首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfusion studies based on pulsed arterial spin labeling have primarily applied hyperbolic secant (HS) pulses for spin inversion. To optimize perfusion sensitivity, it is highly desirable to implement the HS pulse with the same slice width as the width of the imaging pulse. Unfortunately, this approach causes interactions between the slice profiles and manifests as residual signal from static tissue in the resultant perfusion image. This problem is currently overcome by increasing the selective HS width relative to the imaging slice width. However, this solution increases the time for the labeled blood to reach the imaging slice (transit time), causing loss of perfusion sensitivity as a result of T(1) relaxation effects. In this study, we demonstrate that the preceding problems can be largely overcome by use of the C-shaped frequency offset corrected inversion (FOCI) pulse [Ordidge et al., Magn Reson Med 1996;36:562]. The implementation of this pulse for multislice perfusion imaging on the cerebrum is presented, showing substantial improvement in slice definition in vivo compared with the HS pulse. The sharper FOCI profile is shown to reduce the physical gap (or "safety margin") between the inversion and imaging slabs, resulting in a significant increase in perfusion signal without residual contamination from static tissue. The mean +/- SE (n = 6) gray matter perfusion-weighted signal (DeltaM/M(o)) without the application of vascular signal suppression gradients were 1.19 +/- 0. 10% (HS-flow-sensitive alternating inversion recovery [FAIR]), and 1. 51 +/- 0.11% for the FOCI-FAIR sequence. The corresponding values with vascular signal suppression were 0.64 +/- 0.14%, and 0.91 +/- 0. 08% using the HS- and FOCI-FAIR sequences, respectively. Compared with the HS-based data, the FOCI-FAIR results correspond to an average increase in perfusion signal of up to between 26%-30%. Magn Reson Med 42:1098-1105, 1999.  相似文献   

2.
Optimal implementation of pulsed arterial spin labeling (PASL) methods such as flow-sensitive alternating inversion recovery (FAIR), require the minimization of interactions between the inversion and imaging slabs. For FAIR, the inversion:imaging slice thickness ratio (STR) is usually at least 3:1 in order to fully contain the extent of the imaging slice. The resulting gap exacerbates the transit time. So far, efforts to minimize the STR have concentrated on the inversion profile. However, the imaging profile remains a limiting factor especially for rapid sequences such as turbo fast low-angle shot (TurboFLASH) which uses short pulses. This study reports the implementation of a TurboFLASH sequence with optimized inversion and imaging profiles. Slice-selection is achieved with a preparation module incorporating a pair of identical adiabatic frequency offset corrected inversion (FOCI) pulses. The optimum radiofrequency (RF) and gradient scheme for this pulse combination is described, and the relaxation characteristics of the slice-selection scheme are investigated. Phantom experiments demonstrate a reduction in the STR to approximately 1.13:1. Implementation in an animal model is described, and the benefit of the improved profile in probing the sensitivity of the flow signal to tagging geometry is demonstrated. Sensitivity to transit time effects can be minimized with this sequence, and ASL methodologies can be better explored as a result of the improved conformance with the ideal of square slice profiles.  相似文献   

3.
Pulsed arterial spin-tagging techniques for perfusion measurements (e.g., echo planar MR imaging and signal targeting with alternating radiofrequency (EPISTAR), flow-sensitive alternating inversion recovery (FAIR), quantitative imaging of perfusion using a single subtraction (QUIPPS), uninverted FAIR (UNFAIR)) generally use hyperbolic secant (HS) pulses for spin inversion. The performance of these techniques depends on the inversion efficiency, as well as the sharpness of the slice profiles. Frequency offset corrected inversion (FOCI) pulses, a recently proposed HS variant, can provide slice profiles with edges that can be up to 10 times sharper than those obtained with conventional HS pulses. In this communication, the implementation and application of the C–shape FOCI pulse for perfusion imaging in rat brain with the FAIR technique is summarized. Despite providing a more rectangular slice profile than a conventional HS pulse, it is demonstrated both theoretically and experimentally that the FAIR perfusion signal is not increased by using a FOCI tagging pulse. However, the use of a FOCI inversion pulse is shown to significantly minimize static signal subtraction errors that are common with conventional HS pulses. Finally, the suitability of the pulse for perfusion studies is demonstrated, in vivo, on rat brain.  相似文献   

