首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PDE4 inhibitors in COPD--a more selective approach to treatment   总被引:5,自引:0,他引:5  
Chronic obstructive pulmonary disease (COPD) is a serious and mounting global public health problem. Although its pathogenesis is incompletely understood, chronic inflammation plays an important part and so new therapies with a novel anti-inflammatory mechanism of action may be of benefit in the treatment of COPD. Cilomilast and roflumilast are potent and selective phosphodiesterase (PDE)4 inhibitors, with an improved therapeutic index compared with the weak, non-selective PDE inhibitor, theophylline. Unlike theophylline, which is limited by poor efficacy and an unfavourable safety and tolerability profile, the selective PDE4 inhibitors are generally well tolerated, with demonstrated efficacy in improving lung function, decreasing the rate of exacerbations and improving quality of life, with proven anti-inflammatory effects in patients with COPD. Theophylline is a difficult drug to use clinically, requiring careful titration and routine plasma monitoring due to the risk of toxic side effects, such as cardiovascular and central nervous system adverse events, with dose adjustments required in many patients, including smokers, the elderly and some patients on concomitant medications. In contrast, the selective PDE4 inhibitors are convenient medications for both patient and physician alike. Hence these agents represent a therapeutic advance in the treatment of COPD, due to their novel mechanism of action and potent anti-inflammatory effects, coupled with a good safety and tolerability profile.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD), which is increasing in prevalence and a leading cause of death worldwide, is characterised by an 'abnormal' inflammatory response. There is a predominance of CD8(+) T cells, CD68(+) macrophages and, in exacerbations-neutrophils, in both conducting airways and lung parenchyma. Smoking is the most common etiological factor leading to COPD and smoking cessation is the most effective approach to the management of COPD, but it does not resolve the underlying inflammation of COPD, which persists, even in ex-smokers. The presence of mucosal inflammation serves as the rationale for anti-inflammatory therapy. However, while there are reductions in the numbers of mast cells following treatment with inhaled steroids, CD8(+), CD68(+) cells and neutrophils are refractory to such treatment, highlighting a need for additional, more targeted interventions. Phosphodiesterase 4 (PDE4) inhibitors are a promising and novel drug class that have potent activity against several key components of the inflammatory process in COPD. A recently published study has shown that the selective PDE4 inhibitor, cilomilast, reduces the numbers of bronchial mucosal CD8(+) and CD68(+) cells and neutrophils. This review focuses on the nature of the inflammation in COPD and considers how selective PDE4 inhibitors may optimize and advance our treatment of this chronic condition.  相似文献   

3.
While the pathogenesis of chronic obstructive pulmonary disease (COPD) is incompletely understood, chronic inflammation is a major factor. In fact, the inflammatory response is abnormal, with CD8+ T-cells, CD68+ macrophages, and neutrophils predominating in the conducting airways, lung parenchyma, and pulmonary vasculature. Elevated levels of the second messenger cAMP can inhibit some inflammatory processes. Theophylline has long been used in treating asthma; it causes bronchodilation by inhibiting cyclic nucleotide phosphodiesterase (PDE), which inactivates cAMP. By inhibiting PDE, theophylline increases cAMP, inhibiting inflammation and relaxing airway smooth muscle. Rather than one PDE, there are now known to be more than 50, with differing activities, substrate preferences, and tissue distributions. Thus, the possibility exists of selectively inhibiting only the enzyme(s) in the tissue(s) of interest. PDE 4 is the primary cAMP-hydrolyzing enzyme in inflammatory and immune cells (macrophages, eosinophils, neutrophils). Inhibiting PDE 4 in these cells leads to increased cAMP levels, down-regulating the inflammatory response. Because PDE 4 is also expressed in airway smooth muscle and, in vitro, PDE 4 inhibitors relax lung smooth muscle, selective PDE 4 inhibitors are being developed for treating COPD. Clinical studies have been conducted with PDE 4 inhibitors; this review concerns those reported to date.  相似文献   

