首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The aim of this study was to validate the flow patterns measured by high-resolution, time-resolved, three-dimensional phase contrast MRI in a real-size intracranial aneurysm phantom. Retrospectively gated three-dimensional phase contrast MRI was performed in an intracranial aneurysm phantom at a resolution of 0.2 × 0.2 × 0.3 mm(3) in a solenoid rat coil. Both steady and pulsatile flows were applied. The phase contrast MRI measurements were compared with particle image velocimetry measurements and computational fluid dynamics simulations. A quantitative comparison was performed by calculating the differences between the magnitude of the velocity vectors and angles between the velocity vectors in corresponding voxels. Qualitative analysis of the results was executed by visual inspection and comparison of the flow patterns. The root-mean-square errors of the velocity magnitude in the comparison between phase contrast MRI and computational fluid dynamics were 5% and 4% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 16° and 14° for the steady and pulsatile measurements, respectively. In the phase contrast MRI and particle image velocimetry comparison, the root-mean-square errors were 12% and 10% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 19° and 15° for the steady and pulsatile measurements, respectively. Good agreement was found in the qualitative comparison of flow patterns between the phase contrast MRI measurements and both particle image velocimetry measurements and computational fluid dynamics simulations. High-resolution, time-resolved, three-dimensional phase contrast MRI can accurately measure complex flow patterns in an intracranial aneurysm phantom.  相似文献   

2.
Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. We report on the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for noninvasive measurement of velocity vectors. This method (echo PIV) takes advantage of the strong backscatter characteristics of small gas-filled microbubbles (contrast) seeded into the flow. The method was tested in vitro. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. However, error in shear from echo PIV was an order of magnitude less than error from current shear measurement methods. These studies indicate that echo PIV is a promising technique for noninvasive measurement of velocity profiles and shear stress.  相似文献   

3.
We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.  相似文献   

4.
Arteriovenous fistula (AVF) pathologies related to blood flow necessitate valid calculation tools for local velocity and wall shear stress determination to overcome the clinical diagnostic limits. To illustrate this issue, a reconstructed patient-specific AVF was investigated, using computational fluid dynamics (CFDs) and particle image velocimetry (PIV). The aim of this study was to validate the methodology from medical images to numerical simulations of an AVF by comparing numerical and experimental data. Two numerical grids were presented with a refinement difference of a factor of four. A mold of the same volume was created and mounted on an experimental bench with similar boundary conditions. The patient's acquired echo D006Fppler flow waveform was injected at the arterial inlet. Experimental and numerical velocity vector cartography qualitatively produced similar flow fields. Quantification with a point-to-point approach thoroughly investigated the velocity profiles using the mean difference between both results. The finest mesh generated CFD results with a mean percentage of the difference in velocity magnitude, taking the PIV as reference, did not exceed 10%. At specific zones, the coarse mesh required adaptive meshing to improve fitting with experimental data. Meshing refinement was necessary to improve velocity accuracy at wide diameters and wall shear stress at narrow diameters. Provided that these criteria were properly respected, we show through this difficult example the validity of using CFD to properly describe flow patterns in image-based reconstructed blood vessels.  相似文献   

5.
Multimodality NIR spectroscopy systems offer the possibility of region-based vascular and molecular characterization of tissue in vivo. However, computationally efficient 3D image reconstruction algorithms specific to these image-guided systems currently do not exist. Image reconstruction is often based on finite-element methods (FEMs), which require volume discretization. Here, a boundary element method (BEM) is presented using only surface discretization to recover the optical properties in an image-guided setting. The reconstruction of optical properties using BEM was evaluated in a domain containing a 30 mm inclusion embedded in two layer media with different noise levels and initial estimates. For 5% noise in measurements, and background starting values for reconstruction, the optical properties were recovered to within a mean error of 6.8%. When compared with FEM for this case, BEM showed a 28% improvement in computational time. BEM was also applied to experimental data collected from a gelatin phantom with a 25 mm inclusion and could recover the true absorption to within 6% of expected values using less time for computation compared with FEM. When applied to a patient-specific breast mesh generated using MRI, with a 2 cm ductal carcinoma, BEM showed successful recovery of optical properties with less than 5% error in absorption and 1% error in scattering, using measurements with 1% noise. With simpler and faster meshing schemes required for surface grids as compared with volume grids, BEM offers a powerful and potentially more feasible alternative for high-resolution 3D image-guided NIR spectroscopy.  相似文献   

