首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nociceptin (orphanin FQ) is the recently discovered peptide agonist for the orphan receptor opioid receptor-like 1 (ORL1). Despite the high sequence homology between ORL1 and the opioid receptors, most opioids lack affinity for the nociceptin receptor. The affinity and functional profile of opioids possessing activity at the nociceptin receptor was determined using [3H]nociceptin and nociceptin-stimulated [35S]GTPgammaS binding. The mu-opioid receptor-selective agonist lofentanil potently and competitively displaced [3H]nociceptin at rat brain receptors (IC(50) 62 nM). Lofentanil exhibited full agonism for enhancement of [35S]GTPgammaS binding to human recombinant ORL1 receptors (EC(50) 50 nM). The related piperidines ohmefentanyl and sufentanil and the nonselective opioid receptor agonist etorphine were less potent nociceptin receptor agonists. The kappa(1)+kappa(3)-opioid receptor agonist/mu-opioid receptor antagonist naloxone benzoylhydrazone was a pure antagonist at both rat brain and human ORL1 receptors. The nonselective opioid receptor partial agonist buprenorphine and the nonselective opioid receptor antagonist (-)-quadazocine exhibited pure antagonism at rat brain receptors, but displayed partial agonism at human ORL1 receptors. Thus, opioids displaying full agonism at the nociceptin receptor are also opioid receptor agonists, whereas opioids that are antagonists or partial agonists at the nociceptin receptor show antagonism or partial agonism at opioid receptors. In addition, the stereospecificity required at opioid receptors appears to be retained at the nociceptin receptor, since (+)-quadazocine is inactive at both receptors. These findings illustrate the structural and functional homology of the opioid recognition site on these two receptor classes and suggest that opioids may provide leads for the design of nonpeptide nociceptin receptor agonists and antagonists lacking affinity for the classical opioid receptors.  相似文献   

2.
1: Non-dopamine (putative GABAergic) neurons in the ventral tegmental area are in a position to influence mesolimbic functions by their inhibitory terminals that impinge locally on dopamine neurons and via their GABAergic efferents that innervate mesolimbic structures. In the present study we investigated responses of non-dopamine and dopamine neurons, recorded intracellularly in the rat midbrain slice, to orphanin FQ/nociceptin, the endogenous ligand for opioid receptor-like orphan receptors. 2: When recording in either non-dopamine or dopamine neurons, orphanin FQ/nociceptin reduced the frequency of spike firing and caused membrane hyperpolarization under current-clamp, or produced outward current under voltage-clamp. Such responses were concentration-dependent and reversed at -108 mV and -102 mV in non-dopamine and dopamine neurons, respectively. 3: Hyperpolarizations to orphanin FQ/nociceptin were not altered by tetrodotoxin or the opioid receptor antagonist naloxone, but were reduced by the opioid receptor-like orphan receptor antagonist [Phe1(1)phiCH(2)-NH)Gly(2)]NC(1-13)NH(2) (1 microM). 4: In dopamine neurons, orphanin FQ/nociceptin reduced the frequency of bicuculline- and tetrodotoxin-sensitive spontaneous inhibitory postsynaptic potentials, and reduced the amplitude of stimulus-evoked inhibitory postsynaptic potentials. 5: Taken together, the above data provide evidence that both non-dopamine and dopamine neurons are important substrates for orphanin FQ/nociceptin within the ventral tegmental area. Simultaneous inhibition of both non-dopamine and dopamine pathways by orphanin FQ/nociceptin may account for its influences on various ventral tegmental area-related functions.  相似文献   

3.
The immunomodulatory effects of kappa-opioid agonists at the intestinal epithelial level are not well characterized. In the present study, we determined that Caco-2 cells express the kappa-opioid receptor and its activation by trans-(+/-)-3,4-dichloro-N-methyl-N[2-(1-pyrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate (U-50488) leads to decreased interleukin-8 secretion in the presence of interleukin-1beta. These effects were detected over a wide range (10 nM-50 microM) of U-50488 concentrations and were reversible using the kappa-opioid receptor antagonist nor-binaltorphimine. Our data suggest that activation of kappa-opioid receptors on Caco-2 cells decreases interleukin-8 secretion and thus may alter the chemotactic stimulus at the epithelial level.  相似文献   