4.
Chronic obstructive pulmonary disease is characterized by a rapid decline in lung function due to small airway fibrosis, mucus hypersecretion and emphysema. The major causative factor for COPD is cigarette smoking that drives an inflammatory process that gives rise to leukocyte recruitment, imbalance in protease levels and consequently matrix remodeling resulting in small airway fibrosis and loss of alveolar tissue. Current drug treatment improves symptoms but do not alter the underlying progression of this disease. The failure of anti-inflammatory drugs like glucocorticosteroids to have a major impact in this disease has hastened the need to develop novel therapeutic strategies. Phosphodiesterase (PDE)4 inhibitors are novel anti-inflammatory drugs that have recently been show to document clinical efficacy in this disease, although their utility is hampered by class related side-effects of nausea, emesis and diarrhea. Whilst it is not yet clear whether such drugs will prevent emphysema, this is a distinct possibility provided experimental observations from preclinical studies translate to man. This review will discuss the current standing of PDE4 inhibitors like roflumilast as novel treatments for COPD and the potential for developing nonemetic anti-inflammatory drugs.  相似文献   

5.
Rodríguez-Roisin R 《COPD》2005,2(2):253-262
The pathophysiology of chronic obstructive pulmonary disease (COPD) is complex and can be attributed to multiple components: mucociliary dysfunction, airway inflammation and structural changes, all contributing to the development of airflow limitation, as well as an important systemic component. Current pharmacotherapies vary in their ability to address the underlying multi-component nature of COPD. Long-acting anticholinergics and long-acting beta2-agonists (LABAs) can both provide effective and convenient bronchodilation in moderate COPD (Stage II-GOLD) and are recommended as regular therapy in global treatment guidelines. However, there is evidence to suggest that LABAs can mediate additional benefits independent of their bronchodilatory effects and may help address the multi-component nature of COPD. Effects on mucociliary dysfunction and reduced bacterial-induced damage have been experimentally proven with LABAs, and anti-inflammatory activity and structural effects have also been suggested. The use of inhaled corticosteroids (ICSs) is now recommended for the treatment of COPD patients with frequent exacerbations. In addition, ICSs provide a range of anti-inflammatory effects in COPD and thus have effects that are complementary to those of LABAs. Recent data indicate that LABA/ICS combinations produce wide-ranging clinical benefits that are greater than with either agent alone. Other new strategies include selective phosphodiesterase 4 (PDE4) inhibitors, which in addition to anti-inflammatory activity, have been shown to provide bronchodilation in COPD. In summary, the potential to address the multicomponent nature of COPD with strategies such as LABA/ICS combination therapy, and the development of new treatments directed at novel targets means that the future for sufferers of COPD can be more optimistic.  相似文献   

6.
Lipworth BJ 《Lancet》2005,365(9454):167-175
Inhibitors of phosphodiesterase type 4 (PDE4) act by increasing intracellular concentrations of cyclic AMP, which has a broad range of anti-inflammatory effects on various key effector cells involved in asthma and chronic obstructive pulmonary disease (COPD). The therapeutic ratio for PDE4 inhibitors is thought to be determined by selectivity on receptor subtypes for relative effects on PDE4B (anti-inflammatory) and PDE4D (emesis). The two main orally active PDE4 inhibitors in the late phase III of clinical development are cilomilast and roflumilast; the latter (and its active metabolite N-oxide) is more selective and potent with a superior therapeutic ratio. Studies on cilomilast in COPD based on bronchial biopsy material have shown a broad range of anti-inflammatory activity, and the available evidence on clinical outcomes for up to 6 months with cilomilast 15 mg twice daily and roflumilast 500 mug once daily have shown variable but significant effects on exacerbations and quality of life, with small improvements in measures of pulmonary function. Roflumilast has a better safety and tolerability profile than cilomilast, with the main adverse effects being nausea, diarrhoea, and abdominal pain. Roflumilast also has activity in asthma as assessed by its attenuation of allergen and exercise challenges, and it shows clinical efficacy equivalent to that of beclomethasone dipropionate 400 mug daily. The emerging results of clinical trials on PDE4 inhibitors in asthma and COPD should be interpreted with cautious optimism since much of the evidence has been published only in abstract form to date. The next few years should resolve important issues about the potential role of these drugs as oral non-steroidal anti-inflammatory therapy for asthma and COPD and their place in management guidelines. Ultimately, clinicians will want to know whether PDE4 inhibitors are anything more than expensive "designer" theophylline, the archetypal non-selective phosphodiesterase inhibitor.  相似文献   