6.
Velocity‐encoded phase‐contrast MRI of cardiovascular blood flow commonly relies on electrocardiogram‐synchronized cine acquisitions of multiple heartbeats to quantitatively determine the flow of an averaged cardiac cycle. Here, we present a new method for real‐time phase‐contrast MRI that combines flow‐encoding gradients with highly undersampled radial fast low‐angle shot acquisitions and phase‐sensitive image reconstructions by regularized nonlinear inversion. Apart from calibration studies using steady and pulsatile flow, preliminary in vivo applications focused on through‐plane flow in the ascending aorta of healthy subjects. With bipolar velocity‐encoding gradients of alternating polarity that overlap the slice‐refocusing gradient, the method yields flow‐encoded images with an in‐plane resolution of 1.8 mm, section thickness of 6 mm and measuring time at 3 T of 24 ms (TR/TE = 3.44/2.76 ms; flip angle, 10º; seven radial spokes per image). Accordingly, phase‐contrast maps and corresponding velocity profiles achieve a temporal resolution of 48 ms. The evaluated peak velocities, stroke volumes, flow rates and respective variances over at least 20 consecutive heartbeats are in general agreement with literature data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The analysis and visualization of large data sets collected by use of laser Doppler velocimetry has presented a challenge to researchers using this technique to investigate complex flow fields. This paper describes an automated procedure for analysis and animation of two- and three-dimensional laser Doppler velocimetry data. The procedure consists of a suite of FORTRAN programs for calculating phase window averages of velocity and the Reynolds stress tensor, calculating the principal normal stresses, maximum shear stresses, and preparation of data files for input into Plot-3D compatible data visualization software. An example application of these techniques to data collected from anin vitro investigation of the retrograde flow field associated with a bileaflet mechanical heart valve is also presented.  相似文献   

8.
Moving nuclei, in contrast to stationary nuclei, experience a phase shift in the presence of a balanced gradient. Monitoring of this phase shift can be used to measure the flow velocity of moving nuclei. A specific scan sequence for blood flow imaging is presented. This sequence uses multiple echoes as well as a phase contrast approach to generate both conventional anatomical images and blood flow images from the same data. Images of a phantom and a human volunteer demonstrating the accuracy of the method are presented.  相似文献   

9.

In cardiology, magnetic resonance imaging (MRI) provides a clinical standard for measuring ventricular volumes. Owing to their reliability, volumetric measurements with cardiac MRI have become an essential tool for quantitative assessment of ventricular function. However, as volumetric indices are indirectly related to myocardial motion that drives ventricular filling and ejection, cardiac MRI cannot provide comprehensive evaluation of ventricular performance. To overcome this limitation, the presented work sought to measure ventricular wall motion directly with optical flow analysis of real-time cardiac MRI. By modeling left ventricle (LV) walls in real-time images based on myocardial architecture, we developed an optical flow approach to analyzing LV radial and circumferential wall motion for improved quantitative assessment of ventricular function. For proof-of-concept, a cardiac MRI study was conducted with healthy volunteers and heart failure (HF) patients. It was found that, as real-time images provided sufficient temporal information for correlation analysis between different LV wall motion velocity components, optical flow assessment detected the difference of ventricular performance between the HF patients and the healthy volunteers more effectively than volumetric measurements. We expect that this model-based optical flow assessment with real-time cardiac MRI would offer intricate analysis of ventricular function beyond conventional volumetric measurements.

  相似文献   

10.
Quantitative susceptibility mapping (QSM) has the potential for being a biomarker for various diseases because of its ability to measure tissue susceptibility related to iron deposition, myelin, and hemorrhage from the phase signal of a T2*-weighted MRI. Despite its promise as a quantitative marker, QSM is faced with many challenges, including its dependence on preprocessing of the raw phase data, the relatively weak tissue signal, and the inherently ill posed relationship between the magnetic dipole and measured phase. The goal of this study was to evaluate the effects of background field removal and dipole inversion algorithms on noise characteristics, image uniformity, and structural contrast for cerebral microbleed (CMB) quantification at both 3T and 7T. We selected four widely used background phase removal and five dipole field inversion algorithms for QSM and applied them to volunteers and patients with CMBs, who were scanned at two different field strengths, with ground truth QSM reference calculated using multiple orientation scans. 7T MRI provided QSM images with lower noise than did 3T MRI. QSIP and VSHARP + iLSQR achieved the highest white matter homogeneity and vein contrast, with QSIP also providing the highest CMB contrast. Compared with ground truth COSMOS QSM images, overall good correlations between susceptibility values of dipole inversion algorithms and the COSMOS reference were observed in basal ganglia regions, with VSHARP + iLSQR achieving the susceptibility values most similar to COSMOS across all regions. This study can provide guidance for selecting the most appropriate QSM processing pipeline based on the application of interest and scanner field strength.  相似文献   

