首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently noted that low doses of sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I trials. The present studies mechanistically extended our initial observations. Low doses of sorafenib and vorinostat, but not the individual agents, caused an acidic sphingomyelinase and fumonisin B1-dependent increase in CD95 surface levels and CD95 association with caspase 8. Knock down of CD95 or FADD expression reduced sorafenib/vorinostat lethality. Signaling by CD95 caused PERK activation that was responsible for both promoting caspase 8 association with CD95 and for increased eIF2alpha phosphorylation; suppression of eIF2alpha function abolished drug combination lethality. Cell killing was paralleled by PERK-and eIF2alpha-dependent lowering of c-FLIP-s protein levels and overexpression of c-FLIP-s maintained cell viability. In a CD95-, FADD- and PERK-dependent fashion, sorafenib and vorinostat increased expression of ATG5 that was responsible for enhanced autophagy. Expression of PDGFRbeta and FLT3 were essential for high dose single agent sorafenib treatment to promote autophagy. Suppression of PERK function reduced sorafenib and vorinostat lethality whereas suppression of ATG5 levels elevated sorafenib and vorinostat lethality. Overexpression of c-FLIP-s blocked apoptosis and enhanced drug-induced autophagy. Thus sorafenib and vorinostat promote ceramide-dependent CD95 activation followed by induction of multiple downstream survival regulatory signals: ceramide-CD95-PERK-FADD-pro-caspase 8 (death); ceramide-CD95-PERK-eIF2alpha- downward arrowc-FLIP-s (death); ceramide-CD95-PERK-ATG5-autophagy (survival).  相似文献   

2.
The present studies were designed to determine whether the multi-kinase inhibitor sorafenib (Nexavar) interacted with histone deacetylase inhibitors to kill glioblastoma and medulloblastoma cells. In a dose-dependent fashion sorafenib lethality was enhanced in multiple genetically disparate primary human glioblastoma isolates by the HDAC inhibitor sodium valproate (Depakote). Drug exposure reduced phosphorylation of p70 S6K and of mTOR. Similar data to that with valproate were also obtained using the HDAC inhibitor vorinostat (Zolinza). Sorafenib and valproate also interacted to kill medulloblastoma and PNET cell lines. Treatment with sorafenib and HDAC inhibitors radio-sensitized both GBM and medulloblastoma cell lines. Knock down of death receptor (CD95) expression protected GBM cells from the drug combination, as did overexpression of c-FLIP-s, BCL-XL and dominant negative caspase 9. Knock down of PDGFRα recapitulated the effect of sorafenib in combination with HDAC inhibitors. Collectively, our data demonstrate that the combination of sorafenib and HDAC inhibitors kills through activation of the extrinsic pathway, and could represent a useful approach to treat CNS-derived tumors.  相似文献   

3.
Rosato RR  Almenara JA  Coe S  Grant S 《Cancer research》2007,67(19):9490-9500
Interactions between the multikinase inhibitor sorafenib and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were examined in malignant hematopoietic cells. Pretreatment (24 h) of U937 leukemia cells with 7.5 micromol/L sorafenib dramatically increased apoptosis induced by sublethal concentrations of TRAIL/Apo2L (75 ng/mL). Similar interactions were observed in Raji, Jurkat, Karpas, K562, U266 cells, primary acute myelogenous leukemia blasts, but not in normal CD34+ bone marrow cells. Sorafenib/TRAIL-induced cell death was accompanied by mitochondrial injury and release of cytochrome c, Smac, and AIF into the cytosol and caspase-9, caspase-3, caspase-7, and caspase-8 activation. Sorafenib pretreatment down-regulated Bcl-xL and abrogated Mcl-1 expression, whereas addition of TRAIL sharply increased Bid activation, conformational change of Bak (ccBak) and Bax (ccBax), and Bax translocation. Ectopic Mcl-1 expression significantly attenuated sorafenib/TRAIL-mediated lethality and dramatically reduced ccBak while minimally affecting levels of ccBax. Similarly, inhibition of the receptor-mediated apoptotic cascade with a caspase-8 dominant-negative mutant significantly blocked sorafenib/TRAIL-induced lethality but not Mcl-1 down-regulation or Bak/Bax conformational change, indicating that TRAIL-mediated receptor pathway activation is required for maximal lethality. Sorafenib/TRAIL did not increase expression of DR4/DR5, or recruitment of procaspase-8 or FADD to the death-inducing signaling complex (DISC), but strikingly increased DISC-associated procaspase-8 activation. Sorafenib also down-regulated cFLIP(L), most likely through a translational mechanism, in association with diminished eIF4E phosphorylation, whereas ectopic expression of cFLIP(L) significantly reduced sorafenib/TRAIL lethality. Together, these results suggest that in human leukemia cells, sorafenib potentiates TRAIL-induced lethality by down-regulating Mcl-1 and cFLIP(L), events that cooperate to engage the intrinsic and extrinsic apoptotic cascades, culminating in pronounced mitochondrial injury and apoptosis.  相似文献   

