首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have established hippocampal cell lines from normal and trisomy 16 fetal mice, a model of human trisomy 21. Both cell lines, named H1b (derived from a normal animal) and HTk (trisomic) possess neuronal markers by immunohistochemistry (enolase, synaptophysin, microtubule associated protein-2, and choline acetyltransferase) and lack glial markers (glial fibrillary acidic protein and S-100). Also, we evaluated intracellular Ca(2+) levels ([Ca(2+)](i)) in response to neurotransmitter agonists, in cells loaded with the fluorescent Ca(2+) indicators Indo-1 and Fluo-3. Both cell lines responded to glutamatergic stimuli induced by glutamate, N-methyl-D-aspartate, I-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazole propanoic acid or kainate. Glutamate responses were only partially prevented by addition of 5 mM EGTA and the metabotropic glutamate receptor agonist, trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), increased [Ca(2+)](i) in both cell types. These results confirm the presence of glutamatergic metabotropic receptors. In glutamate-induced responses, HTk cells exhibited slower time-dependent decay kinetics than H1b cells. Cholinergic agonists (nicotine and muscarine) induced a rapid, transient increase in [Ca(2+)](i) in both cell types. Furthermore, some cells were sensitive to histamine and norepinephrine. All responses to the aforementioned agonists were prevented by addition of specific antagonists. We also studied incorporation and release of [(3)H]choline in the cells, and observed no differences in uptake parameters. However, release induced by K(+) and nicotine depolarization was greatly reduced in HTk cells. The results show that H1b and HTk cells retain neuronal characteristics and respond to specific neurotransmitter stimuli. The HTk differences could be related to neuronal pathophysiology in Down syndrome.  相似文献   

2.
Physiological and pharmacological studies have suggested that catecholamines modulate cholinergic neurons in the medial septal and diagonal band nuclei (i.e., the septal complex). Thus, the ultrastructural morphology of neurons containing choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine, and their relation to catecholaminergic terminals exhibiting immunoreactivity for the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) were examined in the rat septal complex. Dual immunoautoradiographic and peroxidase anti-peroxidase labeling methods were used to simultaneously localize antibodies raised in rabbits against TH and from rat-mouse hybridomas against ChAT in single sections. At least two types of perikarya with ChAT-immunoreactivity (ChAT-I) were observed. The first type were large (20-30 microns), elongated or round, and contained a small indented nucleus with an abundant cytoplasm and an occasional lamellar body. The second type was also either ovoid or round but was medium-sized (15-20 microns) and contained a larger indented nucleus and a smaller amount of cytoplasm than the first type. Both types of perikarya as well as dendrites with ChAT-I were surrounded by astrocytic processes apposed to most of their plasmalemmal surfaces. The distribution and types of terminal associations (i.e., asymmetric synapses, symmetric synapses and appositions which lacked a membrane specialization in the plane of section analyzed) with ChAT-labeled perikarya and dendrites were quantitatively evaluated. The majority (68% of 197) of the presynaptic terminals were unlabeled; the remaining terminals were immunoreactive for TH (25%) or ChAT (7%). All three types of terminals contacted primarily the shafts of small dendrites and more rarely ChAT-labeled perikarya and large dendrites. ChAT-labeled terminals: (1) formed associations with unlabeled perikarya and dendrites (31% of 176); (2) formed associations with perikarya and dendrites with ChAT-I (7%); (3) contacted the same unlabeled perikarya and dendrite as a TH-containing terminal (21%); (4) were in apposition to TH-labeled terminals (25%); or (5) were either in apposition to unlabeled or ChAT-labeled terminals or lacked associations with any processes. The majority of associations formed by the terminals with ChAT-I were on the shafts of small dendrites. Moreover, most of the associations formed were either symmetric synapses or appositions not separated by astrocytes in the plane of section analyzed. These findings provide cellular substrates in the septal complex (1) for sparse synaptic input relative to astrocytic investment of cholinergic neurons and (2) for direct synaptic modulation of cholinergic and non-cholinergic neurons by catecholamines and/or acetylcholine. These findings have direct relevance to catecholaminergic-cholinergic interactions and to the neuropathological basis for Alzheimer's disease.  相似文献   