7.
After more than two decades of research into phosphodiesterase 4 (PDE4) inhibitors, roflumilast (3-cyclopropylmethoxy-4-difluoromethoxy-N-[3,5-di-chloropyrid-4-yl]-benzamide) may become the first agent in this class to be approved for patient treatment worldwide. Within the PDE family of 11 known isoenzymes, roflumilast is selective for PDE4, showing balanced selectivity for subtypes A–D, and is of high subnanomolar potency. The active principle of roflumilast in man is its dichloropyridyl N-oxide metabolite, which has similar potency as a PDE4 inhibitor as the parent compound. The long half-life and high potency of this metabolite allows for once-daily, oral administration of a single, 500-μg tablet of roflumilast.The molecular mode of action of roflumilast – PDE4 inhibition and subsequent enhancement of cAMP levels – is well established. To further understand its functional mode of action in chronic obstructive pulmonary disease (COPD), for which roflumilast is being developed, a series of in vitro and in vivo preclinical studies has been performed.COPD is a progressive, devastating condition of the lung associated with an abnormal inflammatory response to noxious particles and gases, particularly tobacco smoke. In addition, according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD), significant extrapulmonary effects, including comorbidities, may add to the severity of the disease in individual patients, and which may be addressed preferentially by orally administered remedies. COPD shows an increasing prevalence and mortality, and its treatment remains a high, unmet medical need.In vivo, roflumilast mitigates key COPD-related disease mechanisms such as tobacco smoke-induced lung inflammation, mucociliary malfunction, lung fibrotic and emphysematous remodelling, oxidative stress, pulmonary vascular remodelling and pulmonary hypertension. In vitro, roflumilast N-oxide has been demonstrated to affect the functions of many cell types, including neutrophils, monocytes/macrophages, CD4+ and CD8+ T-cells, endothelial cells, epithelial cells, smooth muscle cells and fibroblasts. These cellular effects are thought to be responsible for the beneficial effects of roflumilast on the disease mechanisms of COPD, which translate into reduced exacerbations and improved lung function. As a multicomponent disease, COPD requires a broad therapeutic approach that might be achieved by PDE4 inhibition. However, as a PDE4 inhibitor, roflumilast is not a direct bronchodilator.In summary, roflumilast may be the first-in-class PDE4 inhibitor for COPD therapy. In addition to being a non-steroid, anti-inflammatory drug designed to target pulmonary inflammation, the preclinical pharmacology described in this review points to a broad functional mode of action of roflumilast that putatively addresses additional COPD mechanisms. This enables roflumilast to offer effective, oral maintenance treatment for COPD, with an acceptable tolerability profile and the potential to favourably affect the extrapulmonary effects of the disease.  相似文献   

