首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate activation and discharge patterns of central nervous system neurons that regenerate lengthy axons along peripheral nerve grafts we inserted a 4 cm long autologous segment of sciatic nerve into the dorsolateral medulla oblongata of adult rats. Two to 6 months after grafting, the distribution of the cells of origin of the regenerating axons in many nuclei of the brainstem was documented by retrograde horseradish peroxidase labelling from the cut end of the grafts. Functional properties of neurons regenerating axons into the grafts were studied by recording from single regenerated fibers teased from the grafts. Conduction velocities of graft fibers ranged from < 1m/s to 25m/s (30°C). Spontaneous centrifugal impulse traffic in the grafts included units firing in bursts synchronously with the respiratory cycle. Activity in other units was either elicited or inhibited by natural or electrical stimulation of the periphery. Most units recorded in the grafts were neither spontaneously active nor responsive to stimulation of primary afferents. We conclude that: (1) there are central nervous system neurons projecting into the grafts that respond to both excitatory and inhibitory transsynaptic influences; (2) at least some of the spontaneous and induced activity recorded from axons in the grafts resembles that known for normal nerve cells in the regions of the brainstem from which axonal growth arises; and (3) it is possible that many central neurons regenerating axons into peripheral nerve grafts have significantly reduced or altered synaptic inputs.  相似文献   

2.
To analyze the possible influence of nerve growth factor (NGF) on neurofilament synthesis in primary sensory neurons, adjacent cryostat sections of lumbar dorsal root ganglia (DRG) from adult rats were processed for either NGF-receptor radioautography or in situ hybridization with a neurofilament cDNA probe. Labeling by both procedures was quantified with computer assistance for approximately 300 neurons in each of selected ganglia. For uninjured neurons, no correction was detected between NGF binding and neurofilament mRNA, even after infusion of NGF into the lumbar subarachnoid space for 1 week. One or 3 weeks after sciatic nerve transection, neurofilament labeling densities in large DRG neurons were sharply reduced and the normal bimodal pattern in frequency histograms had become unimodal. Intrathecal infusion of NGF counteracted this injury-induced reduction of neurofilament mRNA but only in neurons with high-affinity NGF receptors. To explain the effects of NGF on axotomized neurons and the normal diversity of neurofilament gene expression among neurons with NGF receptors, we postulate that NGF permits NGF-sensitive DRG neurons to respond differentially to a second factor stimulating neurofilament synthesis.  相似文献   

3.
The present study was undertaken to obtain morphologic data about the posterior column of the spinal cord to characterize ascending myelinated axons of primary sensory neurons of the sciatic nerve. By applying doxorubicin to the right sciatic nerve in eight male Wistar rats, selective degeneration of centrally directed axons of these neurons in the posterior column was produced. Epon-embedded transverse sections of the posterior column at spinal cord segments C1, C3, C8, T6, L3 and L5 showed a circumscribed area (R) that contained a cluster of degenerated myelinated fibers. To characterize area R, its size and distances between various defined points on transverse sections of the posterior column were measured and compared at several spinal segments. The location of area R was illustrated in representative rats. The posterior intermediate septum corresponded to the lateral border of area R at C8 and T6. To characterize the putatively degenerating and degenerated myelinated fibers, area L in the left posterior column, corresponding to area R, was defined, and subsequently the number and size distribution of normal-appearing myelinated fibers in areas R and L were evaluated at C3, T6 and L3 in four rats. After comparative evaluation of these data, it was concluded that large myelinated fibers degenerated preferentially in area R. The number of putatively degenerating and degenerated myelinated fibers in area R at segments C3 and T6 was estimated to be 38.6% and 50.1%, respectively, of that at segment L3. Received: 25 August 1995 / Revised, accepted: 25 January 1996  相似文献   

