 catalyzed nicotine glucuronidation at a rate 17-fold greater than did UGT1A9 Supersomes. UGT1A4 Supersomes also catalyzed cotinine N-glucuronidation, but at one-tenth the rate of nicotine glucuronidation. Cotinine glucuronidation by either UGT1A3 or UGT1A9 was not detected. Both propofol, a UGT1A9 substrate, and imipramine, a UGT1A4 substrate, inhibited the glucuronidation of nicotine and cotinine by human liver microsomes. Taken together, these data support a role for both UGT1A9 and UGT1A4 in the catalysis of nicotine and cotinine N-glucuronidation.  相似文献   

6.
Like other basic amphiphilic drugs, the (S)-enantiomer of the antiallergic drug ketotifen exhibited biphasic kinetics when it was converted to two isomeric quaternary ammonium-linked glucuronides in human liver microsomes. For (R)-ketotifen this applied when incubations were carried out in the absence of a detergent. Two UDP-glucuronosyltransferases (UGTs) present in human liver, UGT1A4 and UGT1A3, were previously shown to catalyze tertiary amine N-glucuronidation when expressed in HK293 cells. Therefore, the conjugation kinetics of (R)- and (S)-ketotifen were investigated with the two expressed proteins. When homogenates of HK293 cells expressing UGT1A4 were incubated without detergent, N-glucuronidation kinetics were monophasic with K(M) values of 59 +/- 5 microM for (R)- and 86 +/- 26 microM for (S)-ketotifen. In experiments with membranes containing expressed UGT1A3, somewhat higher K(M) values were obtained. These values correspond to the high rather than to the low K(M) components of ketotifen glucuronidation in liver microsomes, the latter exhibiting K(M) values around 2 and 1 microM, respectively, with (R)- and (S)-ketotifen. With amitriptyline as the substrate, N-glucuronidation kinetics in the absence of detergent were biphasic in human liver microsomes and monophasic with a high K(M) value in cell homogenates containing UGT1A4. The results suggest that UGT1A4 and UGT1A3 catalyze high-K(M) N-glucuronidation of tertiary amine drugs, whereas the low-K(M) reaction requires either an alternative enzyme or a special conformation of UGT1A4 or UGT1A3 that can be attained in liver microsomes, but not in HK293 cell membranes.  相似文献   

7.
Two predominant human glucuronide metabolites of nicotine result from pyridine nitrogen atom conjugation. The present objectives included determination of the kinetics of formation of S(-)-cotinine N1-glucuronide in pooled human liver microsomes and investigation of the UDP-glucuronosyltransferases (UGTs) involved in N-glucuronidation of nicotine isomers and S(-)-cotinine by use of recombinant enzymes (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15). Quantification was by radiochemical high-performance liquid chromatography with use of radiolabeled substrates. S(-)-Cotinine N1-glucuronide formation in human liver microsomes was proven by comparing the chromatographic behaviors and electrospray ionization-mass spectral characteristics of the metabolite with a synthetic reference standard. This glucuronide was formed by one-enzyme kinetics with K(m) and V(max) values of 5.4 mM and 696 pmol/min/mg, respectively, and the apparent intrinsic clearance value (V(max/Km)) was 9-fold less than that previously determined for S(-)-nicotine N1-glucuronide (0.13 versus 1.2 microl/min/mg) using the same pooled microsomes. This comparison of values is consistent with the observation that on smoking cigarettes, although the average S(-)-cotinine plasma levels usually far exceed S(-)-nicotine levels, the urinary recovery of S(-)-cotinine N1-glucuronide only averages 3-fold greater than for S(-)-nicotine N1-glucuronide. None of the UGTs examined catalyzed the N-glucuronidation of S(-)-nicotine, R(+)-nicotine, and S(-)-cotinine, including UGT1A3 and UGT1A4, the only isoforms known to catalyze many substrates at a tertiary amine. Also, neither S(-)-nicotine or S(-)-cotinine affected enzyme inhibition of trifluoperazine, a UGT1A4 substrate. It would appear that the same, as yet unexamined, UGT catalyzes the N-glucuronidation of both cotinine and nicotine.  相似文献   