8.
磷酸二酯酶(PDE)存在于许多炎症细胞及结构细胞中,目前已发现11种.PDE抑制剂主要抑制体内环磷酸腺苷(cAMP)及环磷酸鸟苷(cGMP)水解,使细胞内cAMP及cGMP浓度增加,引起一系列生理功能,如平滑肌舒张、减轻细胞炎症及免疫反应等.PDE4特异性水解cAMP,选择性PDE4抑制剂具有广泛抗炎作用,如抑制细胞趋化,抑制中性粒细胞、嗜酸粒细胞、巨噬细胞及T细胞细胞因子及化学趋化物质释放.第二代PDE4抑制剂Cilomilast和Roflumilast已进入临床实验阶段,并已证实对支气管哮喘(简称哮喘)及慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)有效.由于胃肠道副作用,这类药物临床应用受到一定限制.PDE5可特异性水解cGMP,对缺氧性肺动脉高压和血管重塑有效.PDE3和PDE7特异性水解cAMP,PDE7参与T细胞激活.目前其他PDE抑制剂与PDE4抑制剂混合制剂正在研发中.PDE4-PDE7双重抑制剂可能对哮喘及COPD更有效.PDE3-PDE4双重抑制剂具有更强的支气管舒张作用及气道保护作用.  相似文献   

9.
《COPD》2013,10(2):253-262
The pathophysiology of chronic obstructive pulmonary disease (COPD) is complex and can be attributed to multiple components: mucociliary dysfunction, airway inflammation and structural changes, all contributing to the development of airflow limitation, as well as an important systemic component. Current pharmacotherapies vary in their ability to address the underlying multi-component nature of COPD. Long-acting anticholinergics and long-acting β2-agonists (LABAs) can both provide effective and convenient bronchodilation in moderate COPD (Stage II–GOLD) and are recommended as regular therapy in global treatment guidelines. However, there is evidence to suggest that LABAs can mediate additional benefits independent of their bronchodilatory effects and may help address the multi-component nature of COPD. Effects on mucociliary dysfunction and reduced bacterial-induced damage have been experimentally proven with LABAs, and anti-inflammatory activity and structural effects have also been suggested. The use of inhaled corticosteroids (ICSs) is now recommended for the treatment of COPD patients with frequent exacerbations. In addition, ICSs provide a range of anti-inflammatory effects in COPD and thus have effects that are complementary to those of LABAs. Recent data indicate that LABA/ICS combinations produce wide-ranging clinical benefits that are greater than with either agent alone. Other new strategies include selective phosphodiesterase 4 (PDE4) inhibitors, which in addition to anti-inflammatory activity, have been shown to provide bronchodilation in COPD. In summary, the potential to address the multicomponent nature of COPD with strategies such as LABA/ICS combination therapy, and the development of new treatments directed at novel targets means that the future for sufferers of COPD can be more optimistic.  相似文献   

10.
COPD: current therapeutic interventions and future approaches.   总被引:14,自引:0,他引:14  
Although long-acting bronchodilators have been an important advance for the management of chronic obstructive pulmonary disease (COPD), these drugs do not deal with the underlying inflammatory process. No currently available treatments reduce the progression of COPD or suppress the inflammation in small airways and lung parenchyma. Several new treatments that target the inflammatory process are now in clinical development. Some therapies, such as chemokine antagonists, are directed against the influx of inflammatory cells into the airways and lung parenchyma that occurs in COPD, whereas others target inflammatory cytokines such as tumour necrosis factor-alpha. Broad spectrum anti-inflammatory drugs are now in phase III development for COPD, and include phosphodiesterase-4 inhibitors. Other drugs that inhibit cell signalling include inhibitors of p38 mitogen-activated protein kinase, nuclear factor-kappaB and phosphoinositide-3 kinase-gamma. More specific approaches are to give antioxidants, inhibitors of inducible nitric oxide synthase and leukotriene B(4) antagonists. Other treatments have the potential to combat mucus hypersecretion, and there is also a search for serine proteinase and matrix metalloproteinase inhibitors to prevent lung destruction and the development of emphysema. More research is needed to understand the cellular and molecular mechanisms of chronic obstructive pulmonary disease and to develop biomarkers and monitoring techniques to aid the development of new therapies.  相似文献   