4.
The isolated perfused guinea pig lung was used to investigate the effect of nociceptin against bronchoconstriction elicited by endogenous and exogenous tachykinins. The opioid receptor-like 1 (ORL1) receptor agonist, nociceptin/orphanin FQ (0.001-1 microM) produced a dose-related inhibition of the capsaicin-induced bronchoconstriction (10(-5)-10(3) microg) in isolated guinea pig lung (P<0.05), a response mediated by the release of endogenous tachykinins from lung sensory nerves. The new ORL1 receptor antagonist 1-[(3R, 4R)-1-Cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-2H-benzimidazol-2-one (J-113397) (0.3 microM) significantly blocked the inhibitory effect of nociceptin/orphanin FQ (0.01 microM) on capsaicin-induced bronchoconstriction, whereas the non-selective opioid receptor antagonist naloxone (1 microM) had no effect. Nociceptin/orphanin FQ (1 microM) did not affect the bronchoconstriction induced exogenously by the tachykinin NK2 receptor agonist neurokinin A. In conclusion, the present data provide evidence that nociceptin inhibits capsaicin-evoked tachykinin release from sensory nerve terminals in guinea pig lung by a prejunctional mechanism. This inhibitory action occurs independently from activation of opioid receptors. The present study also indicates that J-113397 is a potent ORL1 receptor antagonist.  相似文献   

5.
1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl -1, 3-dihydro-2H-benzimidazol-2-one (J-113397) was found to be the first potent nonpeptidyl ORL1 receptor antagonist (K(i): cloned human ORL1=1.8 nM) with high selectivity over other opioid receptors (K(i): 1000 nM for human mu-opioid receptor, >10,000 nM for human delta-opioid receptor, and 640 nM for human kappa-opioid receptor). In vitro, J-113397 inhibited nociceptin/orphanin FQ-stimulated [35S]guanosine 5'-O-(gamma-thio)triphosphate (GTP gamma S) binding to Chinese Hamster Ovary (CHO) cells expressing ORL1 (CHO-ORL1) with an IC(50) value of 5.3 nM but had no effect on [35S]GTP gamma S binding by itself. Schild plot analysis of the [35S]GTP gamma S binding assay and cAMP assay using CHO-ORL1 indicated competitive antagonism of J-113397 on the ORL1 receptor. In CHO cells expressing mu-, delta- or kappa-opioid receptors, J-113397 had no effects on [35S]GTP gamma S binding up to a concentration of 100 nM, indicating selective antagonism of the compound on the ORL1 receptor. In vivo, J-113397, when administered subcutaneously (s.c.), dose-dependently inhibited hyperalgesia elicited by intracerebroventricular (i.c.v.) administration of nociceptin/orphanin FQ in a tail-flick test with mice. An in vitro binding study using mouse brains indicated that J-113397 possesses high affinity for the mouse ORL1 receptor (K(i): 1.1 nM) as well as the human receptor. In summary, J-113397 is the first potent, selective ORL1 receptor antagonist that may be useful in elucidating the physiological roles of nociceptin/orphanin FQ.  相似文献   

6.
The discovery of 8-(5,8-dichloro-1,2,3,4-tetrahydro-naphthalen-2-yl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one, 1a, as a high-affinity ligand for the human ORL1 (orphanin FQ/nociceptin) receptor led to the synthesis of a series of optimized ligands. These compounds exhibit high affinity for the human ORL1 receptor, exhibit moderate to good selectivity versus opioid receptors, and behave as full agonists in biochemical assays. In this paper we present the synthesis, structure-activity relationship (SAR), and biochemical characterization of substituted 1-phenyl-1,3,8-triazaspiro[4.5]decan-4-ones culminating in the discovery of 8-(5-methyl-1,2,3,4-tetrahydro-naphthalen-1-yl)-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one, 1p, and 8-acenaphten-1-yl-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one 1q, two high-affinity, potent ORL1 receptor agonists with good to moderate selectivity versus the other opioid receptors.  相似文献   