8.
A metabolite formed by incubation of human liver microsomes, etoposide, and UDP-glucuronic acid was identified as etoposide glucuronide by liquid chromatography-tandem mass spectrometry analysis. According to the derivatization with trimethylsilylimidazole (Tri-Sil-Z), it was confirmed that the glucuronic acid is linked to an alcoholic hydroxyl group of etoposide and not to a phenolic group. Among nine recombinant human UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9. UGT1A10, UGT2B7, and UGT2B15), only UGT1A1 exhibited the catalytic activity of etoposide glucuronidation. The enzyme kinetics in pooled human liver microsomes and recombinant UGT1A1 microsomes showed a typical Michaelis-Menten plot. The kinetic parameters of etoposide glucuronidation were K(m) = 439.6 +/- 70.7 microM and V(max) = 255.6 +/- 19.2 pmol/min/mg of protein in human liver microsomes and K(m) = 503.2 +/- 110.2 microM and V(max) = was 266.5 +/- 28.6 pmol/min/mg of protein in recombinant UGT1A1. The etoposide glucuronidation in pooled human liver microsomes was inhibited by bilirubin (IC(50) = 31.7 microM) and estradiol (IC(50) = 34 microM) as typical substrates for UGT1A1. The inhibitory effects of 4-nitrophenol (IC(50) = 121.0 microM) as a typical substrate for UGT1A6 and UGT1A9, imipramine (IC(50) = 393.8 microM) as a typical substrate for UGT1A3 and UGT1A4, and morphine (IC(50) = 109.3 microM) as a typical substrate for UGT2B7 were relatively weak. The interindividual difference in etoposide glucuronidation in 13 human liver microsomes was 78.5-fold (1.4-109.9 pmol/min/mg of protein). The etoposide glucuronidation in 10 to 13 human liver microsomes was significantly correlated with beta-estradiol-3-glucuronidation (r = 0.841, p < 0.01), bilirubin glucuronidation (r = 0.935, p < 0.01), and the immunoquantified UGT1A1 protein content (r = 0.800, p < 0.01). These results demonstrate that etoposide glucuronidation in human liver microsomes is specifically catalyzed by UGT1A1.  相似文献   

9.
N-Glucuronidation in vitro of six 4-arylalkyl-1H-imidazoles (both enantiomers of medetomidine, detomidine, atipamezole, and two other closely related compounds) by rat, dog, and human liver microsomes and by four expressed human UDP-glucuronosyltransferase isoenzymes was studied. Human liver microsomes formed N-glucuronides of 4-arylalkyl-1H-imidazoles with high activity, with apparent V(max) values ranging from 0.59 to 1.89 nmol/min/mg of protein. In comparison, apparent V(max) values for two model compounds forming the N-glucuronides 4-aminobiphenyl and amitriptyline were 5.07 and 0.56 nmol/min/mg of protein, respectively. Atipamezole showed an exceptionally low apparent K(m) value of 4.0 microM and a high specificity constant (V(max)/K(m)) of 256 compared with 4-aminobiphenyl (K(m), 265 microM; V(max)/K(m), 19) and amitriptyline (K(m), 728 microM; V(max)/K(m), 0.8). N-Glucuronidation of medetomidine was highly enantioselective in human liver microsomes; levomedetomidine exhibited a 60-fold V(max)/K(m) value compared with dexmedetomidine. Furthermore, two isomeric imidazole N-glucuronides were formed from dexmedetomidine, but only one was formed from levomedetomidine. Dog liver microsomes formed N-glucuronides of 4-arylalkyl-1H-imidazoles at a low rate and affinity, with apparent V(max) values ranging from 0.29 to 0.73 nmol/min/mg of protein and apparent K(m) values from 279 to 1640 microM. Rat liver microsomes glucuronidated these compounds at a barely detectable rate. Four expressed human UDP-glucuronosyltransferase isoenzymes (UGT1A3, UGT1A4, UGT1A6, and UGT1A9) were studied for 4-arylalkyl-1H-imidazole-conjugating activity. Only UGT1A4 glucuronidated these compounds at an activity of about 5% of that measured for 4-aminobiphenyl. The observed activity of UGT1A4 does not explain the high efficiency of glucuronidation of 4-arylalkyl-1H-imidazoles in human liver microsomes.  相似文献   