3.
Previously, we reported the presence of multiple neurotransmitters in subclones of SN6, a septal cholinergic hybrid cell line. To obtain information concerning the functionality of these transmitters, we measured transmitter contents, activities of transmitter-producing enzymes, and the effect of serum-free culture medium in two different batches (SN6.1.6 and SN6.10.2.2) and two subclones of the SN6 cell line (SN6.2a and SN6.1b). Except for SN6.1b, SN6 cell lines and subclones had basically the same neurotransmitter characteristics. Among the transmitters, only acetylcholine seemed to be functional. Monoamine oxidase was missing and activity of aromatic amino acid decarboxylase was diminished in SN6 cell lines. Even in serum-containing medium, SN6.1b had a more mature morphology than the other cell lines, and it contained choline acetyltransferase and acetylcholine but not tyrosine hydroxylase or catecholamines. Similar characteristics were acquired by the mother cell line in response to serum-free conditions. Thus, SN6.1b is the most mature of these central cholinergic neuronal cell lines, at least with regard to neurotransmitter profiles. ©1995 Wiley-Liss, Inc.  相似文献   

4.
The ultrastructural substrate for functional interactions between intrinsic cholinergic neurons and catecholaminergic afferents to the caudate-putamen nucleus and nucleus accumbens septi (NAS) was investigated immunocytochemically. Single sections of glutaraldehyde-fixed rat brain were processed 1) for the immunoperoxidase labeling of a rat monoclonal antibody against the acetylcholine-synthesizing enzyme choline acetyltransferase (CAT) and 2) for the immunoautoradiographic localization of a rabbit polyclonal antiserum against the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH). The ultrastructural morphology and cellular associations did not significantly differ in the caudate-putamen versus NAS. Immunoperoxidase reaction for CAT versus NAS. Immunoperoxidase reaction for CAT was seen in perikarya, dendrites, and terminals, whereas immunoautoradiography for TH was in terminals. The perikarya and dendrites immunolabeled for CAT were large, sparsely spiny, and postsynaptic mainly to unlabeled axon terminals. Only 2-3% of the CAT-labeled terminals (n = 136) and less than 1% of the TH-labeled terminals (n = 86) were apposed to, or formed synapses with, perikarya or dendrites immunoreactive for CAT. Most unlabeled and all labeled terminals formed symmetric synapses. In the same sample, 18% of the CAT and 16% of the TH-labeled terminals were directly apposed to each other. Unlabeled dendritic shafts received the major (40% for CAT versus 23% for TH) synaptic input from cholinergic terminals, while unlabeled spines received the major (47% for TH versus 23% for CAT) synaptic input from catecholaminergic terminals. Neither the unlabeled dendrites or spines received detectable convergent input from CAT and TH-labeled terminals. Thirteen percent of the CAT-labeled and 14% of TH-labeled terminals were in apposition to unlabeled terminals forming asymmetric, presumably excitatory, synapses with unlabeled dendritic spines. We conclude that in both the caudate-putamen and NAS cholinergic and catecholaminergic terminals 1) form symmetric, most likely inhibitory, synapses primarily with non-cholinergic neurons, 2) differentially synapse on shafts or spines of separate dendrites, and 3) have axonal appositions suggesting the possibility of presynaptic physiological interactions. These results support the hypothesis that the cholinergic-dopaminergic balance in striatal function may be mediated through inhibition of separate sets of spiny projection neurons with opposing excitatory and inhibitory functions.  相似文献   

5.
Studies employing primary cells to determine the molecular basis of neuronal development and selective synaptogenesis in the central nervous system are limited by cellular heterogeneity. Clonal hybrid cell lines derived from a particular region of brain, which express differentiated characteristics typical of the cells of origin, offer a potentially powerful alternative approach. We previously demonstrated the feasibility of deriving such cell lines from septal cholinergic cells. We now delineate the methods employed, and describe the development of additional cholinergic cell lines expressing neuronal and cholinergic features from later developmental stages. One cell line has been studied in detail and found to form neurites, express choline acetyltransferase (ChAT) and neurofilament protein (NFP), and display typical neuronal ultrastructural characteristics, including puncta adherens, neuritic varicosities, vesicles, and growth cones.  相似文献   