4.
An arterial spin tagging (AST) pulse sequence has been developed to measure T(1) and relative blood perfusion. This full sequence is composed of three sequences: selective tagging, nonselective tagging, and nontagging. Perfusion quantification error resulting from imperfect inversion and acquisition slice profiles has been addressed in the literature. In this work, the error is reduced through the application of optimized Shinnar-Le Roux (SLR) RF pulses and a semi-log linear regression data-processing technique. A threshold approach based on the breast tissue T(1) and relative blood perfusion is introduced to show that these two parameters can be applied to breast tissue differentiation and potentially to cancer detection.  相似文献   

5.
Velocity-driven adiabatic fast passage (AFP) is commonly employed for perfusion imaging by continuous arterial spin labeling (CASL). The degree of inversion of protons in blood determines the sensitivity of CASL to perfusion. For this study, a computer model of the modified Bloch equations was developed to establish the optimum conditions for velocity-driven AFP. Natural variations in blood velocity over the course of the cardiac cycle were found to result in significant variations in the degree of inversion. However, the mean degree of inversion was similar to that for blood moving at a constant velocity, equal to the time-averaged mean, at peak velocities and heart rates within normal ranges. A train of RF pulses instead of a continuous RF pulse for labeling was found to result in a highly nonlinear dependence of the degree of inversion on RF duty cycle. This may have serious implications for the quantification of perfusion.  相似文献   

6.
A dual navigator‐gated, flow‐sensitive alternating inversion recovery (FAIR) true fast imaging with steady precession (True‐FISP) sequence has been developed for accurate quantification of renal perfusion. FAIR methods typically overestimate renal perfusion when respiratory motion causes the inversion slice to move away from the imaging slice, which then incorporates unlabeled spins from static tissue. To overcome this issue, the dual navigator scheme was introduced to track inversion and imaging slices, and thus to ensure the same position for both slices. Accuracy was further improved by a well‐defined bolus length, which was achieved by a modification version of Q2TIPS (quantitative imaging of perfusion using a single subtraction, second version with interleaved thin‐slice TI1 periodic saturation): a series of saturation pulses was applied to both sides of the imaging slice at a certain time after the inversion. The dual navigator‐gated technique was tested in eight volunteers. The measured renal cortex perfusion rates were between 191 and 378 mL/100 g/min in the renal cortex with a mean of 376 mL/100 g/min. The proposed technique may prove most beneficial for noncontrast‐based renal perfusion quantification in young children and patients who may have difficulty holding their breath for prolonged periods or are sedated/anesthetized. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
PURPOSE: To propose new frequency offset corrected inversion (FOCI) pulses with significantly reduced radiofrequency (RF) power deposition for spin echo imaging by incorporating the variable-rate selective excitation (VERSE) schemes into the pulse design. MATERIALS AND METHODS: Two schemes are proposed to design the new FOCI pulses with dramatically reduced peak RF power requirements. In scheme A, the time-dilation function is derived from a predefined adiabaticity factor modulation function. In scheme B, the time-dilation function is predefined, while the adiabaticity factor is conserved. RESULTS: The new FOCI pulses are shown to be able to operate at reduced specific absorption rate (SAR), specifically at the same peak RF power as that of a five- or seven-lobe sinc inversion pulse of the same duration. Using the new FOCI pulse, significant gain in sensitivity was observed in in vivo spin-echo echo-planar imaging, which was attributed to the improved refocusing slice profile. CONCLUSION: The new FOCI pulses can replace the 180 degrees five- or seven-lobe sinc pulses in spin-echo imaging with the same peak RF power requirement and significantly improved slice profile.  相似文献   