10.
Troglitazone glucuronidation in human liver and intestine microsomes and recombinant UDP-glucuronosyltransferases (UGTs) were thoroughly characterized. All recombinant UGT isoforms in baculovirus-infected insect cells (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15) exhibited troglitazone glucuronosyltransferase activity. Especially UGT1A8 and UGT1A10, which are expressed in extrahepatic tissues such as stomach, intestine, and colon, showed high catalytic activity, followed by UGT1A1 and UGT1A9. The kinetics of the troglitazone glucuronidation in the recombinant UGT1A10 and UGT1A1 exhibited an atypical pattern of substrate inhibition when the substrate concentration was over 200 micro M. With a Michaelis-Menten equation at 6 to 200 micro M troglitazone, the K(m) value was 11.1 +/- 5.8 micro M and the V(max) value was 33.6 +/- 3.7 pmol/min/mg protein in recombinant UGT1A10. In recombinant UGT1A1, the K(m) value was 58.3 +/- 29.2 micro M and the V(max) value was 12.3 +/- 2.5 pmol/min/mg protein. The kinetics of the troglitazone glucuronidation in human liver and jejunum microsomes also exhibited an atypical pattern. The K(m) value was 13.5 +/- 2.0 micro M and the V(max) value was 34.8 +/- 1.2 pmol/min/mg for troglitazone glucuronidation in human liver microsomes, and the K(m) value was 8.1 +/- 0.3 micro M and the V(max) was 700.9 +/- 4.3 pmol/min/mg protein in human jejunum microsomes. When the intrinsic clearance was estimated with the in vitro kinetic parameter, microsomal protein content, and weight of tissue, troglitazone glucuronidation in human intestine was 3-fold higher than that in human livers. Interindividual differences in the troglitazone glucuronosyltransferase activity in liver microsomes from 13 humans were at most 2.2-fold. The troglitazone glucuronosyltransferase activity was significantly (r = 0.579, p < 0.05) correlated with the beta-estradiol 3-glucuronosyltransferase activity, which is mainly catalyzed by UGT1A1. The troglitazone glucuronosyltransferase activity in pooled human liver microsomes was strongly inhibited by bilirubin (IC(50) = 1.9 micro M), a typical substrate of UGT1A1. These results suggested that the troglitazone glucuronidation in human liver would be mainly catalyzed by UGT1A1. Interindividual differences in the troglitazone glucuronosyltransferase activity in S-9 samples from five human intestines was 8.2-fold. The troglitazone glucuronosyltransferase activity in human jejunum microsomes was strongly inhibited by emodin (IC(50) = 15.6 micro M), a typical substrate of UGT1A8 and UGT1A10, rather than by bilirubin (IC(50) = 154.0 micro M). Therefore, it is suggested that the troglitazone glucuronidation in human intestine might be mainly catalyzed by UGT1A8 and UGT1A10.  相似文献   

11.
N-Alkylperfluorooctanesulfonamides have been used in a range of industrial and commercial applications. Perfluorooctanesulfonamide (FOSA) is a major metabolite of N-alkylperfluorooctanesulfonamides and has a long half-life in animals and in the environment and is biotransformed to FOSA N-glucuronide. The objective of this study was to identify and characterize the human and experimental animal liver UDP-glucuronosyltransferases (UGTs) that catalyze the N-glucuronidation of FOSA. The results showed that pooled human liver and rat liver microsomes had high N-glucuronidation activities. Expressed rat UGT1.1, UGT2B1, and UGT2B12 in HK293 cells catalyzed the N-glucuronidation of FOSA but at rates that were lower than those observed in rat liver microsomes. Of the 10 expressed human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B15, and 2B17) studied, only hUGT2B4 and hUGT2B7 catalyzed the N-glucuronidation of FOSA. The kinetics of N-glucuronidation of FOSA by rat liver microsomes and by hUGT2B4/7 was consistent with a single-enzyme Michaelis-Menten model, whereas human liver microsomes showed sigmoidal kinetics. These data show that rat liver UGT1.1, UGT2B1, and UGT2B12 catalyze the N-glucuronidation of FOSA, albeit at low rates, and that hUGT2B4 and hUGT2B7 catalyze the N-glucuronidation of FOSA.  相似文献   