4.
The present studies were to determine whether the multi-kinase inhibitor pazopanib interacted with histone deacetylase inhibitors (HDACI: valproate, vorinostat) to kill sarcoma cells. In multiple sarcoma cell lines, at clinically achievable doses, pazopanib and HDACI interacted in an additive to greater than additive fashion to cause tumor cell death. The drug combination increased the numbers of LC3-GFP and LC3-RFP vesicles. Knockdown of Beclin1 or ATG5 significantly suppressed drug combination lethality. Expression of c-FLIP-s, and to a lesser extent BCL-XL or dominant negative caspase 9 reduced drug combination toxicity; knock down of FADD or CD95 was protective. Expression of both activated AKT and activated MEK1 was required to strongly suppress drug combination lethality. The drug combination inactivated mTOR and expression of activated mTOR strongly suppressed drug combination lethality. Treatment of animals carrying sarcoma tumors with pazopanib and valproate resulted in a greater than additive reduction in tumor volume compared with either drug individually. As both pazopanib and HDACIs are FDA-approved agents, our data argue for further determination as to whether this drug combination is a useful sarcoma therapy in the clinic.  相似文献   

5.
The present studies determined whether the antibiotic salinomycin interacted with HDAC inhibitors to kill primary human GBM cells. Regardless of PTEN, ERBB1, or p53 mutational status salinomycin interacted with HDAC inhibitors in a synergistic fashion to kill GBM cells. Inhibition of CD95/Caspase 8 or of CD95/RIP-1/AIF signaling suppressed killing by the drug combination. Salinomycin increased the levels of autophagosomes that correlated with increased p62 and LC3II levels; valproate co-treatment correlated with reduced LC3II and p62 expression, and increased caspase 3 cleavage. Molecular inhibition of autophagosome formation was protective against drug exposure. The drug combination enhanced eIF2α phosphorylation and decreased expression of MCL-1 and phosphorylation of mTOR and p70 S6K. Activation of p70 S6K or mTOR promoted cell survival in the face of combined drug exposure. Overexpression of BCL-XL or c-FLIP-s was protective. Collectively our data demonstrate that the lethality of low nanomolar concentrations of salinomycin are enhanced by HDAC inhibitors in GBM cells and that increased death receptor signaling together with reduced mitochondrial function are causal in the combinatorial drug necro-apoptotic killing effect.  相似文献   

6.
7.
8.
This study investigates the role of caspase-8 and DN-FADD, an inhibitor of CD95-dependent caspase-8 activation, in gemcitabine-induced apoptosis of Colo357 pancreatic cancer cells. Gemcitabine-mediated apoptosis was monitored by the kinetics of caspase-8 activation and cytochrome c release. Gemcitabine treatment of Colo357 cells increased CD95 surface expression, raising the possibility of the involvement of CD95 in gemcitabine-mediated caspase-8 activation. However, ectopic expression of DN-FADD and treatment of cells with the antagonistic anti-CD95 antibody ZB4 both failed to suppress gemcitabine-induced apoptosis but substantially inhibited CD95-mediated apoptosis. DN-FADD, which surprisingly accumulated in nuclei of Colo357 cells, was unable to block caspase-8 activation mediated by either gemcitabine or CD95. These observations argue against a role of CD95 in gemcitabine-induced caspase-8 activation and reveal that the anti-apoptotic function of DN-FADD differs from caspase-8 inhibition in Colo357 cells.  相似文献   

9.
We determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with clinically relevant chemotherapies to kill medulloblastoma cells. In medulloblastoma cells PDE5 inhibitors interacted in a greater than additive fashion with vincristine/etoposide/cisplatin to cause cell death. Knockdown of PDE5 expression recapitulated the combination effects of PDE5 inhibitor drugs with chemotherapy drugs. Expression of dominant negative caspase 9 did not significantly inhibit chemotherapy lethality but did significantly reduce enhanced killing in combination with the PDE5 inhibitor sildenafil. Overexpression of BCL-XL and c-FLIP-s suppressed individual and combination drug toxicities. Knockdown of CD95 or FADD suppressed drug combination toxicity. Treatment with PDE5 inhibitors and chemotherapy drugs promoted autophagy which was maximal at ~12 h post-treatment, and in a cell type-dependent manner knockdown of Beclin1 or ATG5 either suppressed or enhanced drug combination lethality. PDE5 inhibitors enhanced the induction of chemotherapy-induced DNA damage in a nitric oxide synthase-dependent fashion. In conclusion, our data demonstrate that the combination of PDE5 inhibitors with standard of care chemotherapy agents for medulloblastoma represents a possible novel modality for future treatment of this disease.  相似文献   