11.
The purpose of this work was to develop an acquisition and reconstruction technique for two‐ and three‐directional (2d and 3d) phase‐contrast flow MRI in real time. A previous real‐time MRI technique for one‐directional (1d) through‐plane flow was extended to 2d and 3d flow MRI by introducing in‐plane flow sensitivity. The method employs highly undersampled radial FLASH sequences with sequential acquisitions of two or three flow‐encoding datasets and one flow‐compensated dataset. Echo times are minimized by merging the waveforms of flow‐encoding and radial imaging gradients. For each velocity direction individually, model‐based reconstructions by regularized nonlinear inversion jointly estimate an anatomical image, a set of coil sensitivities and a phase‐contrast velocity map directly. The reconstructions take advantage of a dynamic phase reference obtained by interpolating consecutive flow‐compensated acquisitions. Validations include pulsatile flow phantoms as well as in vivo studies of the human aorta at 3 T. The proposed method offers cross‐sectional 2d and 3d flow MRI of the human aortic arch at 53 and 67 ms resolution, respectively, without ECG synchronization and during free breathing. The in‐plane resolution was 1.5 × 1.5 mm2 and the slice thickness 6 mm. In conclusion, real‐time multi‐directional flow MRI offers new opportunities to study complex human blood flow without the risk of combining differential phase (i.e., velocity) information from multiple heartbeats as for ECG‐gated data. The method would benefit from a further reduction of acquisition time and accelerated computing to allow for extended clinical trials.  相似文献   

12.
 The Jyros (JR) and the Advancing The Standard (ATS) valves were compared with the St. Jude Medical (SJM) valve in the mitral position to study the effects of design differences, installed valve orientation to the flow, and closing sounds using particle tracking velocimetry and particle image velocimetry methods utilizing a high-speed video flow visualization technique to map the velocity field. Sound measurements were made to confirm the claims of the manufacturers. Based on the experimental data, the following general conclusions can be made: On the vertical measuring plane which passes through the centers of the aortic and the mitral valves, the SJM valve shows a distinct circulatory flow pattern when the valve is installed in the antianatomical orientation; the SJM valve maintains the flow through the central orifice quite well; the newer curved leaflet JR valve and the ATS valve, which does not fully open during the peak flow phase, generates a higher but divergent flow close to the valve location when the valve was installed anatomically. The antianatomically installed JR valve showed diverse and less distinctive flow patterns and slower velocity on the central measuring plane than the SJM valve did, with noticeably lower valve closing noise. On the velocity field directly below the mitral valve that is normal to the previous measuring plane, the three valves show symmetrical twin circulations due to the divergent nature of the flow generated by the two inclined half discs; the SJM valve with centrally downward circulation is contrasted by the two other valves with peripherally downward circulation. These differences may have an important role in generation of the valve closing sound. Received: October 3, 2002 / Accepted: March 18, 2003  相似文献   

13.
The purpose of this work is to develop an automatic method for the scaling of unknowns in model‐based nonlinear inverse reconstructions and to evaluate its application to real‐time phase‐contrast (RT‐PC) flow magnetic resonance imaging (MRI). Model‐based MRI reconstructions of parametric maps which describe a physical or physiological function require the solution of a nonlinear inverse problem, because the list of unknowns in the extended MRI signal equation comprises multiple functional parameters and all coil sensitivity profiles. Iterative solutions therefore rely on an appropriate scaling of unknowns to numerically balance partial derivatives and regularization terms. The scaling of unknowns emerges as a self‐adjoint and positive‐definite matrix which is expressible by its maximal eigenvalue and solved by power iterations. The proposed method is applied to RT‐PC flow MRI based on highly undersampled acquisitions. Experimental validations include numerical phantoms providing ground truth and a wide range of human studies in the ascending aorta, carotid arteries, deep veins during muscular exercise and cerebrospinal fluid during deep respiration. For RT‐PC flow MRI, model‐based reconstructions with automatic scaling not only offer velocity maps with high spatiotemporal acuity and much reduced phase noise, but also ensure fast convergence as well as accurate and precise velocities for all conditions tested, i.e. for different velocity ranges, vessel sizes and the simultaneous presence of signals with velocity aliasing. In summary, the proposed automatic scaling of unknowns in model‐based MRI reconstructions yields quantitatively reliable velocities for RT‐PC flow MRI in various experimental scenarios.  相似文献   