4.
Fifteen-day embryonic rat dorsal root ganglion (DRG) neurons were exposed to 1 to 200 ng/ml nerve growth factor (NFG). Maximal neurite outgrowth was obtained with 10 to 20 ng/ml. Neurite outgrowth was reduced to 89% of maximal by increasing NGF to 50 ng/ml, to 66% by 100 ng/ml, and to 18% by 200 ng/ml NGF. Identical effects were seen with mouse 2.5S NGF and recombinant human NGF. Neuron cell counts demonstrated that significant cell death did not occur. In time course experiments, significant inhibition, compared with control, began within 1 hour of adding 200 ng/ml and 3 hours of adding 50 ng/ml NGF. The inhibitory effect of NGF on neurite outgrowth was reversed within 3 hours when DRG were incubated with 5 ng/ml NGF after treatment with 50 or 200 ng/ml NGF medium for 12 hours. The inhibition demonstrated for neurons did not occur in PC12 cells; axonal growth was not inhibited by up to 1,000 ng/ml NGF. Excess brain-derived neurotrophic factor or neurotrophin-3 did not inhibit neurite outgrowth. We conclude that high concentrations of NGF produces specific and reversible arrest of neurite outgrowth from sensory neurons. This observation has important clinical implications, because these inhibitory concentrations have been exceeded when NGF has been administered into the central nervous system of humans and animals.  相似文献   

5.
This study investigated the effects of exogenous nerve growth factor (NGF) on the survival and differentiation in primary culture of sensory neurons isolated from adult (6 months) and aged (2 years) mice. For neurons prepared from adult mice, a concentration effect was evident during a 2 week culture period: Neuronal counts in cultures supplemented with 25 and 50 ng/ml NGF did not differ significantly from those of control cultures without exogenous NGF or those with anti-NGF included in the culture medium, whereas cultures supplemented with either 100 or 200 ng/ml NGF contained higher numbers of neurons throughout the culture period. Cultures prepared from aged mice contained less neurons than those from adult mice, although those supplemented with 100 ng/ml NGF retained higher neuronal numbers than cultures from aged mice which did not receive exogenous NGF. Neuronal diameters were measured to investigate whether specific subpopulations of neurons were more dependent on NGF; the results indicate that neurons of a medium-larger diameter were more prevalent than cells with a smaller diameter following NGF administration. A shape index was calculated for each culture regimen; with longer culture periods a higher proportion of spindle-shaped neurons was observed. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Ruiz G  Baños JE 《Brain research》2005,1042(1):44-52
Recent findings indicate that calcitonin gene-related peptide (CGRP) is involved in neuropathic pain, this peptide being up-regulated in a small population of large- and medium-sized primary sensory neurons after peripheral nerve injury. In adult animals, the expression of CGRP is regulated by nerve growth factor (NGF). After nerve injury, NGF is up-regulated at the injury site for several weeks, and this up-regulation contributes to the onset of neuropathic pain. Using immunohistochemistry, we investigated the time course of the effect of an endoneurial injection of NGF on the expression of CGRP in primary sensory neurons. NGF increased the percentage of medium- to large-sized DRG neuron profiles expressing CGRP, did not modify the percentage of small-sized neurons expressing CGRP, and increased CGRP expression in the laminae III and IV of the dorsal horn. The effects of NGF were evident as soon as 1 day after endoneurial injection, and lasted for 5 days. Ten days after the injection of NGF, the patterns of CGRP expression in the DRG were normal, whereas a slight decrease in CGRP content was observed in the dorsal horn. The injection of vehicle did not produce any change on CGRP expression in primary sensory neurons. These results suggest that endoneurial NGF is responsible for the increase in CGRP expression in some large-sized neurons and their central processes observed after nerve injury in animal models of neuropathic pain. Our findings contribute to the understanding of the role of NGF in neuropathic pain.  相似文献   