6.
Mechanisms regulating peptide neurotransmitter metabolism were examined in dissociated cell cultures of the neonatal rat superior cervical ganglion (SCG). The pineal gland, a target of the SCG, produced a soluble factor (PCM) which increased substance P (SP) levels more than 15-fold in sympathetic neurons cultured in the presence of ganglion non-neuronal cells. Elimination of the non-neuronal cells decreased SP to negligible levels and abolished the stimulatory effects of PCM on SP expression. These observations suggest that ganglion non-neuronal cells stimulate sympathetic expression of SP, and that the pineal influences neuronal SP by acting on, or in concert with, ganglion support cells. PCM also influenced other neurotransmitter systems. In the presence of ganglion non-neuronal cells, PCM treatment increased cholineacetyltransferase (CHAC) and decreased tyrosine hydroxylase (TOH) and somatostatin (SO). By contrast, PCM treatment of pure neuronal cultures resulted in negligibleCHAC and SP levels and a doubling of SO with a small increase in TOH. In sympathetic neurons, SP expression may be associated with cholinergic development, whereas SO may be associated with noradrenergic phenotypic expression. Moreover, there is a reciprocal relationship between SP and SS expression by sympathetic neurons analogous toe previously described relationship between noradrenergic and cholinergic expression17–19.  相似文献   

7.
8.
Ontogeny of cholinergic neurons in the mouse forebrain   总被引:5,自引:0,他引:5  
The development of cholinergic neurons in the mouse forebrain was studied by immunocytochemistry with a monoclonal antibody to choline acetyltransferase (ChAT), the rate-limiting enzyme for acetylcholine synthesis. Since this antibody stained dividing cells in ventricular germinal zones as well as differentiating neurons, likely routes of migration could be inferred on the basis of the location of immunoreactive (IR) cells at different gestational ages. Germinal zones for cholinergic cells were observed in all ventricular zones of the forebrain with the ventral zones generating the earliest cells by gestational day 13.5 (GD13.5). On GD14, ChAT IR cells were visible in the germinal zones of the eye, olfactory ventricle, anterior horn, and dorsolateral aspect of the lateral ventricle, lateral ganglionic eminence, ventro- and dorsolateral third ventricle, and in the pineal anlage (epiphysis). ChAT IR neurons continued to develop in these and additional germinal zones on GD15, including the medial, dorsal, and dorsomedial walls of the lateral ventricle, and the medial and dorsal ganglionic eminence. On GD16, ChAT IR neurons were located in the prelimbic, pyriform, and parietal cortices and the lamina terminalis, and a cluster of IR cells was observed in the ventricular zone of the caudatopallial angle. On GD17-18, neurons in the anterior olfactory nucleus, olfactory tubercle, horizontal and vertical nucleus of the diagonal band, and medial septal nucleus stained more darkly and were multipolar, whereas immature bipolar neurons appeared to continue their migration into the hippocampus and along major fiber tracts, such as the corpus callosum, external capsule, fornix and anterior commissure. This study provides a comprehensive view of the zones of origin, probable routes of migration, and final destination of cholinergic neurons in the mouse forebrain.  相似文献   

9.
Avian embryonic sympathetic ganglia possess both catecholaminergic and cholinergic features and can synthesize noradrenaline (NAd) and acetylcholine (ACh) simultaneously. In the present study we sought to determine (1) whether or not this coproduction of NAd and ACh corresponds to the existence of two non-overlapping populations, and (2) to what extent the levels of synthesis are influenced by non-neuronal ganglion cells. We have focused on the correlation between the immunocytochemically demonstrable presence of the noradrenergic and cholinergic enzymes tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT), respectively, and the synthesis of the corresponding neurotransmitters in embryonic quail sympathetic neuronal and non-neuronal cells purified by fluorescence-activated cell sorting. We show that (1) freshly sorted neurons synthesize both NAd and ACh, whereas non-neuronal cells produce neither; (2) the overwhelming majority of the sympathetic neurons display TH immunoreactivity; (3) about half of the TH-positive neurons are recognized by an anti-ChAT antibody in an artificial medium that selectively enhances synthesis and/or accumulation of ACh; (4) the non-neuronal cells are important for survival of the neurons and potentiate their synthesis of ACh in this medium, and (5) finally, we present evidence that expression of TH in noradrenergic neurons and in small intensely fluorescent cells of sympathetic ganglia is differentially regulated.  相似文献   

