首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Analysis of the frequency and PCR-quantifiable abundance of herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) DNA in multiple biological replicates of cells from dissociated randomly distributed human trigeminal ganglia (TG) of four subjects revealed an increase in both parameters and in both viruses during 5 days of culture, with no further change by 10 days. Dissociated TG provides a platform to analyze initiation of latent virus DNA replication within 5 days of culture.  相似文献   

2.
3.
4.
Human dorsal root ganglia from 14 randomly autopsied adults and 1 infant (all seropositive for both herpes simplex virus [HSV] and varicella zoster virus [VZV]) were examined for latent HSV-1 and VZV DNA by polymerase chain reaction. Thoracic ganglionic DNA from all subjects and trigeminal ganglionic DNA from 11 adults were analyzed. HSV-1 DNA was detected in trigeminal ganglia from 8 of 11 (73%) adults and in thoracic ganglia from 2 of 14 (14%) adults. VZV DNA was detected in trigeminal ganglia from 10 of 11 (91%) adults and in thoracic ganglia from 12 of 14 (86%) adults. None of the DNA samples were positive with primers specific for HSV-2. These findings indicate the presence of latent HSV-1 and VZV DNA in trigeminal ganglia and latent VZV DNA in thoracic ganglia of most seropositive adults. Furthermore, although HSV-1 latency most commonly develops in trigeminal ganglia, we also show for the first time the presence of HSV-1 latency in thoracic ganglia. Finally, both viruses can become latent in the same trigeminal ganglion.  相似文献   

5.
6.
7.
8.
Varicella zoster virus (VZV), a human neurotropic alphaherpesvirus, becomes latent after primary infection and reactivates to produce zoster. To study VZV latency and reactivation, human trigeminal ganglia removed within 24 h after death were mechanically dissociated, randomly distributed into six-well tissue culture plates and incubated with reagents to inactivate nerve growth factor (NGF) or phosphoinositide 3-kinase (PI3-kinase) pathways. At 5 days, VZV DNA increased in control and PI3-kinase inhibitor-treated cultures to the same extent, but was significantly more abundant in anti-NGF-treated cultures (p = 0.001). Overall, VZV DNA replication is regulated in part by an NGF pathway that is PI3-kinase-independent.  相似文献   

9.
10.
11.
12.
Analysis of 200 paired serum and cerebrospinal fluid (CSF) samples from 180 HIV-positive individuals, 136 of whom had AIDS, revealed intrathecal synthesis of antibodies specific for varicella zoster virus (VZV) in 28 (16%) individuals, measles virus in 15 (8%), herpes simplex virus-1 (HSV-1) in 1 (0.6%), and HSV-2 in none. Of the 28 subjects with a positive VZV antibody specificity index, only 1 had zoster rash at the time of serum and CSF sampling; of the total 180 HIV-positive subjects, 146 (81%) had no history of zoster. Based on an estimated 33.4 million HIV-positive individuals worldwide, subclinical reactivation of VZV in even less than 16% of HIV-positive people suggests the possibility that millions of people have active VZV infection of the central nervous system. In cases of VZV vasculopathy, myelopathy and even zoster sine herpete, the CSF is often positive for anti-VZV antibody, but negative for VZV DNA. To rule out VZV infection of the nervous system, CSF must be tested for VZV DNA and anti-VZV IgG and IgM antibody.  相似文献   

13.
Varicella zoster virus (VZV) is a neurotropic herpesvirus that infects nearly all humans. Primary infection usually causes chickenpox (varicella), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia and autonomic ganglia along the entire neuraxis. Although VZV cannot be isolated from human ganglia, nucleic acid hybridization and, later, polymerase chain reaction proved that VZV is latent in ganglia. Declining VZV-specific host immunity decades after primary infection allows virus to reactivate spontaneously, resulting in shingles (zoster) characterized by pain and rash restricted to one to three dermatomes. Multiple other serious neurological and ocular disorders also result from VZV reactivation. This review summarizes the current state of knowledge of the clinical and pathological complications of neurological and ocular disease produced by VZV reactivation, molecular aspects of VZV latency, VZV virology and VZV-specific immunity, the role of apoptosis in VZV-induced cell death and the development of an animal model provided by simian varicella virus infection of monkeys.  相似文献   

14.
15.
16.
17.
18.
A hallmark of herpes viruses is their capacity to cause recurrent disease. Recurrences of herpes simplex virus (HSV)-1 disease do not result from reinfection from external sources, but rather from reactivation of virus that is maintained in a latent state in sensory neurons and periodically reactivates from latency to cause recurrent disease. Recent findings implicate HSV-specific CD8+ T cells in immune surveillance of HSV-1 latently infected sensory neurons in trigeminal ganglia (TG) and inhibition of HSV-1 reactivation from latency. This review summarizes recent findings regarding the characteristics of the TG-resident CD8+ T cell population and certain unique obstacles that might complicate the development of therapeutic vaccines.  相似文献   

19.
In this study, the authors examined the role of bovine herpesvirus type 1 (BHV-1) Us9 in the anterograde transport of the virus from trigeminal ganglia (TG) to nose and eye upon reactivation from latency. During primary infection, both BHV-1 Us9-deleted and BHV-1 Us9-rescued viruses replicated efficiently in the nasal and ocular epithelium. However, upon reactivation from latency, only the BHV-1 Us9-rescued virus could be isolated in the nasal and ocular shedding. By real-time polymerase chain reaction, comparable DNA copy numbers were detected in the TGs during latency and reactivation for both the viruses. Therefore, Us9 is essential for reactivation of the virus in the TG and anterograde axonal transport from TG to nose and eye.  相似文献   

20.
Varicella zoster virus (VZV) is an exclusively human neurotropic alphaherpesvirus. Primary infection causes varicella (chickenpox), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia, and autonomic ganglia along the entire neuraxis. Years later, in association with a decline in cell-mediated immunity in elderly and immunocompromised individuals, VZV reactivates and causes a wide range of neurologic disease. This article discusses the clinical manifestations, treatment, and prevention of VZV infection and reactivation; pathogenesis of VZV infection; and current research focusing on VZV latency, reactivation, and animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号