8.
Quantitative imaging of perfusion using a single subtraction, second version (QUIPSS II) is a pulsed arterial spin labeling (ASL) technique for improving the quantitation of perfusion imaging by minimizing two major systematic errors: the variable transit delay from the distal edge of the tagged region to the imaging slices, and the contamination by intravascular signal from tagged blood that flows through the imaging slices. However, residual errors remain due to incomplete saturation of spins over the slab-shaped tagged region by the QUIPSS II saturation pulse, and spatial mismatch of the distal edge of the saturation and inversion slice profiles. By replacing the original QUIPSS II saturation pulse with a train of thin-slice periodic saturation pulses applied at the distal end of the tagged region, the accuracy of perfusion quantitation is improved. Results of single and multislice studies are reported.  相似文献   

9.
The radiofrequency (RF) transmit field is severely inhomogeneous at ultrahigh field due to both RF penetration and RF coil design issues. This particularly impairs image quality for sequences that use inversion pulses such as magnetization prepared rapid acquisition gradient echo and limits the use of quantitative arterial spin labeling sequences such as flow‐attenuated inversion recovery. Here we have used a search algorithm to produce inversion pulses tailored to take into account the heterogeneity of the RF transmit field at 7 T. This created a slice selective inversion pulse that worked well (good slice profile and uniform inversion) over the range of RF amplitudes typically obtained in the head at 7 T while still maintaining an experimentally achievable pulse length and pulse amplitude in the brain at 7 T. The pulses used were based on the frequency offset correction inversion technique, as well as time dilation of functions, but the RF amplitude, frequency sweep, and gradient functions were all generated using a genetic algorithm with an evaluation function that took into account both the desired inversion profile and the transmit field inhomogeneity. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
We introduce a selective adiabatic pulse sequence suitable for generating selective spin-echoes for both MR imaging and spectroscopy. The technique is simple; one uses the echo generated by any pair of identical selective adiabatic inversion pulses. The nonlinear phase across the slice is compensated perfectly by the second pi pulse. This compensation is immune to RF inhomogeneity and nonlinearity. For imaging applications, we concentrate on a reduced-power version of the pulse sequence in which time is traded off variably for RF amplitude in the presence of a time-varying gradient. This technique, known as variable-rate excitation, mildly degrades the off-resonant slice profile when applied to amplitude-modulated pulses. We present theoretical explanations and experimental results that show that the variable-rate adiabatic pulses are immune to off-resonant degradation of the magnitude normally encountered in MR imaging.  相似文献   

11.
Spatial encoding with multiband selective excitation (e.g., Hadamard encoding) has been restricted to a small number of slices because the RF pulse becomes unacceptably long when more than about eight slices are encoded. In this work, techniques to shorten multiband RF pulses, and thus allow larger numbers of slices, are investigated. A method for applying the techniques while retaining the capability of adaptive slice thickness is outlined. A tradeoff between slice thickness and pulse duration is shown. Simulations and experiments with the shortened pulses confirmed that motion-induced excitation profile blurring and phase accrual were reduced. The connection between gradient hardware limitations, slice thickness, and flow sensitivity is shown. Excitation profiles for encoding 32 contiguous slices of 1-mm thickness were measured experimentally, and the artifact resulting from errors in timing of RF pulse relative to gradient was investigated. A multiband technique for imaging 32 contiguous 2-mm slices, with adaptive slice thickness, was developed and demonstrated for coronary artery imaging in healthy subjects. With the ability to image high numbers of contiguous slices, using relatively short (1-2 ms) RF pulses, multiband encoding has been advanced further toward practical application.  相似文献   

12.
PURPOSE: To introduce a simple gradient-echo arterial spin tagging (GREAST) technique available for most commercial magnetic resonance (MR) systems, for a quick evaluation of tissue perfusion. MATERIALS AND METHODS: The GREAST technique uses a combination of a short TR spoiled gradient-echo (SPGR) sequence with a selective presaturation radio frequency (RF) pulse that allows acquiring each tagged and control image within 10-20 seconds. The phantom and human studies were performed for evaluating the feasibility in measurement of local perfusion and the efficacy in alleviation of the asymmetric magnetization transfer (MT) and slice profile effects. RESULTS: Results show a good linear relationship between the signal attenuation caused by the presaturation pulse and flow rates in the phantom experiment and effective alleviation of the asymmetric MT and slice profile effects for various orientations of imaging slices. Human studies showed good perfusion results in brain imaging. Perfusion imaging on the liver and kidney were also conducted. The results could be significantly improved by effectively lessening motion-related artifacts. CONCLUSION: The GREAST technique is simple, easy to use, and applicable to examine local perfusion of the brain and other organs in the trunk.  相似文献   