10.
The cholinergic and monoaminergic innervation of the lateral geniculate nucleus (GL) and other thalamic nuclei in the cat was examined by using immunocytochemical and tract-tracing techniques. Cholinergic fibers, identified with an antibody to choline acetyltransferase (ChAT), are present in all layers of the GL. They are fine in caliber and exhibit numerous swellings along their lengths. The A layers, the magnocellular C layer, and the medial interlaminar nucleus are rich in cholinergic fibers that give rise to prominent clusters of boutons, while the parvicellular C layers contain fewer fibers that are more uniformly distributed. The interlaminar zones are largely devoid of ChAT-immunoreactive fibers. Double-label experiments show that cholinergic projections to the GL originate from two sources, the pedunculopontine reticular formation (PPT) and the parabigeminal nucleus (Pbg). The PPT contributes cholinergic fibers to all layers, while Pbg projections are limited to the parvicellular C layers. The lateral geniculate nucleus has a much greater density of cholinergic fibers than the other principal sensory nuclei: the density of fibers in the A layers is more than three times greater than that in the ventral posterior nucleus (VP) or the ventral division of the medial geniculate nucleus (GMv). In contrast, serotonin (5-HT)-immunoreactive fibers are distributed with equal density across the principal thalamic nuclei, while tyrosine hydroxylase (TH)-immunoreactive fibers (presumed to contain norepinephrine) are noticeably less dense in the GL than in the others. Monoaminergic fibers also differ from cholinergic fibers in their laminar distribution within the GL: both TH- and 5HT-immunoreactive fibers are distributed evenly across the layers and interlaminar zones and are slightly more abundant in the parvicellular C layers than in the other layers. Other thalamic nuclei rich in cholinergic fibers include the pulvinar nucleus, the ventral lateral geniculate nucleus, the intermediate nucleus of the lateral group, the lateral medial and suprageniculate nuclei (Graybiel and Berson: Neuroscience 5:1175-1238, '80), and the paracentral and central-lateral components of the intralaminar nuclei. This pattern matches the distribution of projections from the PPT and is similar, but not identical, to the pattern of acetylcholinesterase staining. The fact that most of the nuclei rich in cholinergic fibers have been implicated in visual sensory or visual motor functions suggests that cholinergic projections from the reticular formation play an especially important role in visually guided behavior.  相似文献   

11.
The topographical relationships between cholinergic neurons, identified by their immuno-reactivity for choline acetyltransferase (ChAT) or their staining for β-nicotinamide ademine dinucleotide phosphate (NADPH)-diaphorase, and dopaminergic, serotoninergic, Nonadrenergic, and glutamatergic neurons that occur in the mesopontine tegmentum, were studied in the squirrel monkey (Saimiri sciureus). The ChAT-positive neurons in the pedunculopontine nucleus (PPN) form two distinct subpopulations, one that corresponds to PPN pars compacta(PPNc) and the other to PPN pars dissipata (PPNd). The ChAT-positive neurons in PPNc are clustered along the dorsolateral border of the superior cerebellar peduncle (SP) at trochlear nucleus levels, whereas those in PPNd are scattered along the SP from midmesencephalic to midpontine levels. At levels caudal toe the trochlear nucleus, ChAT-positive neurons corresponding to the laterodorsal tegmental nucleus (LDT) lie within the periaqueductal gray and extend caudally as far as locus coeruleus levels. All ChAT-positive neurons in PPN and LDT stain for NADPH-diaphorase; the majority of large neurons in PPN and LDT are cholinergic, but some large neurons devoid of NADPH-diaphorase also occurnin these nuclei. Cholinergic neurons in the mesopontine tegmentum form clusters that are largely segregated from raphe serotonin immunoreactive neurons, as well as from nigral dopaminergic and coeruleal noradrenergic neurons, as revealed by tyrosine hydroxylase immunohistochemistry. Nevertheless, dendrites of cholinergic and noradrenergic neurons are clolinergic and noradrenergic neurons are closely intermingled, suggesting the possibility of dendrodendritic contacts. In addition, numerous large and medium-sized glutamate-immunoreactive neurons are intermingled among cholinergic neurons in PPN. Furthermore, at trochlear nucleus levels, about 40% of cholinergic neurons display glutamate immunoreactivity, whereas other neurons express glutamate or ChAT immunoreactivity only. This study demonstrates that (1) cholinergic neurons remain largely segregated from monoaminergic neurons throughout the mesopontine tegmentum and (2) PPN contains cholinergic and glutamatergic neurons as well as neurons coexpressing ChAT and Glutamate in primates. © 1994 Wiley-Liss, Inc.  相似文献   