11.
Chronic obstructive pulmonary disease (COPD) is a global health problem. Being a progressive disease characterized by inflammation and predominantly caused by tobacco smoking, it deteriorates pulmonary and skeletal muscle functioning, and reduces physical behavior, societal participation and quality of life. During the last two decades studies were focused on the airway and systemic inflammation, oxidative stress, and airway and/or parenchymal remodeling. Macrophages, neutrophils and T cells are thought to be important key players, as well as structural cells like fibroblasts, epithelial, endothelial and smooth muscle cells. Mediators and proteins including cytokines, chemokines, growth factors, proteinases, and oxidants seem to be involved differentially in its pathogenesis. Current pharmacological treatments are directed to reducing airway inflammation, boosting the endogenous levels of anti-oxidants and relieving airway contraction and sputum production. Most agents were primarily used for treating asthma. But in contrast to asthma, these treatments are not very effective in COPD. As a result, novel more specifically acting interventional drugs with less side effects are being developed to treat chronic inflammatory diseases, including COPD. This review highlights studies on novel or potential drug antioxidants such as dietary antioxidants supplementation, N-acetyl-L-cysteine, N-acystelyn, endosteine, antioxidant enzyme mimetics, and anti-inflammatory agents like antagonists of cytokines, such as tumor necrosis factor (TNF)-α, CXCL8, and CCL2, and inhibitors of signal transduction proteins including phosphodiesterase 4, MAPK p38, Pl-3k, and NFκB.  相似文献   

12.
隆玄  周敬  李善群 《国际呼吸杂志》2011,31(17):1328-1332
香烟烟雾等有害气体或有害颗粒可导致异常肺部炎症反应,是影响慢性阻塞性肺疾病发生、发展及预后的重要危险因素。慢性阻塞性肺疾病患病率和病死率均较高,且有逐年增加的趋势,其药物治疗主要包括支气管舒张剂、糖皮质激素、祛痰药以及抗炎药如抗生素、磷酸二酯酶4抑制剂等。目前研究发现,吸烟能影响这些药物的治疗效果,本文对相关研究进行综...  相似文献   

13.
Chronic obstructive pulmonary disease (COPD) is a common, progressive respiratory disease that causes great morbidity and mortality despite treatment. Tumor necrosis factor alpha (TNF-alpha) plays a central role as a pro-inflammatory cytokine in COPD. TNF-alpha release is markedly inhibited by phosphodiesterase type 4 (PDE4) inhibitors that have proven efficacious in COPD clinical trials. The aim of this study was to compare the in vitro activities of the novel selective PDE4 inhibitors CI-1044 compared to well-known PDE4 inhibitors, rolipram and cilomilast, and to the glucocorticoid dexamethasone at reducing lipopolysaccharide (LPS)-induced TNF-alpha release in whole blood from COPD patients and healthy subjects. In the whole blood from COPD patients pre-incubation with PDE4 inhibitors or dexamethasone resulted in a dose-dependent inhibition of LPS-induced TNF-alpha release with IC(50) values of 1.3+/-0.7, 2.8+/-0.9 microM, higher to 10 microM and lesser than 0.03 microM for CI-1044, rolipram, cilomilast and dexamethasone, respectively. We observed a similar inhibition in the whole blood from healthy volunteers with, however, higher IC(50) values. These results indicate that CI-1044 inhibits in vitro LPS-induced TNF-alpha release in whole blood from COPD patients better than rolipram and cilomilast and suggested that it could be a useful anti-inflammatory therapy in COPD.  相似文献   

14.
Phosphodiesterase 4 (PDE4) is a member of the growing family cyclic AMP and cyclic GMP. Earliest described inhibitors of PDE4, such as rolipram, demonstrate marked anti-inflammatory and bronchodilatory effects in vitro and in vivo. The clinical utility of these earlier compounds was limited by their propensity to elicit gastrointestinal side effects. This has led to an extensive effort to identify novel PDE4 inhibitors that maintain the anti-inflammatory activity and bronchodilatory activity of rolipram but with a reduced potential to produce side effects. This article summarizes the evidence supporting the utility of selective PDE4 inhibitors in the treatment of asthma and chronic obstructive pulmonary disease, discusses the recent results obtained in clinical trials with second-generation inhibitors, and presents two approaches designed to identify additional novel selective PDE4 inhibitors.  相似文献   