10.
CD95 (Fas/Apo-1) is a transmembrane molecule that induces apoptosis and plays a central role in the regulation of the immune response. The present study describes two new B lymphoid cell lines, B593 and BR97, derived from non-Hodgkin's lymphoma, which differ in susceptibility to CD95-mediated apoptosis. While B593 cells are sensitive to CD95mediated apoptosis, BR97 cells are completely resistant. Activation of caspase-8 and caspase-3 proteases plays an important role in the CD95 signalling pathway. CD95 stimulation induced caspase-8 and caspase-3 activation in B593, but not in BR97 cells. However, activation of both caspase-8 and caspase-3 was achieved in BR97 cells treated with staurosporine. Furthermore, protein synthesis inhibition by cycloheximide restored sensitivity to CD95-mediated apoptosis and allowed activation of both caspase-8 and caspase-3 in BR97 cells. These results indicate that, in BR97 cells, both caspases are functional and suggest that CD95-apoptosis resistance may result from the presence of inhibitory factor(s). Constitutive high level expression of the apoptotic inhibitor c-FLIP was observed in the CD95-resistant BR97 cell line compared to B593. Moreover, downregulation of c-FLIP expression level by protein synthesis inhibition strictly correlated with restored sensitivity to CD95-mediated apoptosis in BR97 cells. Furthermore, we demonstrate that c-FLIP is recruited to the CD95 DISC in BR97 cells together with caspase-8 and FADD. The data presented in this study strongly suggests that, in a B-NHL-derived cell line, resistance to CD95-mediated apoptosis results from endogenous high level expression of apoptotic inhibitor c-FLIP.  相似文献   

11.
PARP1 inhibitors are approved therapeutic agents in ovarian carcinomas, and have clinical activity in some breast cancers. As a single agent, niraparib killed ovarian and mammary tumor cells via an ATM-AMPK-ULK1 pathway which resulted in mTOR inactivation and the formation of autophagosomes, temporally followed by autolysosome formation. In parallel, niraparib activated a CD95-FADD-caspase 8 pathway, and collectively these signals caused tumor cell death that was suppressed by knock down of Beclin1, ATG5, CD95, FADD or AIF; or by expression of c-FLIP-s, BCL-XL or dominant negative caspase 9. The HDAC inhibitors AR42 and sodium valproate enhanced niraparib lethality in a greater than additive fashion. HDAC inhibitors enhanced niraparib lethality by increasing activation of the ATM-AMPK-ULK1-autophagy and CD95-FADD-caspase 8 pathways. Knock down of eIF2α, ATM, AMPKα, ULK1, Beclin1 or ATG5 reduced tumor cell killing by the niraparib plus HDAC inhibitor combination. Blockade of either caspase 9 function or that of cathepsin B partially prevented cell death. As a single agent niraparib delayed tumor growth, but did not significantly alter the tumor control rate. Tumors previously exposed to niraparib had activated the ERK1/2 and AKT-mTOR pathways that correlated with increased plasma levels of IL-8, MIF, EGF, uPA and IL-12. Collectively our findings argue that the addition of HDAC inhibitors to niraparib enhances the anti-cancer activity of the PARP1 inhibitor niraparib.  相似文献   

12.
The balance between the pro-apoptotic lipids ceramide and sphingosine and the pro-survival lipid sphingosine 1-phosphate (S1P) is termed the "sphingosine rheostat". Two isozymes, sphingosine kinase 1 and 2 (SK1 and SK2), are responsible for phosphorylation of pro-apoptotic sphingosine to form pro-survival S1P. We have previously reported the antitumor properties of an SK2 selective inhibitor, ABC294640, alone or in combination with the multikinase inhibitor sorafenib in mouse models of kidney carcinoma and pancreatic adenocarcinoma. Here we evaluated the combined antitumor effects of the aforementioned drug combination in two mouse models of hepatocellular carcinoma. Although combining the SK2 inhibitor, ABC294640, and sorafenib in vitro only afforded additive drug-drug effects, their combined antitumor properties in the mouse model bearing HepG2 cells mirrored effects previously observed in animals bearing kidney carcinoma and pancreatic adenocarcinoma cells. Combining ABC294640 and sorafenib led to a decrease in the levels of phosphorylated ERK in SK-HEP-1 cells, indicating that the antitumor effect of this drug combination is likely mediated through a suppression of the MAPK pathway in hepatocellular models. We also measured levels of S1P in the plasma of mice treated with two different doses of ABC294640 and sorafenib. We found decreases in the levels of S1P in plasma of mice treated daily with 100 mg/kg of ABC294640 for 5 weeks, and this decrease was not affected by co-administration of sorafenib. Taken together, these data support combining ABC294640 and sorafenib in clinical trials in HCC patients. Furthermore, monitoring levels of S1P may provide a pharmacodynamic marker of ABC294640 activity.  相似文献   