7.
This paper describes the synthesis of a series of N-[2-(1-pyrrolidinyl)ethyl]acetamides (1), methylated at C1 and/or C2 of the ethyl linking group, and their biological evaluation as opioid kappa agonists. Conformational analysis of corresponding desaryl analogues 2 suggested that only those compounds capable of occupying an energy minimum close to that of the known kappa agonist N-[2-(1-pyrrolidinyl)cyclohexyl] acetamide U-50488 might possess kappa agonist properties. Starting from chiral amino acids, other alkyl and aryl substituents were introduced at C1 of the ethyl-linking moiety, giving compounds capable of adopting the same conformation as U-50488. The most potent of these, 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl)ethyl] acetamide (8), was 146-fold more active than U-50488 in vitro in the mouse vas deferens model and exhibited potent naloxone-reversible analgesic effects (ED50 = 0.004 mg/kg sc) in an abdominal constriction model.  相似文献   

8.
Previous studies indicate that in antinociceptive procedures employing thermal, chemical and electrical stimuli, opioids are generally more potent in male than female rodents. The purpose of the present study was to examine nociception and opioid antinociception in male and female rats using a mechanical nociceptive stimulus. Results indicated that males had a higher threshold for nociception, and in tests in which a constant pressure was applied to the hindpaw, the paw withdrawal latencies were consistently longer in males. Opioids with activity at the mu receptor, including levorphanol, morphine, dezocine, buprenorphine, butorphanol and nalbuphine, were generally more potent and/or effective in males. In contrast, sex differences were not consistently observed with the kappa-opioid receptor agonists spiradoline, (5,7,8b)-N-methyl-N[2-1(1-pyrrolidinyl),1-oxaspiro[4,5]dec-8-yl benzeneacetamide (U69593), trans-(+/-)-3,4-dichloro-N-methyl-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (U50488), enadoline, ethylketocyclazocine, and nalorphine. These findings suggest that males and females differ in their responsiveness to mechanical nociception and that sex differences in sensitivity to kappa-, but not mu-, opioid receptor agonists are specific to certain nociceptive stimulus modalities.  相似文献   

9.
We discovered a potent nociceptin/orphanin FQ receptor (ORL1) receptor antagonist, J-113397 (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-2H-benzimidazol-2-one). J-113397 inhibited [125I][Tyr(14)]nociceptin binding to Chinese hamster ovary (CHO) cells expressing ORL1 receptor in a dose-dependent manner (IC(50); 2. 3 nM), but showed 600-fold or less affinity for mu-, delta- and kappa-opioid receptors. Nociceptin/orphanin FQ-induced suppression of cyclic AMP accumulation elicited by forskolin was completely inhibited by J-113397 with an IC(50) value of 26 nM. These results indicate that J-113397 is a potent and selective nonpeptidyl antagonist of the ORL1 receptor.  相似文献   

10.
The potential interactions of natively expressed mu-opioid and opioid receptor-like (ORL1) receptors were studied by exposing intact BE(2)-C cells to agonists or antagonists for 1 h. Pretreatment with the mu-opioid receptor agonist, [D-Ala(2), N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), or the ORL1 receptor agonist, orphanin FQ/nociceptin desensitized both mu-opioid and ORL1 receptor responses. beta-Funaltrexamine (beta-FNA) pretreatment also blocked both mu-opioid and ORL1 receptor responses, but only mu-opioid receptor binding was reduced. Moreover, beta-FNA (1 microM) failed to inhibit specific ORL1 receptor binding.  相似文献   

11.
Gastric acid secretion has been proposed to be regulated by opioid receptors in the central nervous system (CNS). However, whether the effect of morphine is stimulatory or inhibitory, and the role of type specificity of opioid receptors have not been established. We investigated the effects of centrally injected opioid receptor agonists on gastric acid secretion in the perfused stomach of urethane-anesthetized rats. Injection of morphine (1-30 microg/rat, mu-opioid receptor agonist) into the fourth cerebroventricle inhibited the secretion stimulated by i.v. injection of 2-deoxy-D-glucose. Morphine itself did not show an inhibitory effect. In contrast, injection of kappa(1)-opioid receptor agonists such as (5alpha,7alpha,8beta)-(+)-N-methyl-N-(7-[1-pyrrolidinyl]-1-oxaspiro[4.5]dec-8-yl)benzeneacetamide (U59593, 0.3-3 microg) and (trans)-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl) benzeneacetamide hydrochloride (U50488H, 10 microg) and the kappa(2)-opioid receptor agonist, bremazocine (3 microg), into the lateral cerebroventricle markedly stimulated secretion. The effect of U59593 was inhibited by naloxone and norbinaltorphimine (an antagonist of kappa-opioid receptors) and in vagotomized rats. [D-Pen(2)-D-Pen(5)]enkephalin (10microg, delta-opioid receptor agonist) had no effect on secretion. The dual roles of the opioid system in the CNS in gastric acid secretion are discussed.  相似文献   