7.
Long-term cultures of dissociated nodose ganglion (NG) and superior cervical ganglion (SCG) neurons from newborn rabbits were used to compare their response to nerve growth factor (7S NGF). SCG neurons required added NGF for their survival and a concentration of 1 μg/ml was found to be optimal. NG neurons, on the other hand, survived well for a long term without addition of NGF, but its application (1 μg/ml) was found to be effective in accelerating the growth of fibers (neurites) and neuronal somata. It is concluded that unlike SCG, NG neurons do not depend on exogenous NGF but may require an intrinsic trophic-like factor which may be contained in the serum of the medium, emanating from glial cells or by metabolic cooperation between neurons.  相似文献   

8.
Even after reconstructive surgery, major functional impairments remain in the majority of patients with peripheral nerve injuries. The application of novel emerging therapeutic strategies, such as lentiviral (LV) vectors, may help to stimulate peripheral nerve regeneration at a molecular level. In the experiments described here, we examined the effect of LV vector-mediated overexpression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on regeneration of the rat peripheral nerve in a transection/repair model in vivo. We showed that LV vectors can be used to locally elevate levels of NGF and GDNF in the injured rat peripheral nerve and this has profound and differential effects on regenerating sensory and motor neurons. For sensory neurons, increased levels of NGF and GDNF do not affect the number of regenerated neurons 1 cm distal to a lesion at 4 weeks post-lesion but do cause changes in the expression of markers for different populations of nociceptive neurons. These changes are accompanied by significant alterations in the recovery of nociceptive function. For motoneurons, overexpression of GDNF causes trapping of regenerating axons, impairing both long-distance axonal outgrowth and reinnervation of target muscles, whereas NGF has no effect on these parameters. These observations show the feasibility of combining surgical repair of the transected nerve with the application of viral vectors. Furthermore, they show a difference between the regenerative responses of motor and sensory neurons to locally increased levels of NGF and GDNF.  相似文献   

9.
The presence of retrogradely transported endogenous nerve growth factor (NGF) in sympathetic nerves of the guinea pig was demonstrated directly by fluorescent and peroxidase immunohistochemistry in the ligated superior postganglionic nerve of the superior cervical ganglion. Fixed, frozen sections of previously ligated nerve were incubated with either rabbit antiserum against guinea pig NGF (gpNGF), rabbit antibodies against gpNGF purified on a mouse NGF (mNGF) affinity column, the portion of rabbit antiserum against gpNGF that did not bind to the mNGF affinity column, or nonimmune rabbit serum. Positive staining on the peripheral side of the ligation was obtained only with unfractionated antiserum against gpNGF and with purified antibodies against gpNGF. The staining properties of the various antiserum preparations correlated with their ability to block gpNGF- and mNGF-induced neurite outgrowth in the embryonic chick dorsal root ganglion bioassay and in the PC12 bioassay. Homogenates of superior postganglionic nerve supported growth of embryonic chick dorsal root ganglia and differentiation of PC12 cells. This support was blocked by the specific antisera against NGF used in the immunohistochemistry experiments. These experiments demonstrate that endogenous NGF, presumably released by peripheral target tissues, is retrogradely transported in vivo.  相似文献   

10.
Insulin-like growth factor-I (IGF-I) in vivo or in the presence of other permissive factors can promote myelination in the central nervous system. In the current study, we examine the role of IGF-I in the myelination of peripheral nerves. In rat cocultures of dorsal root ganglia (DRG) and Schwann cells (SC) grown in serum- and insulin-free defined medium, IGF-I induces a dose dependent upregulation in myelin proteins such as P0, corresponding to maximal SC ensheathment. Furthermore, IGF-I is essential in promoting a dose-dependent, long-term myelination of DRG sensory axons. In the absence of IGF-I, axons and SC survive, but fail to myelinate. In the presence of 10 nM IGF-I, 59% of axons are myelinated at 21 days, whereas in the absence of IGF-I myelination fails to occur. Maximum SC ensheathment occurs 48 hours after addition of IGF-I. If IGF-I is withdrawn at 48 hours, axon segregation by SC persists, however, most axons and SC do not exhibit a one-to-one relationship and little myelination is observed. IGF-I is important in myelination and is critical not only for initial SC ensheathment of the axon and upregulation of myelin proteins, but also for sustained myelination. Furthermore, IGF-I associated axonal size is not the sole determinant for myelination.  相似文献   