13.
Sorafenib, a multi‐kinase inhibitor, is the only standard clinical drug for patients with advanced hepatocellular carcinoma (HCC); however, development of sorafenib resistance in HCC often prevents its long‐term efficacy. Therefore, novel targets and strategies are urgently needed to improve the antitumor effect of sorafenib. In the present study, we examined the novel mechanisms of sorafenib resistance of HCC cells by investigating the difference in sorafenib sensitivity between two HCC cell lines. Sorafenib induced more apoptosis of HepG2 cells compared to Hep3B cells. Sorafenib exposure to HepG2 cells but not Hep3B cells increased the expression of proapoptotic factor PUMA, and activated PARP and caspase‐3. Notably, microRNA‐181a (miR‐181a) expression levels were lower in HepG2 cells than in Hep3B cells. Exogenous miR‐181a expression in HepG2 cells reduced apoptosis, whereas inhibition of miR‐181a in Hpe3B cells increased apoptosis. In addition, we demonstrated that miR‐181a directly targets RASSF1, a MAPK signaling factor, and knockdown of RASSF1 increased sorafenib resistance. Taken together, these results suggest that miR‐181a provokes sorafenib resistance through suppression of RASSF1. Our data provide important insight into the novel therapeutic strategy against sorafenib resistance of HCC cells by targeting of miR‐181a pathway.  相似文献   

14.
15.
16.
Sorafenib is a multi-targeted kinase inhibitor and has been the subject of extensive clinical research in advanced non-small cell lung cancer (NSCLC). However, sorafenib fails to improve overall survival of patients with advanced NSCLC. The molecular mechanisms that account for this phenomenon are unclear. Here we show that sorafenib treatment stabilizes epidermal growth factor receptor (EGFR) and activates EGFR pathway. Moreover, this is partly mediated by stabilization of histone deacetylase 6 (HDAC6), which has been shown to regulate EGFR endocytic trafficking and degradation. Overexpression of HDAC6 confers resistance to sorafenib in NSCLC cells. Inhibition of HDAC6 with selective inhibitors synergizes with sorafenib to kill NSCLC cells via inhibition of sorafenib-mediated EGFR pathway activation. Taken together, our findings might partly explain the failure of Phase III trial of sorafenib in improving overall survival of advanced NSCLC patients and bear possible implications for the improvement on the efficacy of sorafenib in treatment of NSCLC.  相似文献   

17.
Glutamate has been implicated in tumorigenesis through activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR). However, the function of a glutamate-to-AMPAR signal in pancreatic ductal adenocarcinoma (PDAC) has remained elusive. We now show that glutamate-mediated AMPA receptor activation increases invasion and migration of pancreatic cancer cells via activation of the classical MAPK pathway. Glutamate levels were increased in pancreatic cancer accompanied by downregulation of GluR subunits 1, 2, and 4. In pancreatic cancer precursor lesions, pancreatic intraepithelial neoplasia (PanIN), GluR1 subunit levels were strikingly and step-wise increased but its expression was rare in PDAC. Pharmacological inhibition or RNAi-mediated suppression of GluR1 or GluR2 did not affect cancer cell growth but significantly decreased invasion. In a K-ras wildtype cell line, AMPA receptor activation enhanced K-ras activity and--further downstream--phosphorylation of p38 and of p44/42. Preemptive blockade of AMPA receptors in a mouse model of pancreatic cancer inhibited tumor cell settling. AMPA receptor activation thus not only activates MAPK signalling but also directly increases activity of K-ras. Glutamate might serve as a molecular switch that decreases the threshold of K-ras-induced oncogenic signalling and increases the chance of malignant transformation of pancreatic cancer precursor lesions.  相似文献   