15.
In asthma and chronic obstructive pulmonary disease (COPD), the number of eosinophils and neutrophils in the lung is increased. One described mechanism leading to the impaired clearance of these cells from the lung is the delay in their programmed cell death (apoptosis). Selective inhibitors of phosphodiesterases (PDEs) are under development for the treatment of lung diseases because of their anti-inflammatory and bronchodilator activity. The aim of the present study was to establish whether inhibitors of PDE3, PDE4 and PDE5 modulate human eosinophil or neutrophil apoptosis or beta 2-adrenoceptor agonist- or cytokine-afforded survival. We also evaluated whether a PDE4 inhibitor could modulate the effect of a corticosteroid on eosinophil and neutrophil apoptosis. Apoptosis was measured by using the relative DNA fragmentation assay and Annexin-V binding. Inhibitors of PDE4 (rolipram; 0.1-10 microM) and PDE3 (cilostazol; 0.1-10 microM) delayed spontaneous eosinophil apoptosis maximally by 25% and 15%, respectively. A combination of a PDE4 or PDE3 inhibitor (10 microM) with salbutamol (100 nM) further delayed eosinophil apoptosis maximally by 42-49%. In neutrophils, rolipram (10 microM) also decreased apoptosis with a maximal inhibition of 13%. The combination of rolipram (10 microM) and salbutamol (100 nM) produced a 27% inhibition of neutrophil apoptosis. Inhibitor of cGMP-specific PDE5 (zaprinast; 0.1-10 microM) did not affect eosinophil apoptosis and only slightly increased spontaneous neutrophil apoptosis. The effect of budesonide on apoptosis was not significantly modulated by a PDE4 inhibitor in eosinophils or neutrophils. The present results show that selective inhibitors of cAMP-hydrolyzing PDEs (PDE3 and PDE4) delay eosinophil apoptosis and, thus, increase their survival in vitro. Furthermore, beta 2-adrenoceptor agonists enhance the anti-apoptotic effects of PDE3 and PDE4 inhibitors, suggesting that such drug combinations may prolong eosinophil and neutrophil longevity in the lung.  相似文献   

16.
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease characterized by airflow limitation and chronic inflammation in the lungs. The mainstay of drug therapy for COPD is represented by long-acting bronchodilators, an important aspect of Novartis' development program. Novel once-daily dosing bronchodilators, such as the long-acting muscarinic antagonist (LAMA) glycopyrronium and the LAMA/long-acting β2-agonist (LABA) fixed-dose combination QVA149, have been shown to provide significant benefits to patients with COPD in terms of improvement in lung function, exercise tolerance, health-related quality of life, symptoms and reduction in the rate of exacerbations. Despite the benefits provided by these new treatment options, prevention of disease progression and control of exacerbations in certain patient phenotypes remain key challenges in the treatment of COPD. In order to address these needs and gain new insights into the complexity of COPD, Novartis is, in addition to bronchodilator-only therapies, developing LABA/inhaled corticosteroids (ICS) combinations to target inflammation, such as QMF149, as well as non-steroid based anti-inflammatory agents against key novel targets. These commitments are central to the Novartis' final goal of improving the standard of care in respiratory medicine and offering a better quality of life to patients with COPD.  相似文献   

17.
Kharitonov SA 《Swiss medical weekly》2004,134(13-14):175-192
Assessing airway inflammation is important for investigating the underlying mechanisms of many lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). Yet these are not measured directly in routine clinical practice because of the difficulties in monitoring inflammation. The presence and type of airway inflammation can be difficult to detect clinically, and may result in delays in initiating appropriate therapy. Non-invasive monitoring may assist in differential diagnosis of lung diseases, assessment of their severity and response to treatment. There is increasing evidence that breath analysis may have an important place in the diagnosis and clinical management of asthma, COPD, primary ciliary dyskinesia (PCD) and other major lung disease. The article reviews whether current noninvasive measurements of exhaled gases, such as nitric oxide (NO), hydrocarbons, inflammatory markers exhaled breath condensate (EBC) are ready for routine use in clinical practice.  相似文献   