12.
The role of nerve growth factor (NGF) in the development of embryonic sympathetic neurons was examined in vivo. Individual mouse embryos received transuterine injections of NGF or antiserum to NGF (anti-NGF), and the effects on the superior cervical ganglion (SCG) were studied. Treatment with NGF at any gestational stage, from the time of ganglion aggregation to birth, increased ganglion tyrosine hydroxylase (T-OH) activity. Both the number of catecholaminergic neurons and T-OH activity per neutron were increased. Choline acetyltransferase (ChAc) activity was increased by NGF at early gestational stages, but not at later stages. These observations suggest that perikarya containing ChAc are responsive to NGF, whereas preganglionic nerve terminals are not. Treatment with anti-NGF rapidly and permanently decreased ganglion T-OH activity. The effects of anti-NGF were more pronounced at later gestational stages, suggesting that ganglia become increasingly dependent on NGF during development. Alteration of maternal levels of NGF had no effect on development of the embryonic SCG, suggesting that local embryonic concentrations of NGF are responsible for modulating sympathetic ontogeny.  相似文献   

13.
Fenfluramine (FE) is a halogenated amphetamine derivative used in the treatment of obesity and thought to induce serotonin (5-HT) release from nerve terminals and to reduce re-uptake. However, other pathways may also be involved. In this work, the effects of FE on the major striatal afferent systems, and the possible interactions of these systems in FE-induced striatal expression of Fos, were studied by lesion of the serotonergic and/or dopaminergic system and administration of NMDA glutamate (MK-801) or D1 dopamine (SCH-23390) receptor antagonists. Both the D1 and NMDA receptor antagonists suppressed Fos expression in response to FE almost entirely. FE-induced Fos expression was also dramatically reduced 24 h after 6-hydroxydopamine (6-OHDA) lesion of the dopaminergic system. However, the reduction was not so marked after chronic 6-OHDA lesion, probably due to compensatory changes. Chronic (5,7-dihydroxytryptamine injection, 4 weeks before) or acute (p-chlorophenylalanine injection) lesion of the serotonergic system led to a marked reduction in Fos expression in response to FE (decrease of about 50%). After simultaneous chronic lesion of both serotonergic and dopaminergic systems, a considerable number of Fos-positive nuclei were still observed (decrease of about 70% in the dorsal and dorsomedial regions). The FE-induced expression of Fos was almost totally suppressed (decrease of about 95% in the dorsal and dorsomedial regions) after simultaneous acute lesion. Our results indicate that FE-induced striatal expression of Fos is due in large measure to DA release and dopaminergic stimulation of D1 receptors. However, concurrent stimulation of NMDA glutamate receptors also appears to be essential, and 5-HT release (although not indispensable) doubles striatal Fos expression. Synapse 28:71–82, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The neuroanatomical location and cytological features of cholinergic neurons in the rat brain were determined by the immunocytochemical localization of the biosynthetic enzyme, choline acetyltransferase (ChAT). Perikarya labeled with ChAT were detected in four major cell groups: (1) the striatum, (2) the magnocellular basal nucleus, (3) the pontine tegmentum, and (4) the cranial nerve motor nuclei. Labeled neurons in the striatum were observed scattered throughout the neostriatum (caudate, putamen) and associated areas (nucleus accumbens, olfactory tubercle). Larger ChAT-labeled neurons were seen in an extensive cell system which comprises the magnocellular basal nucleus. This more or less continuous set of neuronal clusters consists of labeled neurons in the nucleus of the diagonal band (horizontal and vertical limbs), the magnocellular preoptic nucleus, the substantia innominata, and the globus pallidus. Labeled neurons in the pontine tegmentum were seen as a group of large neurons in the caudal midbrain, dorsolateral to the most caudal part of the substantia nigra, and extended in a caudodorsal direction through the midbrain reticular formation into the area surrounding the superior cerebellar peduncle. The neurons in this latter group constitute the pedunculopontine tegmental nucleus (PPT). An additional cluster of cells was observed medially adjacent to the PPT, in the lateral part of the central gray matter at the rostral end of the fourth ventricle. This group corresponds to the laterodorsal tegmental nucleus. Large ChAT-labeled neurons were also observed in all somatic and visceral motor nerve nuclei. The correspondence of the distribution of ChAT-labeled neurons identified by our methods to earlier immunocytochemical and acetylcholinesterase histochemical studies and to connectional studies of these groups argues for the specificity of the ChAT antibody used.  相似文献   