12.
The antinociceptive potency of nociceptin/orphanin FQ, an opioid-like orphan receptor agonist, was examined using the tail-flick test and the formalin-induced nociception test in diabetic mice. Nociceptin/orphanin FQ, at doses of 0.1 to 10 nmol, intrathecal (i.t.), produced a marked and dose-dependent inhibition of the tail-flick response in both non-diabetic and diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ in the tail-flick test in diabetic mice was greater than that in non-diabetic mice. The antinociceptive effect of nociceptin/orphanin FQ was not antagonized by pretreatment with either beta-funaltrexamine, a selective mu-opioid receptor antagonist, naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist. The antinociceptive effects of nociceptin/orphanin FQ in diabetic, but not in non-diabetic mice, were abolished when mice were pretreated with capsaicin i.t. 24 h before testing. In the formalin test, nociceptin/orphanin FQ also produced a marked and dose-dependent antinociceptive effect on the first-phase response, but not the second phase-response, in both diabetic and non-diabetic mice. Furthermore, nociceptin/orphanin FQ significantly and dose-dependently reduced the flinching responses to i.t.-administered substance P in diabetic mice, but not in non-diabetic mice. The results of the present experiments clearly indicate that the antinociceptive potency of nociceptin/orphanin FQ is significantly greater in diabetic mice than in non-diabetic mice. Furthermore, the results of this study suggest that the reduction of substance P-mediated nociceptive transmission in the spinal cord may be responsible for the antinociceptive effect of nociceptin/orphanin FQ.  相似文献   

13.
Nociceptin/orphanin FQ and nocistatin are two neuropeptides with opposing effects on spinal neurotransmission and nociception. Nociceptin/orphanin FQ selectively suppresses excitatory glutamatergic neurotransmission, while nocistatin selectively interferes with glycinergic and gamma-aminobutyric acid (GABA)-ergic transmission. Here, we performed whole-cell patch-clamp recordings from superficial rat spinal cord dorsal horn neurons to investigate the role of the opioid receptor-like (ORL)1 receptor for modulatory actions of these peptides. The partial ORL1 receptor antagonist [phe1psi(CH(2)-NH)Gly(2)]nociceptin-(1-13)NH(2) competitively reversed the effects of nociceptin/orphanin FQ on excitatory neurotransmission (estimated pA(2) 6.43), but left the suppression of inhibitory synaptic transmission by nocistatin unaffected. These results indicate that the inhibitory action of nociceptin/orphanin FQ on glutamatergic transmission is mediated via ORL1 receptors, while nocistatin acts via a different so far unidentified receptor.  相似文献   

14.
Nociceptin, also known as orphanin FQ, is a opioid-like neuropeptide that mediates its effects at the nociceptin receptor, a member of the G protein-coupled receptor superfamily. In mammals, nociceptin produces analgesia after spinal administration, however the role of nociceptin and nociceptin receptors in the modulation of noxious stimuli in non-mammalian species has not been examined. In an amphibian pain model using the acetic acid test with Rana pipiens, nociceptin and nociceptin1-13 amide produced dose-dependent antinociception (1-100 nmol), blocked by the nociceptin antagonist, [Nphe1]-nociceptin1-13 amide (30 nmol), but not the opioid antagonist, naltrexone (100 nmol/g, s.c.). Conversely, the antinociceptive effects of micro, delta, and kappa opioid receptor agonists were not blocked by the nociceptin antagonist. Nociceptin and nociceptin1-13 amide were the least potent of the opioid agonists tested. These studies demonstrate that spinal nociceptin receptors and not opioid receptors mediate the antinociceptive effect of nociceptin. Considered with previous findings, these behavioral data supports a role for nociceptin inhibition of spinal nociception in amphibians and perhaps all vertebrates.  相似文献   