12.
Denopamine is one of the oral beta(1)-adrenoceptor-selective partial agonists. Denopamine glucuronide is the most abundant metabolite in human, rat, and dog urine when administered orally. Species differences in denopamine glucuronidation were investigated with liver microsomes obtained from humans and experimental animals. In rat and rabbit, only the phenolic glucuronide was detected, whereas in dog and monkey, not only the phenolic glucuronide but also the alcoholic glucuronide was found. In contrast, in humans, the alcoholic glucuronide was detected exclusively. The kinetics of denopamine glucuronidation in human liver microsomes showed a typical Michaelis-Menten plot. The K(m) and V(max) values accounted for 2.87 +/- 0.17 mM and 7.29 +/- 0.23 nmol/min/mg protein, respectively. With the assessment of denopamine glucuronide formation across a panel of recombinant UDP-glucuronosyltransferase (UGT) isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17), only UGT2B7 exhibited high denopamine glucuronosyltransferase activity. The K(m) value of denopamine glucuronidation in recombinant UGT2B7 microsomes was close to those in human liver and jejunum microsomes. The formation of denopamine glucuronidation by human liver, jejunum, and recombinant UGT2B7 microsomes was effectively inhibited by diclofenac, a known substrate for UGT2B7. The denopamine glucuronidation activities in seven human liver microsomes were significantly correlated with diclofenac glucuronidation activities (r(2) = 0.685, p < 0.05). These results demonstrate that the denopamine glucuronidation in human liver and intestine is mainly catalyzed by UGT2B7 and that glucuronidation of the alcoholic hydroxyl group, but not the phenolic hydroxyl group, occurs regioselectively in humans.  相似文献   

13.
A major metabolic pathway of haloperidol is glucuronidation catalyzed by UDP-glucuronosyltransferase (UGT). In this study, we found that two glucuronides were formed by the incubation of haloperidol with human liver microsomes (HLM) and presumed that the major and minor metabolites (>10-fold difference) were O- and N-glucuronide, respectively. The haloperidol N-glucuronidation was catalyzed solely by UGT1A4, whereas the haloperidol O-glucuronidation was catalyzed by UGT1A4, UGT1A9, and UGT2B7. The kinetics of the haloperidol O-glucuronidation in HLM was monophasic with K(m) and V(max) values of 85 μM and 3.2 nmol · min?1 · mg?1, respectively. From the kinetic parameters of the recombinant UGT1A4 (K(m) = 64 μM, V(max) = 0.6 nmol · min?1 · mg?1), UGT1A9 (K(m) = 174 μM, V(max) = 2.3 nmol · min?1 · mg?1), and UGT2B7 (K(m) = 45 μM, V(max) = 1.0 nmol · min?1 · mg?1), we could not estimate which isoform largely contributes to the reaction. Because the haloperidol O-glucuronidation in a panel of 17 HLM was significantly correlated (r = 0.732, p < 0.01) with zidovudine O-glucuronidation, a probe activity of UGT2B7, and the activity in the pooled HLM was prominently inhibited (58% of control) by gemfibrozil, an inhibitor of UGT2B7, we surmised that the reaction would mainly be catalyzed by UGT2B7. We could successfully estimate, using the concept of the relative activity factor, that the contributions of UGT1A4, UGT1A9, and UGT2B7 in HLM were approximately 10, 20, and 70%, respectively. The present study provides new insight into haloperidol glucuronidation, concerning the causes of interindividual differences in the efficacy and adverse reactions or drug-drug interactions.  相似文献   