15.
The dorsal raphe nucleus (DR) has a topographic neuroanatomy consistent with the idea that different parts of this nucleus subserve different functions. Here we use dual in situ hybridization to describe the rostral-caudal neurochemical distribution of three major cell groups, serotonin (5-hydroxytryptamine; 5-HT), gamma-aminobutyric acid (GABA), and catecholamine, and their relative colocalization with each other and mRNA encoding four different receptor subtypes that have been described to influence DR responses, namely, 5HT-1A, alpha(1b) adrenergic (alpha(1b) ADR), and corticotropin-releasing factor type 1 (CRF-R1) and 2 (CRF-R2) receptors. Serotonergic and GABAergic neurons were distributed throughout the rostral-caudal extent of the DR, whereas catecholaminergic neurons were generally restricted to the rostral half of the nucleus. These phenotypes essentially represent distinct cell populations, because the neurochemical markers were rarely colocalized. Both 5HT-1A and alpha(1b) ADR mRNA were highly expressed throughout the DR, and the vast majority of serotonergic neurons expressed both receptors. A smaller percentage of GABAergic neurons also expressed 5HT-1A or alpha(1b) ADR mRNA. Very few catecholaminergic cells expressed either 5HT-1A or alpha(1b) ADR mRNA. CRF-R1 mRNA was detected only at very low levels within the DR, and quantitative colocalization studies were not technically feasible. CRF-R2 mRNA was mainly expressed at the middle and caudal levels of the DR. At midlevels, CRF-R2 mRNA was expressed exclusively in serotonin neurons, whereas, at caudal levels, approximately half the CRF-R2 mRNA was expressed in GABAergic neurons. The differential distribution of distinct neurochemical phenotypes lends support to the idea of functional differentiation of the DR.  相似文献   

16.
Cholinergic neurons were studied by immunohistochemistry, with an antiserum against choline acetyltransferase (ChAT), in the basal forebrain (Ch1 to Ch4) of four patients with Alzheimer's disease (AD) and four control subjects. ChAT-positive cell bodies were mapped and counted in Ch1 (medial septal nucleus), Ch2 (vertical nucleus of the diagonal band), Ch3 (horizontal nucleus of the diagonal band) and Ch4 (nucleus basalis of Meynert). Compared to controls, the number of cholinergic neurons in AD patients was reduced by 50% on average. The interindividual variations in cholinergic cell loss were high, neuronal loss ranging from moderate (27%) to severe (63%). Despite the small number of brains studied, a significant correlation was found between the cholinergic cell loss and the degree of intellectual impairment. To determine the selectivity of cholinergic neuronal loss in the basal forebrain of AD patients, NPY-immunoreactive neurons were also investigated. The number of NPY-positive cell bodies was the same in controls and AD patients. The results (1) confirm cholinergic neuron degeneration in the basal forebrain in AD and the relative sparing of these neurons in some patients, (2) indicate that degneration of cholinergic neurons in the basal forebrain contributes to intellectual decline, and (3) show that, in AD, such cholinergic cell loss is selective, since NPY-positive neurons are preserved in the basal forebrain.  相似文献   

17.
The embryonic development of the catecholaminergic system of the pond snail, Lymnaea stagnalis, was investigated by using chromatographic and histochemical methods. High performance liquid chromatography suggested that dopamine was the only catecholamine present in significant concentrations throughout the embryonic development of Lymnaea. Dopamine first became detectable at about embryonic stage (E) 15 (15% of embryonic development) and then increased in amount during early development to reach about 120–140 fmol per animal by around E40. Dopamine content remained stable during mid-embryogenesis (E40–65), increased slowing for the next couple of days, and then increased rapidly to culminate at about 400 fmol per animal by hatching. The detection of aldehyde- and glyoxylate-induced fluorescence and of tyrosine hydroxylaselike immunoreactivity indicated that the first catecholaminergic cells appeared in the late trochophore or early veliger stage of embryonic development (E32–35). The paired perikarya of these transient apical catecholaminergic (TAC) neurons were located beneath the apical plate, remained outside of the central ganglia during embryogenesis, and no longer contained detectable catecholamines close to hatching. TAC neurons bore cilia on the ends of short processes that penetrated the overlying epithelium; their long processes branched repeatedly under the ciliated apical plate. Several smaller catecholaminergic cells first appeared in the anterior margin of the foot at a stage when the embryos began to metamorphose from the veliger form (E55). Similar bipolar cells later appeared in the tentacle and lips. The axons of all of these small peripheral cells projected centrally and terminated within the neuropil of different central ganglia. Central catecholaminergic neurons, including RPeD1, differentiated only after metamorphosis was complete (E75). Development of locomotor, respiratory, and feeding behaviors correlated with maturation of catecholaminergic neurons, as indicated by histology and chromatography. J. Comp. Neurol. 404:285–296, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