15.
The intracellular free calcium concentration ([Ca2+]i) was measured in single NG108-15 cells using indo-1-based microfluorimetry. In cells differentiated for 6-14 days in serum-free, forskolin (5 microM)-supplemented medium, application of micromolar concentrations of [D-Ala2,D-Leu5]-enkephalin (DADLE) inhibited Ca2+ influx mediated by voltage-gated Ca2+ channels. DADLE, at concentrations ranging from 1 nM to 1 microM, also produced rapid transient increases in [Ca2+]i (EC50 = 10 nM). The [Ca2+]i increases elicited by DADLE did not correlate with the inhibitory effects of the peptide. DADLE-induced [Ca2+]i increases were blocked by naloxone. In single cells, sequential application of selective opioid agonists (30 nM) evoked responses of the rank order DADLE = [D-Pen2,D-Pen5]-enkephalin > (trans)-(+-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl) benzeneacetamide > [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin, consistent with activation of a delta-opioid receptor. The response was completely blocked by removal of extracellular Ca2+ or application of 1 microM nitrendipine, indicating that the increase in [Ca2+]i results from Ca2+ influx via dihydropyridine-sensitive, voltage-gated Ca2+ channels. Substitution of N-methyl-D-glucamine for extracellular Na+ or application of 1 microM tetrodotoxin greatly reduced, and in some cases blocked, the DADLE-induced [Ca2+]i increase, consistent with amplification of the response by voltage-gated Na+ channels. The [Ca2+]i increase was mimicked by both dibutyryl-cAMP and phorbol 12,13-dibutyrate. These findings are consistent with a delta-opioid-induced depolarization, possibly mediated by a second messenger, that subsequently recruits voltage-sensitive Ca2+ channels. In contrast to differentiated cells, undifferentiated cells responded to DADLE with a modest [Ca2+]i increase that was not sensitive to nitrendipine. In these cells, activation of the same second messenger system may elevate [Ca2+]i by mobilization from intracellular stores rather than influx. In addition to previously described inhibitory coupling to adenylyl cyclase and Ca2+ channels in NG108-15 cells, these results suggest that a novel, excitatory, effector system may also couple to opioid receptors.  相似文献   

16.
1. [Phe1psi(CH2-NH)Gly2]nociceptin-(1 - 13)-NH2 (Phepsi), a tridecapeptide analogue of orphanin FQ/nociceptin (OFQ/N), was introduced as a competitive antagonist of opioid receptor-like orphan receptor (ORL1) in guinea-pig ileum and mouse vas deferens preparations in vitro but was recently found to act as an agonist in vivo. 2. In the periaqueductal gray, a site enriched with both OFQ/N and ORL1 and involved in OFQ/N-induced hyperalgesia and anti-analgesia, the effects of Phepsi and OFQ/N on the membrane current were studied using whole cell patch clamp recording technique in rat brain slices. 3. OFQ/N (0.01 - 1 microM) activated an inwardly rectifying type of K+ channels in ventrolateral neurons of PAG. Phepsi (0.03 - 1 microM), like OFQ/N, also activated this inward rectifier but had only 30% efficacy of OFQ/N. 4 At maximal effective concentration (1 microM), Phepsi reversed the increment of K+ conductance induced by OFQ/N (300 nM) by 46%. On the other hand, Phepsi also prevented the effect of OFQ/N if pretreated before OFQ/N. 5 It is suggested that Phepsi acts as a partial agonist of ORL1 that mediates the activation of inwardly rectifying K+ channels in ventrolateral neurons of rat periaqueductal gray.  相似文献   

17.
We studied the central and peripheral antitussive effect of ORL(1) receptor activation with nociceptin/orphanin FQ in conscious guinea-pigs. In guinea-pig cough studies, nociceptin/orphanin FQ (10, 30, and 90 microg) given directly into the CNS by an intracerebroventricular (i.c.v.) route inhibited cough elicited by capsaicin exposure by approximately 23, 29 and 52%, respectively. The antitussive activity of nociceptin/orphanin FQ (90 microg, i.c.v.) was blocked by the selective ORL(1) antagonist [Phe(1)gamma(CH(2)-NH)Gly(2)]nociceptin-(1-13)-NH(2) (180 microg, i.c.v.) and J113397 (10 mg kg(-1), i.p.) but not by the opioid antagonist, naltrexone (3 mg kg(-1), i.p.). Furthermore, intravenous (i.v.) nociceptin/orphanin FQ (1.0 and 3.0 mg kg(-1)) also inhibited cough approximately by 25 and 42%, respectively. These findings indicate that selective ORL(1) agonists display the potential to inhibit cough by both a central and peripheral mechanism, and potentially represent a novel therapeutic approach for the treatment of cough.  相似文献   