13.
Ultrashort echo time imaging with half RF pulse excitation is challenging as eddy currents induced by the slice‐select gradient distort the half pulse slice profile. This work presents two pulses with T2‐dependent slice profiles that are less sensitive to eddy currents. The double half pulse improves the slice selectivity for long T2 components, while the inverted double half pulse suppresses the unwanted long T2 signal. Thus, both approaches prevent imperfect cancellation of out‐of‐slice signal from contaminating the desired slice. Experimental results demonstrate substantially improved slice selectivity and R2* quantitation accuracy with these pulses. These pulses are effective in making short T2 imaging and quantitation less sensitive to eddy currents and provide an alternative to time‐consuming gradient characterization. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
To enable clinical use of parallel transmission technology, it is necessary to rapidly produce transmit sensitivity (σ) maps. Actual flip angle imaging is an efficient mapping technique, which is accurate when used with 3D encoding and nonselective RF pulses. Mapping single slices is quicker, but 2D encoding leads to systematic errors due to slice profile effects. By simulating steady‐state slice profiles, we computed the relationship between σ and the signals received from the actual flip angle imaging sequence for arbitrarily chosen slice selective RF pulses. Pulse specific lookup tables were then used for reconstruction. The resulting σ‐maps are sensitive to T1 in a manner that depends strongly on the specific pulse, for example a precision of ±3% can be achieved by using a 3‐lobe sinc pulse. The method is applicable to any RF pulse; simulations must be performed once and thereafter fast reconstruction of σ‐maps is possible. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Physiologic motion of the heart is one of the major problems of myocardial blood flow quantification using first pass perfusion–MRI method. To overcome these problems, a perfusion pulse sequence with prospective slice tracking was developed. Cardiac motion was monitored by a navigator directly positioned at heart's basis to overcome no additional underlying model calculations connecting diaphragm and cardiac motion. Additional prescans were used before the perfusion measurement to detect slice displacements caused by remaining cardiac motion between navigator and the perfusion slice readout. The pulse sequence and subsequent quantification of myocardial blood flow was tested in healthy pigs with and without prospective slice tracking under both free‐breathing and breath‐hold conditions. To avoid influences by residual contrast agent concentration time courses were analyzed. Median myocardial blood flow values and interquartile ranges with prospective slice tracking under free‐breathing and in a breath‐hold were (1.04, interquartile range = 0.58 mL/min/g) and (1.20, interquartile range = 0.59 mL/min/g), respectively. This is in agreement with published positron emission tomography values. In measurements without prospective slice tracking (1.15, interquartile range = 1.58 mL/min/g), the interquartile range is significantly (P < 0.012) larger because of residual cardiac motion. In conclusion, prospective slice tracking reduces motion‐induced variations of myocardial blood flow under both during breath‐hold and under conditions of free‐breathing. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Accurate quantification of perfusion with the ADC techniques requires the suppression of the majority of the intravascular signal. This is normally achieved with the use of diffusion gradients. The TurboFLASH sequence with its ultrashort repetition times is not readily amenable to this scheme. This report demonstrates the implementation of a modified TurboFLASH sequence for FAIR imaging. Intravascular suppression is achieved with a modified preparation period that includes a driven equilibrium Fourier transform (DEFT) combination of 90 degrees-180 degrees-90 degrees hard RF pulses subsequent to the inversion delay. These pulses rotate the perfusion-prepared magnetization into the transverse plane where it can experience the suitably placed diffusion gradients before being returned to the longitudinal direction by the second 90 degrees pulse. A value of b = 20-30 s/mm(2) was thereby found to suppress the majority of the intravascular signal. For single-slice perfusion imaging, quantification is only slightly modified. The technique can be readily extended to multislice acquisition if the evolving flow signal after the DEFT preparation is considered. An advantage of the modified preparation scheme is evident in the multislice FAIR images by the preservation of the sign of the magnetization difference.  相似文献   