18.
Summary. The effects of daily late afternoon administration of the indoleamine, melatonin, on the in situ activity of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) were examined in the caudate nuclei of the striatum of male Syrian hamsters. TH and TPH activities were determined in tissue extracts by measuring the accumulation of L-Dopa and 5-HTP respectively, following the administration of the aromatic L-amino acid decarboxylase inhibitor, NSD-1015. Animals were sacrificed at 4 time points over the 24 light/dark cycle after 9.5 weeks of melatonin treatment. TH activity was significantly increased by melatonin during the early part of the dark phase of the light/dark cycle. While no significant effects of melatonin on TPH was observed, melatonin significantly increased 5-HT concentrations, suggesting a melatonin-induced inhibition of 5-HT release. The data suggest that the striatum may be a region in which dopaminergic neurons are subject to significant regulation by melatonin, either directly or through serotonergic neurons which synapse on dopaminergic neurons in the striatum.  相似文献   

19.
High susceptibility of cholinergic neurons to neurotoxic signals may result from their utilization of acetyl-CoA for both energy production and acetylcholine synthesis. SN56 cholinergic cells were transfected stably with cDNA for choline acetyltransferase. Transfected cells (SN56ChAT2) expressed choline acetyltransferase activity and acetylcholine content, 17 times and 2 times higher, respectively, than did nontransfected cells. Transfection did not change pyruvate dehydrogenase but decreased the acetyl-CoA level by 62%. Differentiation by cAMP and retinoic acid caused an increase of choline acetyltransferase activity and decrease of acetyl-CoA levels in both cell lines. Negative correlation was found between choline acetyltransferase activity and acetyl-CoA level in these cells. SN56ChAT2 cells were more susceptible to excess NO than were native SN56 cells, as evidenced by the thiazolyl blue reduction assay. Thus, the sensitivity of cholinergic neurons to pathologic conditions may depend on the cholinergic phenotype-dependent availability of acetyl-CoA.  相似文献   

20.
We have examined the development of catecholaminergic and cholinergic neurons in the retina of the rat by using antibodies against the enzymes tyrosine hydroxylase (TH) and choline acetyl transferase (ChAT), respectively. TH-immunoreactivity was first detected at P (postnatal day) 3 in somata located in the inner part of the cytoblast layer (CBL) and in fine dendrites extending toward the middle of the inner plexiform layer (IPL). These cells were similar in shape and soma size to the class 2 TH-immunoreactive (TH-IR) cells of the adult rat. At P6, TH-immunoreactivity was expressed by a second population of cells. Their somata were in the inner part of the inner nuclear layer (INL), but were distinctly larger, with short thick dendrites extending into the outer and/or middle parts of the IPL. Over subsequent days, the dendrites of these larger cells spread profusely in the outer part of the IPL, making it likely that they are the class 1 TH-IR cells of the adult. ChAT-immunoreactive (ChAT-IR) cells were not detected until P15, when ChAT-IR somata were observed in the ganglion cell layer (GCL) and INL, and their dendrites were observed already segregated into the distinct strata of the IPL in which they are found in the adult. The subsequent growth of TH-IR somata of both classes was uneven, persisting longer in temporal than in nasal retina. This extended growth of temporal cells establishes the marked nasotemporal differences in soma diameter apparent among TH-IR cells in the adult (Mitrofanis and Stone, '86; Mitrofanis et al., '88b). The growth and adult size of ChAT-IR somata, on the other hand, did not vary with retinal position; their diameters were similar to those of the adult cells from the time they first appeared. The distribution of ChAT-IR cells at P15 shared several features of the distribution of ganglion cells. The density of ChAT-IR cells was greatest at the area of peak ganglion cell density and declined toward the periphery. In contrast, TH-IR cells concentrated from the time they first appeared at the superior temporal margin, peripheral to the area of peak density of ganglion and ChAT-IR cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号