11.
The currently accepted concept of a primary sensory cell is a cell that gives rise to a central process which passes through the dorsal root to the spinal cord and a peripheral process which passes to the periphery via a peripheral nerve. If this is correct, then there should be equal numbers of sensory axons in the dorsal root, dorsal root ganglion cells, and sensory axons in the proximal peripheral nerve. The present study obtains these counts in animals in which extraneous axons have been removed from the peripheral nerve and root. The counts indicate that there are approximately 2.3 sensory axons in the dorsal root and proximal peripheral nerve for each ganglion cell in the sacral segments of the rat. We interpret these data as indicating that there is significant branching of sensory axons in the dorsal root and proximal peripheral nerve and thus the generally accepted picture of a dorsal root ganglion cell is not correct for some, perhaps all, of these cells. We offer the speculation that this peripheral branching may be an indication of single sensory neurons having receptive fields in two separate locations, and thus this may be an anatomical explanation for certain types of referred pain.  相似文献   

12.
Certain neurons in the central nervous system (CNS) of adult mammals extend axons for several cm along peripheral nerve grafts inserted into the brain or spinal cord. It is not clear, however, if these nerve cells constitute a special population or are examples of a general capacity of the injured mammalian CNS to regrow processes under these experimental conditions. Furthermore, because the new axons could originate by collateral sprouting from uninjured neurons, it is important to prove that the interruption of a central axonal projection can be followed by extensive fiber regrowth from the damaged neurons. In this anatomical study, we examined whether: (1) nerve cell type; and (2) axotomy, influence CNS axon regrowth along peripheral nerve grafts. For this purpose, we grafted segments of sciatic nerve into the olfactory bulb (OB) of adult rats and used combinations of neuroanatomical tracers (horseradish peroxidase and the fluorescent dyes True Blue and Nuclear Yellow) to investigate axonal regrowth from the different neurons that normally populate the OB. We demonstrate that OB axons extending along peripheral nerve grafts originate from mitral and tufted cells near the graft tip, rather than from the smaller OB neurons (periglomerular, short axon, and granule cells). Most of the mitral and tufted cells that extend new axons in grafted peripheral nerve segments lose their normal projections through the lateral olfactory tract because of axotomy at the time of grafting. Neuronal type, damage, and proximity to the graft appear to be prerequisites of this regenerative response from the OB.  相似文献   

13.
In mature rat sensory neurons, expression of the gene for the growth-associated protein, GAP43, was studied by in situ hybridization with a cDNA probe. Among neurons in normal lumbar dorsal root ganglia, labeling for GAP43 mRNA was heterogeneous, approximately one-half of the neurons being densely labeled. To characterize the latter population, individual neurons were examined in adjacent sections processed either for GAP43 hybridization or NGF-receptor radioautography. Virtually all neurons with high-affinity NGF binding sites had high basal levels of GAP43 mRNA and most GAP43-positive neurons bore NGF receptors. Another NGF-responsive population, sympathetic neurons in the superior cervical ganglion, also had high basal concentrations of GAP43 mRNA. Further co-localization studies in dorsal root ganglia were performed with immunohistochemistry for somatostatin and enzyme histochemistry for acid phosphatase. The latter 2 groups of sensory neurons have been previously shown to lack high-affinity receptors and were here shown to have low basal concentrations of GAP43 mRNA. From this and earlier studies, it can be assumed that substance P-immunoreactive neurons and strongly positive CGRP neurons synthesize GAP43 at high basal rate. One week following peripheral nerve transection, almost all neurons had high concentrations of GAP43 mRNA without correlation with NGF binding. Intrathecal infusion of NGF after the sciatic nerve was cut did not strongly influence this post-traumatic elevation in GAP mRNA. In normal dorsal root ganglia, neurons that have high-affinity NGF binding sites and are therefore potentially responsive to NGF also have high basal rates of synthesis of GAP43.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Expression of the nerve growth factor receptor (NGF-R) mRNA in adult motor neurons is increased by axonal injury. The present study was designed to examine, by immunocytochemistry, the onset, course, and specificity of NGF-R up-regulation following distal or proximal crush of the sciatic nerve. Lesions at both levels induced the appearance of NGF-R-like immunoreactivity in motor neurons beginning on day two postaxotomy. NGF-R-like immunoreactivity was present exclusively in axotomized neurons, as verified by the near complete colocalization of immunoreactive NGF-R with a fluorescent retrograde tracer injected at the crush site. NGF-R expression was closely linked with disconnection of cells from the target; one week after muscle reinnervation, NGF-R immunoreactivity was no longer detectable in animals with distal injuries. These results extend the previous findings of axotomy-induced expression of NGF-R mRNA to the level of the receptor. Furthermore, our observations are consistent with the hypothesis that target-derived factors participate in the regulation of NGF-R gene expression in adult motor neurons.  相似文献   