14.
This study investigates turbulent flow, based on high Reynolds number, downstream of a prosthetic heart valve using both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Until now, LDV has been the more commonly used tool in investigating the flow characteristics associated with mechanical heart valves. The LDV technique allows point by point velocity measurements and provides enough statistical information to quantify turbulent structure. The main drawback of this technique is the time consuming nature of the data acquisition process in order to assess an entire flow field area. Another technique now used in fluid dynamics studies is the PIV measurement technique. This technique allows spatial and temporal measurement of the entire flow field. Using this technique, the instantaneous and average velocity flow fields can be investigated for different positions. This paper presents a comparison of PIV two-dimensional measurements to LDV measurements, performed under steady flow conditions, for a measurement plane parallel to the leaflets of a St. Jude Medical (SJM) bileaflet valve. Comparisons of mean velocity obtained by the two techniques are in good agreement except for where there is instability in the flow. For second moment quantities the comparisons were less agreeable. This suggests that the PIV technique has sufficient temporal and spatial resolution to estimate mean velocity depending on the degree of instability in the flow and also provides sufficient images needed to duplicate mean flow but not for higher moment turbulence quantities such as maximum turbulent shear stress. © 2000 Biomedical Engineering Society. PAC00: 8719Uv, 4262Be, 8780-y  相似文献   

15.
Since lung diseases adversely affect airflow during breathing, they must also alter normal lung motion, which can be exploited to detect these diseases. However, standard imaging techniques such as CT and MRI imaging during breath-holds provide little or no information on lung motion and cannot detect diseases that cause subtle changes in lung structure. Phase-contrast X-ray imaging provides images of high contrast and spatial resolution with temporal resolutions that allow multiple images to be acquired throughout the respiratory cycle. Using X-ray phase-contrast imaging, coupled with velocimetry, we have measured lung tissue movement and determined velocity fields that define speed and direction of regional lung motion throughout a breath in normal Balb/c nude male mice and mice exposed to bleomycin. Regional maps of lung tissue motion reveal both the heterogeneity of normal lung motion, as well as abnormal motion induced by bleomycin treatment. Analysed histologically, bleomycin treatment caused pathological changes in lung structure that were heterogenous, occupying less than 12% of the lung at 6 days after treatment. Moreover, plethysmography failed to detect significant changes in compliance at either 36 h or 6 days after treatment. Detailed analysis of the vector fields demonstrated major differences (p < 0.001) in regional lung motion between control and bleomycin-treated mice at both 36 h and 6 days after treatment. The results of this study demonstrate that X-ray phase-contrast imaging, coupled with velocimetry, can detect early stage, subtle and non-uniform lung disease.  相似文献   

16.
The aim of this study was to implement and evaluate an accelerated three‐dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k‐space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k‐space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low‐dimensional structural self‐learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two‐dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland–Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm3, foot–head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k‐space sampling sequence using LOST reconstruction allows a seven‐fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Dynamic particle image velocimetry (PIV) was applied to the study of the flow field associated with prosthetic heart valves. The results were compared with those of laser Doppler anemometry (LDA). Anatomically and antianatomically oriented Jyros (JR) and St. Jude Medical (SJM) valves were compared in the mitral position to study the effects of valve design on the downstream flow field. The experimental program used a dynamic PIV system utilizing high-speed, high-resolution video to map the true time-resolved velocity field inside the simulated ventricle. This system was complemented by a study using the more traditional LDA system for comparison. Based on the experimental data, the following general conclusions can be made. High-resolution dynamic PIV can capture true chronological changes in the velocity and turbulence fields. It also produces very detailed velocity and turbulence information comparable to the LDA results. In the vertical measuring plane that passes both the center of the aortic and mitral valves (A-A section), the two valves (the SJM and the JR) show distinct circulatory flow patterns when the valve is installed in the antianatomical orientation. Small differences in valve design can generate noticeable differences, particularly during the accelerating flow phase. The SJM valve maintains a relatively high velocity through the central orifice; the curved leaflets of the JR valve generate higher velocities with a divergent flow during the accelerating and peak flow phases. In the velocity field directly below the mitral valve and normal to the previous measuring plane (B-B section), where characteristic differences in valve design will be visible, symmetrical twin circulations were observed because of the divergent nature of the flow generated by the two inclined half-disks installed in the antianatomical orientation. The SJM valve, with a central downward flow near the valve, is contrasted with the JR valve, which has a peripheral downward circulation with higher, turbulent stresses.  相似文献   