18.
kappa-Opioid receptor agonists decrease the levels of extracellular dopamine in vivo and in vitro. However, the mechanism(s) underlying these actions are unclear. The objective of this study was to distinguish between an effect of the selective kappa-opioid receptor agonist U-50,488H ((trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl)benzeneacetamide methanesulfonate) on secretion and reuptake of dopamine by PC12 cells. The data show that U-50,488H has both a modest effect to increase dopamine release and a more pronounced effect to inhibit dopamine uptake. Neither effect was sensitive to nor-binaltorphimine or naloxone, suggesting that they are not mediated through an opioid receptor.  相似文献   

19.
The effect of fluoxetine, a selective 5-HT reuptake inhibitor on the analgesic and hypothermic response of trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide methane sulphonate (U-50,488H) and (+/-)-trans-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzo[b] thiophene-4-acetamide (PD 117302), kappa-opioid receptor agonists, was determined in female Sprague-Dawley rats using the tail-flick method and telethermometer, respectively. Intraperitoneal injections of U-50,488H (U50) and PD 117302 (PD117) produced a dose-dependent analgesic and hypothermic response. Fluoxetine (10 mg/kg, i.p.) by itself did not produce an analgesic response. The analgesic response to U50 (10, 20, and 40 mg/kg, i.p.) and PD117 (7.5, 15, and 22.5 mg/kg, i.p.) was potentiated by fluoxetine injected intraperitoneally 60 min prior to the injection of kappa-opioid agonists. Similarly, the hypothermic response of U50 (20 and 40 mg/kg, i.p.) and PD117 (7.5, 15, and 22.5 mg/kg, i.p.) was potentiated by fluoxetine. The results indicate that selective kappa-opioid receptor agonists-induced analgesia and hypothermia is potentiated by fluoxetine, suggesting the role of extracellular 5-HT in the kappa-opioid receptor-mediated analgesia and hypothermia.  相似文献   

20.
Since their discovery a decade ago, remarkable progress has been made toward understanding the biological function and significance of the opioid receptor-like-1 (ORL-1) receptor and its endogenous peptide ligand, nociceptin. The human nociceptin receptor, herein referred to as ORL-1, but also known as OP4 (the fourth member of opioid peptide receptor family) or nociceptin/orphanin FQ peptide (NOP) receptor, was first identified as an orphan opioid receptor with close homology to the classical μ-, κ-, and δ-opioid receptors. ORL-1 does not bind endogenous ligands of the other opioid receptors with high affinity, but instead prefers the 17 amino acid peptide nociceptin. The obvious homologies of ORL-1 to opioid receptors, and its ligand nociceptin to opioid peptide ligands, led to a period of intense investigation that resulted in a number of significant reports describing the biology of the receptor and ligand. The emerging pharmacological evidence from these reports suggests that ORL-1 agonists may be clinically useful for treatment of stress, anxiety, substance abuse (opioid and alcohol), anorexia, cachexia, cough, asthma, and possibly neuropathic pain/allodynia. The peripheral effects of nociceptin suggest that agonists may have utility in the treatment of gastrointestinal motility disorders, water retention, and hypertension. ORL-1 antagonists may be useful in enhancing cognitive function and treating locomotor disorders such as Parkinsonism. In addition to research into the fundamental biology of ORL-1 and nociceptin, noteworthy advances have been made in the discovery of new peptide and non-peptide agonists and antagonists of the ORL-1 receptor leading to a better understanding of its involvement in a variety of biological processes. This review highlights the rationale for the development of ORL-1 ligands and recent progress made by different research groups towards the development of peptidic and non-peptidic ORL-1 agonists or antagonists over the last four years. To add perspective on the commercial potential of this research area, the development status of advanced new molecules is addressed together with any pharmacological characterisation of these entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号