15.
We have investigated the effects of nerve growth factor (NGF, 2.5 ng/ml for 1–2 weeks) on enriched adult rat dorsal root ganglion (DRG) neurons maintained in cell culture in defined media. Whole-cell recordings in cells cultured in the absence and presence of NGF revealed no significant difference in resting membrane potential and input resistance. However, the threshold for spike generation was significantly lower in untreated cells than in treated cells; −25 ± 1.1mV vs−19 ± 2.2mV, respectively. The sensitivity of the Na+ spike to tetrodotoxin (TTX, 1 μM) was different in cells cultured in the absence or presence of NGF. For example, spikes were abolished by TTX in 100% of untreated cells, while in NGF-treated cells the spike was abolished in only 41% of the neurons. Chemosensitivity of DRG neurons was also different in the absence and presence of NGF. For example, the percent of neurons in which a current activated by 8-methyl-N-vanillyl-6-nonenamide (capsaicin, 500 nM) was detected, increased from 18% in untreated cells to 55% in NGF-treated cells. NGF did not influence the number of cells surviving. The results indicate that NGF can regulate TTX and capsaicin sensitivity in these adult rat sensory neurons. Our experimental protocol indicates that this effect is not mediated by a factor in the serum or released from non-neuronal cells.  相似文献   

16.
The binding of iodinated beta-nerve growth factor, [125I]-NGF, to embryonic (E16) rat spinal cord cells, was investigated to characterize the binding properties and cellular distribution of nerve growth factor receptors. Spinal cord cells prepared without trypsin yielded two classes of NGF binding sites with Kd's of 3 x 10(-11) M and 4 x 10(-9) M. Fractionation of the cells by discontinuous gradients composed of 8%, 12%, and 17% metrizamide was used to separate motoneurons from other cell types. The motoneuron enriched fraction (8% metrizamide) contained approximately 10% of the cells and 64% of the choline acetyltransferase (ChAT) activity. In contrast, the 12% metrizamide fraction contained most (51%) of the cells and 36% of the ChAT activity, while the 17% metrizamide fraction contained the remainder of the cells and negligible amounts of ChAT activity. Characterization of [125I]-NGF binding to each metrizamide fraction showed that the motoneuron-enriched fraction exhibited both high and low affinity binding sites, while the other metrizamide fractions exhibited only the low affinity binding sites. These findings indicate that although low affinity NGF receptors appear to be relatively evenly distributed amongst embryonic rat spinal cord cells, high affinity NGF receptors are found primarily on motoneurons.  相似文献   