18.
A quantitative flow measurement method that utilizes a sequence of photoacoustic images is described. The method is based on the use of gold nanorods as a contrast agent for photoacoustic imaging. The peak optical absorption wavelength of a gold nanorod depends on its aspect ratio, which can be altered by laser irradiation (we establish a wash-in flow estimation method of this process). The concentration of nanorods with a particular aspect ratio inside a region of interest is affected by both laser-induced shape changes and replenishment of nanorods at a rate determined by the flow velocity. In this study, the concentration is monitored using a custom-designed, high-frame-rate photoacoustic imaging system. This imaging system consists of fiber bundles for wide area laser irradiation, a laser ultrasonic transducer array, and an ultrasound front-end subsystem that allows acoustic data to be acquired simultaneously from 64 transducer elements. Currently, the frame rate of this system is limited by the pulse-repetition frequency of the laser (i.e., 15 Hz). With this system, experimental results from a chicken breast tissue show that flow velocities from 0.125 to 2 mms can be measured with an average error of 31.3%.  相似文献   

19.
The aim of this work was to develop and evaluate a fast phase contrast magnetic resonance imaging (PC‐MRI) technique with hybrid one‐ and two‐sided flow encodings only (HOTFEO) for accurate blood flow and velocity measurements of three‐directional velocity encoding PC‐MRI. Four‐dimensional (4D) PC‐MRI acquires flow‐compensated (FC) and three‐directional flow‐encoded (FE) echoes in an interleaved fashion. We hypothesize that the blood flow velocity direction (not magnitude) has minimal change between two consecutive cardiac phases. This assumption provides a velocity direction constraint that can achieve 4/3‐fold acceleration using three‐directional FE data to calculate FC data instead of acquiring them. The HOTFEO acquisition pattern can address the ill‐conditioned constraint and improve the calculation accuracy. HOTFEO was evaluated in healthy volunteers and compared with conventional two‐dimensional (2D) and 4D flow imaging techniques with FC and three‐directional FE acquisitions (FC/3FE). Compared with FC/3FE, Bland–Altman tests showed that the 4/3‐fold accelerated HOTFEO technique resulted in relatively small bias error for total volumetric flow (0.89% for prospective 2D data, –1.19% for retrospective 4D data and –3.40% for prospective 4D data) and maximum peak velocity (0.50% for prospective 2D data, –0.17% for retrospective 4D data and –2.00% for prospective 4D data) measurements in common carotid arteries. HOTFEO can accelerate three‐directional velocity encoding PC‐MRI whilst maintaining the measurement accuracy of the total volumetric flow and maximum peak velocity.  相似文献   

20.
The use of three-dimensional imaging methodologies in new applications in the orthopaedic field has introduced a need for high accuracy, in addition to a correct diagnosis. The aim of this study was to quantify the absolute dimensional errors between models reconstructed from computed tomography and magnetic resonance images compared to a ground truth for various regions of the bone. Clinical CT and MRI scans were acquired from nine lower leg cadavers and the bones were subsequently cleaned from soft tissues. 3D models of the tibia were created from the segmented CT and MRI images and compared to optical scans of the cleaned bones (considered as ground truth). The 3D reconstruction using CT images resulted in an RMS error of 0.55 mm, corresponding to an overestimated CT bone model compared to the cleaned bone. MR imaging resulted in an RMS error of 0.56 mm; however, the MRI bone model was on average a small underestimation of the cleaned bone. Different regions of the bones were analysed, indicating a difference in accuracy between diaphysis and epiphysis. This study demonstrates a high accuracy for both CT and MRI imaging, supporting the feasibility of using MRI technology for the 3D reconstruction of bones in medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号