14.
N-Glucuronidation at an aromatic tertiary amine of 5-membered polyaza ring systems was investigated for a model series of eight 1-substituted imidazoles in liver microsomes from five species. The major objectives were to investigate substrate specificities of the series in human microsomes and interspecies variation for the prototype molecule, 1-phenylimidazole. The formed quaternary ammonium-linked metabolites were characterized by positive ion electrospray mass spectrometry. The incubation conditions for the N-glucuronidation of 1-substituted imidazoles were optimized; where for membrane disrupting agents, alamethicin was more effective than the detergents examined. The need to optimize alamethicin concentration was indicated by 4-fold interspecies variation in optimal concentration and by a change in effect from removal of glucuronidation latency to inhibition on increasing concentration. For the four species with quantifiable N-glucuronidation of 1-phenylimidazole, there were 8- and 18-fold variations in the determined apparent K(m) (range, 0.63 to 4.8 mM) and V(max) (range, 0.08 to 1.4 nmol/min/mg of protein) values, respectively. The apparent clearance values (V(max)/K(m)) were in the following order: human congruent with guinea pig congruent with rabbit > rat congruent with dog (no metabolite detected). Monophasic kinetics were observed for the N-glucuronidation of seven substrates by human liver microsomes, which suggests that one enzyme is involved in each metabolic catalysis. No N-glucuronidation was observed for the substrate containing the para-phenyl substituent with the largest electron withdrawing effect, 1-(4-nitrophenyl)imidazole. Linear correlation analyses between apparent microsomal kinetics and substrate physicochemical parameters revealed significant correlations between K(m) and lipophilicity (pi(para) or log P values) and between V(max)/K(m) and both electronic properties (sigma(para) value) and pKa.  相似文献   

15.
Mycophenolic acid (MPA; 1,3-dihydro-4-hydroxy-6-methoxy-7-methyl-3-oxo-5-isobenzylfuranyl)-4-methyl-4-hexenoate), the active metabolite of the immunosuppressant prodrug, mycophenolate mofetil, undergoes glucuronidation to its 7-O-glucuronide as a primary route of metabolism. Because differences in glucuronidation may influence the efficacy and/or toxicity of MPA, we investigated the MPA UDP-glucuronosyltransferase (UGT) activities of human liver microsomes (HLMs) and rat liver microsomes with the goal of identifying UGTs responsible for MPA catalysis. HLMs (n = 23) exhibited higher average MPA glucuronidation rates (14.7 versus 6.0 nmol/mg/min, respectively, p < 0.001) and higher apparent affinity for MPA (K(m) = 0.082 mM versus 0.20 mM, p < 0.001) compared with rat liver microsomes. MPA UGT activities were reduced >80% in liver microsomes from Gunn rats. To identify the active enzymes, human and rat UGT1A enzymes were screened for MPA-glucuronidating activity. UGT1A9 was the only human liver-expressed UGT1A enzyme with significant activity and exhibited both high affinity (K(m) = 0.077 mM) and high activity (V(max) = 28 nmol x min(-1) x mg(-1)). Spearman correlation analyses revealed a stronger relationship between HLM MPA UGT activities and 1A9-like content (r(2) = 0.79) relative to 1A1 (r(2) = 0.20), 1A4-like (r(2) = 0.22), and 1A6 (r(2) = 0.41) protein. A different profile was observed for rat with three active liver-expressed UGT1A enzymes: 1A1 (medium affinity/capacity), 1A6 (low affinity/medium capacity), and 1A7 (high affinity/capacity). Our data suggest that UGT1A enzymes are the major contributors to hepatic MPA metabolism in both species, but 1A9 is dominant in human, whereas 1A1 and 1A7 are likely the principal mediators in control rat liver. This information should be useful for interpretation of MPA pharmacokinetic and toxicity data in clinical and animal studies.  相似文献   