18.
Systemic chemotherapeutic treatment for unresectable and/or aggressive meningiomas is still unsatisfying. PDGF receptor (PDGFR)-mediated activation of mitogenic signalling has been shown to be active in meningiomas. Therefore, we evaluate in vitro and in vivo the effects of inhibiting PDGFR using the clinically well-characterised tyrosine kinase inhibitors sorafenib or regorafenib in meningioma models. IOMM-Lee meningioma cells were used to assess cytotoxic effects, inhibition of proliferation, induction of apoptosis, as well as inhibition of migration and motility by sorafenib and regorafenib. Using an orthotopic mouse xenograft model, growth inhibition as monitored by magnetic resonance imaging, and overall survival of sorafenib- or regorafenib-treated mice compared with control animals was determined. Treatment of malignant IOMM-Lee cells resulted in significantly reduced cell survival and induction of apoptosis following regorafenib and sorafenib treatment. Western blots showed that both drugs target phosphorylation of p44/42 ERK via downregulation of the PDGFR. Both drugs additionally showed significant inhibition of cell motility and invasion. In vivo, mice with orthotopic meningioma xenografts showed a reduced volume (n.s.) of signal enhancement in MRI (mainly tumour) following sorafenib and regorafenib treatment. This was translated in a significantly increased overall survival time (p ≤ 0.05) for regorafenib-treated mice. Analyses of in vivo-grown tumours demonstrated again reduced PDGFR expression and expression/phosphorylation of p44/42. Sorafenib and regorafenib show antitumour activity in vitro and in vivo by targeting PDGFR and p44/42 ERK signalling.  相似文献   

19.

Purpose

It has recently been recognised that anticancer chemotherapy can elicit an immunogenic form of apoptosis characterised by the exposure of calreticulin (CRT) on the surface of dying tumour cells, entailing an immune response that contributes to the therapeutic outcome. CRT exposure has been found to be induced by anthracyclins and oxaliplatin, but not by other proapoptotic antineoplastic agents including etoposide, camptothecin and cisplatin. In this study, we examined the histone deacetylase inhibitor vorinostat for its capability to stimulate CRT exposure in tumour cells.

Methods

Childhood tumour cells, i.e. the brain tumour cell lines PFSK and DAOY and the Ewing’s sarcoma cell line CADO-ES-1, were treated with vorinostat, and CRT exposure was determined by flow cytometric analysis of CRT immunofluorescence. Combination effects of vorinostat/TRAIL and vorinostat/bortezomib were also assessed.

Results

Vorinostat treatment induced CRT exposure in PFSK and DAOY cells, but not in caspase-8-deficient CADO-ES-1 cells. CRT exposure could be prevented by the pan-caspase inhibitor z-VAD-fmk and by brefeldin A, an inhibitor of Golgi-mediated transport.

Conclusion

Vorinostat has the capacity to elicit CRT exposure, suggesting its usefulness as immunogenic antitumour agent.  相似文献   

20.
In this study, we detected the expression of FACL4 mRNA in 40 patients with hepatic carcinoma and its adjacent normal tissues by semi-quantitative RT-PCR. The changes of proliferation and apoptosis of hepatic cancer cell line HepG2 with FACL4 protein expression were examined by MTT and flow cytometry respectively after FACL4 selective inhibitor triacsin C treatment. The activity related to apoptosis of proteinases, caspase-3, caspase-8 and caspase-9, were detected by colorimetry. The expression related to apoptosis of protein, wt-p53, Bax and Bcl-2, in HepG2 cells were evaluated by S-P immunocytochemical dyeing. The results were: (1) FACL4 mRNA was expressed in 95.0% of hepatic cancer tissue, while the positive expression of FACL4 mRNA was 82.5% in cancer adjacent normal liver tissues. Moreover, there was a statistically significant increased in quantity of FACL4 mRNA in cancer tissues compared with adjacent normal liver tissues. (2) The concentration of triacsin C (0.5-2 mg/L) could inhibit the proliferation and induce the apoptosis of HepG2 cells significantly in a dose- and time-effect. (3) During the apoptosis of HepG2 cells induced by triacsin C, flow cytometry coupled with Rhodamine 123 dyeing showed that mitochondrial transmembrane potential of HepG2 declined significantly, and the activity of caspase-9 and caspase-3 increased more remarkably than caspase-8. Besides, the increased apoptosis was accompanied by increased Bax, and decreased wtp53 and Bcl-2 protein levels. The present study suggested that FACL4 might play a role in the growth of hepatic cancer cells. FACL4 selective inhibitor triacsin C leads to a marked growth inhibition of human liver tumor cells, based on the inhibition of proliferation and induction of apoptosis. The apoptotic process was mediated by intrinsic mitochondrial apoptotic pathway due to activation of caspase-9 and caspase-3. The increased apoptosis was accompanied by upregulation of Bax, and decreased wt-p53 and Bcl-2 protein level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号