18.
Asthma and COPD are two chronic inflammatory disorders of the airway characterized by airflow limitation. While many similarities exist between these two diseases, they are pathologically distinct due to the involvement of different inflammatory cells; predominantly neutrophils, CD8 lymphocytes in COPD and eosinophils and CD4 lymphocytes in asthma. Cigarette smoking is associated with accelerated decline of lung function, increased mortality, and worsening of symptoms in both asthma and COPD. Furthermore, exposure to cigarette smoke can alter the inflammatory mechanisms in asthma to become similar to that seen in COPD with increasing CD8 cells and neutrophils and may therefore alter the response to therapy. Cigarette smoke exposure has been associated with a poor response to inhaled corticosteroids which are recommended as first line anti-inflammatory medications in asthma and as an add-on therapy in patients with severe COPD with history of exacerbations. While the main proposed mechanism for this altered response is the reduction of the histone deacetylase 2 (HDAC2) enzyme system, other possible mechanisms include the overexpression of GR-β, activation of p38 MAPK pathway and increased production of inflammatory cytokines such as IL-2, 4, 8, TNF-α and NF-K?. Few clinical trials suggest that leukotriene modifiers may be an alternative to corticosteroids in smokers with asthma but there are currently no drugs which effectively reduce the progression of inflammation in smokers with COPD. However, several HDAC2 enhancers including low dose theophylline and other potential anti-inflammatory therapies including PDE4 inhibitors and p38 MAPK inhibitors are being evaluated.  相似文献   

19.
肺部慢性非特异性炎症被认为是COPD发生发展的病理基础,淋巴细胞在调节 COPD气道炎症中发挥重要的作用.研究发现,效应T细胞、抑制性 T细胞与耗竭 T细胞三者在 COPD的炎症调节中发挥着不同的正负调节效应,它们分化上互相关联,功能上互相拮抗,一旦发生免疫失衡,可加重气道结构的破坏、加速COPD的进展和恶化.  相似文献   

20.
Barnes PJ  Hansel TT 《Lancet》2004,364(9438):985-996
No currently available treatments have been shown to slow the progression of chronic obstructive pulmonary disease (COPD) or suppress the inflammation in small airways and lung parenchyma. However, several new treatments are in clinical development; some target the inflammatory process and others are directed against structural cells. A group of specific therapies are directed against the influx of inflammatory cells into the airways and lung parenchyma that occurs in COPD; these include agents directed against adhesion molecules and chemokines, as well as therapies to oppose tumour necrosis factor alpha and increase interleukin 10. Broad-range anti-inflammatory drugs are now in phase III development for COPD; they include inhibitors of phosphodiesterase 4. Other drugs that inhibit cell signalling include inhibitors of p38 mitogen-activated protein kinase, nuclear factor kappaB, and phosphoinositide-3-kinase gamma. More specific approaches are to give antioxidants, inhibitors of inducible nitric oxide synthase, and antagonists of leukotriene B4 receptor. Inhibitors of epidermal-growth-factor-receptor kinase and calcium-activated chloride channels have the potential to prevent overproduction of mucus. Therapy to inhibit fibrosis is being developed against transforming growth factor beta1 and protease-activated receptor 2. There is also a search for inhibitors of serine proteinases and matrix metalloproteinases to prevent lung destruction and the development of emphysema, as well as drugs such as retinoids that might even reverse this process. Effective delivery of drugs to the sites of disease in the peripheral lung is an important consideration, and there is a need for validated biomarkers and monitoring techniques in early clinical studies with new therapies for COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号