16.
1. The main purpose was to develop a high-performance liquid chromatography (HPLC)-based method to assay serotonin glucuronidation activity using liver microsomal fractions. Application of this method was then demonstrated by determining serotonin UDP-glucuronosyltransferase (UGT) enzyme kinetics using human liver microsomes and recombinant human UGT1A6. Interspecies differences were also evaluated using liver microsomes from 10 different mammalian species. 2. Incubation of liver microsomes with serotonin, UDP-glucuronic acid and magnesium resulted in the formation of a single product peak using HPLC with fluorescence and ultraviolet absorbance detection. This peak was confirmed as serotonin glucuronide based on sensitivity to beta-glucuronidase and by obtaining the expected mass of 352 with positive-ion mass spectrometry. 3. Following a preparative HPLC isolation, the structure of this metabolite was established as serotonin-5-O-glucuronide by (1)H-NMR spectroscopy. 4. Enzyme kinetic studies showed apparent K(m) and V(max) of 8.8 +/- 0.3 mM and 43.4 +/- 0.4 nmoles min(-1) mg(-1) protein, respectively, for human liver microsomes, and 5.9 +/- 0.2 mM and 15.8 +/- 0.2 nmoles min(-1) mg(-1), respectively, for recombinant UGT1A6. 5. The order of serotonin-UGT activities in animal liver microsomes was rat > mouse > human > cow > pig > horse > dog > rabbit > monkey > ferret. Cat livers showed no serotonin-UGT activity. Heterozygous and homozygous mutant Gunn rat livers had 40 and 13%, respectively, of the activity of the normal Wistar rat, indicating a significant contribution by a rat UGT1A isoform to serotonin glucuronidation. 6. This assay provides a novel sensitive and specific technique for the measurement of serotonin-UGT activity in vitro.  相似文献   

17.
Raloxifene, a selective estrogen receptor modulator used for the treatment of osteoporosis, undergoes extensive conjugation to the 6-beta- and 4'-beta-glucuronides in vivo. This paper investigated raloxifene glucuronidation by human liver and intestinal microsomes and identified the responsible UDP-glucuronosyltransferases (UGTs). UGT1A1 and 1A8 were found to catalyze the formation of both the 6-beta- and 4'-beta-glucuronides, whereas UGT1A10 formed only the 4'-beta-glucuronide. Expressed UGT1A8 catalyzed 6-beta-glucuronidation with an apparent K(m) of 7.9 microM and a V(max) of 0.61 nmol/min/mg of protein and 4'-beta-glucuronidation with an apparent K(m) of 59 microM and a V(max) of 2.0 nmol/min/mg. Kinetic parameters for raloxifene glucuronidation by expressed UGT1A1 could not be determined due to limited substrate solubility. Based on rates of raloxifene glucuronidation and known extrahepatic expression, UGT1A8 and 1A10 appear to be primary contributors to raloxifene glucuronidation in human jejunum microsomes. For human liver microsomes, the variability of 6-beta- and 4'-beta-glucuronide formation was 3- and 4-fold, respectively. Correlation analyses revealed that UGT1A1 was responsible for 6-beta- but not 4'-beta-glucuronidation in liver. Treatment of expressed UGTs with alamethicin resulted in minor increases in enzyme activity, whereas in human intestinal microsomes, maximal increases of 8-fold for the 6-glucuronide and 9-fold for the 4'-glucuronide were observed. Intrinsic clearance values in intestinal microsomes were 17 microl/min/mg for the 6-glucuronide and 95 microl/min/mg for the 4'-isomer. The corresponding values for liver microsomes were significantly lower, indicating that intestinal glucuronidation may be a significant contributor to the presystemic clearance of raloxifene in vivo.  相似文献   

18.
Yu L  Lu S  Lin Y  Zeng S 《Biochemical pharmacology》2007,73(11):1842-1851
Mitiglinide (MGN) is a new potassium channel antagonist for the treatment of type 2 diabetes mellitus. In the present study, a potential metabolic pathway of MGN, via carboxyl-linked glucuronic acid conjugation, was found. MGN carboxyl-glucuronide was isolated from a reaction mixture consisting of MGN and human liver microsomes fortified with UDP-glucuronic acid (UDPGA) and identified by a hydrolysis reaction with beta-glucuronidase and HPLC-MS/MS. Kinetic analysis indicated that MGN from four species had the highest affinity for the rabbit liver microsomal enzyme (K(m)=0.202 mM) and the lowest affinity for the dog liver microsomal enzyme (K(m)=1.164 mM). The metabolic activity (V(max)/K(m)) of MGN to the carboxyl-glucuronidation was in the following order: rabbit>dog>rat>human. With the assessment of MGN glucuronide formation across a panel of recombinant UDP-glucuronosyltransferase (UGT) isoforms (UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7), only UGT1A3 and UGT2B7 exhibited high MGN glucuronosyltransferase activity. The K(m) values of MGN glucuronidation in recombinant UGT1A3 and UGT2B7 microsomes were close to those in human liver microsomes. The formation of MGN glucuronidation by human liver microsomes was effectively inhibited by quercetin (substrate for UGT1A3) and diclofenac (substrate for UGT2B7), respectively. The MGN glucuronidation activities in 15 human liver microsomes were significantly correlated with quercetin (r(2)=0.806) and diclofenac glucuronidation activities (r(2)=0.704), respectively. These results demonstrate that UGT1A3 and UGT2B7 are catalytic enzymes in MGN carboxyl-glucuronidation in human liver.  相似文献   