17.
We present a new approach to slice thickness reduction that does not require strengthening the selection gradient or increasing the RF pulse duration. The basis of the approach is to employ a thick slice and suppress a portion of its width, thereby forming a thin slice. Two distinct implementations of the technique are introduced and demonstrated by imaging slice profiles in a phantom and generating images of a volunteer's knee.  相似文献   

18.
Pulsed arterial spin labeling (ASL) techniques provide a noninvasive method of obtaining qualitative and quantitative perfusion images with MRI. ASL techniques employ inversion recovery and/or saturation recovery to induce perfusion weighting, and thus the performance of these techniques is dependent on the slice profiles of the inversion or saturation pulses. This article systematically examines through simulations the effects of slice profile imperfections on the perfusion signal for nine labeling schemes, including FAIR, FAIRER, and EST (UNFAIR). Each sequence is evaluated for quantitative accuracy, suppression of stationary signal, and magnitude of perfusion signal. Perfusion effects are modeled from a modified Bloch equation and experimentally determined slice profiles. The results show that FAIR, FAIRER, and EST have excellent tissue suppression. The magnitude of the perfusion signal is comparable for FAIR and FAIRER, with EST providing a slightly weaker signal. For quantitative measurements, all three methods underestimate the perfusion signal by more than 20%. Of the additional six ASL techniques examined, only one performed well in this model. This method, which combines inversion and saturation recovery, yields improved signal accuracy (<15% difference from the theoretical value) and tissue suppression similar to that of FAIR and its variants, but has only half the signal. Magn Reson Med 46:141-148, 2001.  相似文献   

19.

Purpose

To quantitate cerebral blood flow (CBF) in the entire brain using the 3D echo planar imaging (EPI) PULSAR (pulsed star labeling) technique.

Materials and Methods

The PULSAR technique was modified to 1) incorporate a nonselective inversion pulse to suppress background signal; 2) to use 3D EPI acquisition; and 3) to modulate flip angle in such a manner as to minimize the blurring resulting from T1 modulation along the slice encoding direction. Computation of CBF was performed using the general kinetic model (GKM). In a series of healthy volunteers (n = 12), we first investigated the effects of introducing an inversion pulse on the measured value of CBF and on the temporal stability of the perfusion signal. Next we investigated the effect of flip angle modulation on the spatial blurring of the perfusion signal. Finally, we evaluated the repeatability of the CBF measurements, including the influence of the measurement of arterial blood magnetization (a calibration factor for the GKM).

Results

The sequence provides sufficient perfusion signal to achieve whole brain coverage in ≈5 minutes. Introduction of the inversion pulse for background suppression did not significantly affect computed CBF values, but did reduce the fluctuation in the perfusion signal. Flip angle modulation reduced blurring, resulting in higher estimates of gray matter (GM) CBF and lower estimates of white matter (WM) CBF. The repeatability study showed that measurement of arterial blood signal did not result in significantly higher error in the perfusion measurement.

Conclusion

Improvements in acquisition and sequence preparation presented here allow for better quantification and localization of perfusion signal, allowing for accurate whole‐brain CBF measurements in 5 minutes. J. Magn. Reson. Imaging 2011;33:287–295. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
A technique for noninvasive quantitative magnetic resonance imaging of perfusion is presented. It relies on using endogenous water as a freely diffusible tracer. Tissue water proton spins are magnetically labeled by slice-selective inversion, and longitudinal relaxation within the slice is detected using a fast gradient echo magnetic resonance imaging technique. Due to blood flow, nonexcited spins are washed into the slice resulting in an acceleration of the longitudinal relaxation process. Incorporating this phenomenon into the Bloch equation yields an expression that allows quantification of perfusion on the basis of a slice-selective and a nonselective inversion recovery experiment. Based on this technique, quantitative parameter maps of the regional cerebral blood flow (rCBF) were obtained from eight rats. Evaluation of regions of interest within the cerebral hemispheres yielded an average rCBF value of 104 ± 21 ml/min/100 g, which increased to 219 ± 30 ml/min/100 g during hypercapnia. The measured rCBF values are in good agreement with previously reported literature values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号