17.
18.
This study investigated the feasibility of using a peripheral nerve autograft (NAG) to promote and guide regeneration of sensory axons from the caudal lumbar dorsal roots to the rostral dorsal column following a lower thoracic cordotomy in adult rats. After a left hemicordotomy at the T13 vertebra level and ipsilateral L3 and L4 rhizotomies, a peripheral NAG (peroneal nerve) was connected to the distal roots stumps, then implanted into the left dorsal column 10 mm rostral to hemicordotomy site (n = 12). After surgery, all animals of the experimental group experienced complete anesthesia in their left hindlimb. Three months later, a slight response to nociceptive stimulation reappeared in L3 and/or L4 dermatomes in 6 of the 12 experimental animals. None of these animals exhibited self-mutilation. Nine months after surgery, we performed retrograde tracing studies by injecting horseradish peroxidase (HRP) into the left dorsal column 30 mm rostral to the NAG implantation site. In eight animals, we found HRP-stained neurons in the left L3 and/or L4 dorsal root ganglia (DRG). The mean number of HRP-stained neurons per DRG was 71 +/- 92 (range 2-259). In control groups, no HRP-stained neurons were found in L3 or L4 DRG. Histological analysis of the NAG showed evidence of axonal regeneration in all 8 animals with positive retrograde labeling of DRG neurons. However, we did not find a statistical correlation between the number of HRP-stained neurons and the degree of sensory recovery. This study demonstrates that an NAG joining dorsal roots to the dorsal column, thus shunting the original CNS-PNS junction, can support regeneration of central axons from DRG primary sensory neurons into the dorsal column over distances of at least 30 mm despite the inhibitory influence of the CNS white matter.  相似文献   

19.
In the present study the ability of nerve growth factor (NGF) to facilitate the recovery of peptidergic primary sensory C-fibers after an acute capsaicin treatment (50 mg/kg s.c.) was investigated in adult rats. NGF (4 μg 1 /day for 3 days) was injected into the plantar of one hind paw starting 24 h after the capsaicin treatment. Without NGF, there was a significant reduction of calcitonin gene-related peptide (CGRP) and substance P content of the paw skin and the sciatic nerve. CGRP and substance P levels were completely replenished in the NGF-treated paw skin and in the innervating sciatic nerve they even increased over control levels as determined 40 h after the last injection of NGF. CGRP levels also recovered in the contralateral paw and sciatic nerve, but no recovery was observed in other tissues such as the front paw, the auricle, or the urinary bladder. Mustard oil-induced neurogenic plasma extravasation, taken as a functional parameter for peptidergic primary sensory C-fibers, was significantly decreased after the capsaicin treatment and showed a complete recovery by NGF in the injected paw as well as in the contralateral paw skin. These results show that NGF not only was able to reverse the decrease of transmitter content caused by capsaicin but also restored the peripheral function of primary afferent neurons.  相似文献   

20.
This paper reviews light- and electron microscopic, histochemical and physiological evidence which demonstrate that peripheral nerve injury in mammals is followed by profound structural and functional changes in the central terminals of the affected primary sensory neurons. Available evidence indicates that at least some of these so-called transganglionic changes are the result of ganglion cell degeneration and death, although other mechanisms are probably in effect as well. Existing data suggest that this ganglion cell death does not effect all types of ganglion cells equally, but do not permit a clearcut answer to the question of which kinds of ganglion cells are affected more than others. Results from studies with microtubule inhibitors and antibodies to nerve growth factor are compatible with the notion that depletion of retrogradely transported trophic factors is involved in the production of certain transganglionic changes. This issue needs further examination, however. Physiological studies indicate marked alterations in certain primary afferent synaptic connections after peripheral nerve lesions. So far, these changes have not been satisfactorily correlated with the structural changes induced by similar lesions. Further studies on the structural and functional response of primary sensory neurons to peripheral nerve injury are likely to contribute to the understanding of the frequent failure to regain normal sensory functions after peripheral nerve lesions in man, as well as of the basic aspects of lesion-induced changes in general in the peripheral and central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号