19.
The nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is one of the most potent and abundant procarcinogens found in tobacco and tobacco smoke and is considered to be a causative agent for several tobacco-related cancers. Glucuronidation of the major metabolite of NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), has been implicated as an important mechanism for NNK detoxification. To characterize NNAL metabolism by N-glucuronidation in humans, high-pressure liquid chromatography was used to detect glucuronide conjugates of NNAL formed in human liver microsomes in vitro. In addition to peaks corresponding to the O-glucuronides of NNAL (NNAL-O-Gluc), a second series of peaks were observed in human liver microsomes that were identified by liquid chromatography-mass spectrometry to be NNAL N-glucuronides (NNAL-N-Gluc). Microsomes prepared from liver specimens from individual subjects (n = 42) exhibited substantial variability in the levels of NNAL-N-Gluc (49-fold variability) and NNAL-O-Gluc (49-fold variability) formed in vitro. This variability was likely not due to differences in tissue quality, as substantial variability (5-fold) was also observed in the ratio of NNAL-N-Gluc/NNAL-O-Gluc formation, with a mean ratio of 1.7 in the 42 specimens. Liver microsomes from smokers (n = 14) exhibited no significant difference in the levels of either NNAL-N-Gluc or NNAL-O-Gluc formation, or in the ratio of NNAL-N-Gluc/NNAL-O-Gluc formation, as compared with liver microsomes from never smokers (n = 28). Overexpressed UDP-glucuronosyltransferase (UGT) 1A4 exhibited significant levels of N-glucuronidating activity (V(max)/K(m) = 3.11 microl. min(-1). g(-1)) in vitro; no NNAL-N-glucuronide formation was detected for the 11 other overexpressed UGT enzymes tested in these studies. These results demonstrate the importance of N-glucuronidation in the metabolism of NNAL and the role of UGT1A4 in this pathway.  相似文献   

20.
AIM: To study the profile of imipramine N+-glucuronidation using homogenates of recombinant uridine-5'-diphosphoglucuronosyltransferase 1A4 (UGT1A4) from baculovirus-infected sf9 cells. METHODS: Recombinant UGT1A4 was obtained from sf9 cells infected with recombinant baculovirus. Imipramine N(+)-glucuronide was biosynthesized by incubating imipramine with recombinant UGT1A4 and then purified with solid-phase cartridges. A reversed phase-high pressure liquid chromatography (RP-HPLC) assay method was used to directly measure the concentration of imipramine and its metabolite, imipramine N(+)-glucuronide, with p-nitrophenol as the internal standard. The validated method was used to characterize the activity of recombinant UGT1A4 and carry out kinetic studies on imipramine glucuronidation in vitro. RESULTS: The high concentration of imipramine inhibited glucuronide conjugation, so the formula V=V(max).S/(Km+S+S(2)/K(i)) was used to calculate the parameters, using MATLAB software. The values of apparent K(m), K(i), and V(max) for imipramine glucuronidation via UGT1A4 were 1.39+/-0.09 mmol/L, 6.24+/-0.45 mmol/L and 453.81+/-32.12 pmol/min per mg cell homogenate (n=3), respectively. CONCLUSION: As a specific substrate of UGT1A4, imipramine was used as a convenient method to characterize the activity of recombinant UGT1A4 by using HPLC. Furthermore, the profile of imipramine glucuronidation was evaluated by using recombinant UGT1A4 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号