首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graft arterial disease (GAD) remains the leading cause of long-term solid organ allograft failure. Tumor necrosis factor (TNF) promotes multiple aspects of allograft rejection via binding to type 1 (p55) and type 2 (p75) receptors. We used TNF type 1 receptor deficient (TNFR1KO), type 2 receptor deficient (TNFR2KO) and receptor double-deficient (TNFRDKO) mice to assess the relative roles of TNFR in acute rejection and GAD. Heterotopic cardiac transplantation was performed between C57BL/6 (B/6) and Balb/c (B/c) mice (total allomismatches) to assess the effects on graft survival; B/6 and Bm12 mice (class II mismatches) were used to assess the effects on GAD 8 weeks after transplantation. We found that graft survival in the total allomismatch combinations was the same regardless of TNFR status. In class II mismatches, wild-type (WT) combinations showed severe GAD, and GAD was not diminished when WT hearts were transplanted into TNFRDKO hosts. TNFR1KO donors or TNFR2KO donors had GAD comparable to WT donors, however, GAD was significantly diminished in B/6 TNFRDKO donor hearts. We conclude that both p55 and p75 signals on donor vascular wall cells are involved in the development of GAD, and either TNFR is capable of mediating a response that will culminate in GAD.  相似文献   

2.
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory molecule involved in cell-mediated immunity and delayed-type hypersensitivity (DTH). We inhibited systemic and local MIF production to determine its contribution to acute rejection (AR). Skin DTH response and acute rejection of skin and kidney allografts were examined using MIF gene knockout (MIF -/-) and wild-type mice (MIF +/+) with anti-MIF or control antibody. MIF-Ab reduced skin DTH by 60% (p < 0.01), but absence of the MIF gene (MIF -/-) had no effect. Local absence of MIF had no effect on the survival of skin grafted onto BALB/c recipients. Similarly MIF +/+ and MIF -/- kidneys transplanted into BALB/c recipients showed a similar degree of histological rejection, graft dysfunction and cellular infiltrate suggesting that AR is not dependent on local MIF production. To investigate the influence of systemic MIF, BALB/c donor skin was grafted onto MIF +/+ and MIF -/- mice. The tempo of AR was not altered by systemic absence of MIF (MIF-Ab or MIF -/-). BALB/c kidneys transplanted into MIF +/+ (with or without MIF-Ab) and MIF -/- mice showed similar parameters of rejection. MIF blockade reduces the DTH response; however, neither local nor systemic MIF are required for the rejection of fully mismatched skin and renal allografts.  相似文献   

3.
BACKGROUND: Immune-mediated injury to the graft has been implicated in the pathogenesis of chronic rejection. However, little is known regarding the nature of the antigen(s) involved in this immune process. We demonstrated that cardiac transplantation in mice induces an autoimmune T-cell response to a heart tissue-specific protein, cardiac myosin (CM). This response contributes to transplant rejection in that its modulation affects cardiac graft survival. This study investigates whether anti-CM T cells undergo activation and expansion in mice with chronic cardiac allograft rejection. METHODS: The frequency of CM- and donor major histocompatibility complex (MHC)-specific interferon (IFN)-gamma-producing T cells were assessed by ELISPOT in BALB/c mice, which were injected with anti-CD40L (MR1) mAb (chronic rejection group) or CTLA4Ig fusion protein (tolerant group) and transplanted with C57BL/6 cardiac allografts. RESULTS AND CONCLUSIONS: MR1-treated BALB/c recipients of C57BL/6 hearts with chronic rejection displayed a high frequency of activated CM-specific T cells, whereas the frequency of activated alloreactive T cells were similar to na?ve, nontransplanted mice. In contrast, no activation of CM-reactive T cells was detected in tolerant recipients after CTLA4Ig treatment. Therefore, in the absence of alloimmunity, chronic rejection is associated with persistence of a T-cell response against CM. Our data indicate that anti-CM autoimmunity may be involved in the immune mechanisms of chronic rejection and suggest that tolerance strategies should target both allo- and autoimmune responses to prevent this process.  相似文献   

4.
BACKGROUND: Hyperacute and delayed vascular rejection due to natural antibodies (NAb) present major obstacles in pig-to-primate xenotransplantation. Although "supraphysiologic" expression of human complement regulatory proteins (CRPs) can prevent hyperacute rejection in discordant xenogenic recipients, their physiologic role in the homologous setting is undefined. We have evaluated the effect of the absence of decay-accelerating factor (DAF) on cardiac allograft rejection in the presence of different levels of antidonor antibodies (Ab). METHODS: DAF1-deficient (DAF KO; B6129F2 H-2) mice were used as heart graft donors to alpha1,3-galactosyltransferase deficient (GalT KO; B6, H-2) recipients. Heterotopic heart grafting was performed with or without presensitization. Graft survival, histology, and anti-alphaGal Ab levels were monitored. RESULTS: DAF knockout (KO) but not wild-type (WT) grafts showed hyperacute or acute humoral rejection in nonsensitized GalT KO mice with low levels of anti-alphaGal IgM NAb. However, humoral rejection of both DAF KO and DAF WT donor grafts occurred in presensitized GalT KO recipients. CONCLUSIONS: The expression of DAF prevents hyperacute rejection in mice with low titers of anti-alphaGal antibody. These studies demonstrate the physiologic role of DAF in preventing humoral rejection in the presence of low levels of NAb and have implications for transplantation of discordant vascularized xenografts.  相似文献   

5.
CD8+ memory T cells endanger allograft survival by causing acute and chronic rejection and prevent tolerance induction. We explored the role of CD27:CD70 T‐cell costimulatory pathway in alloreactive CD8+/CD4+ T‐cell activation. CD27‐deficient (CD27?/?) and wild‐type (WT) B6 mice rejected BALB/c cardiac allografts at similar tempo, with or without depletion of CD4+ or CD8+ T cells, suggesting that CD27 is not essential during primary T‐cell alloimmune responses. To dissect the role of CD27 in primed effector and memory alloreactive T cells, CD27?/? or WT mice were challenged with BALB/c hearts either 10 or 40 days after sensitization with donor‐type skin grafts. Compared to WT controls, allograft survival was prolonged in day 40‐ but not day 10‐sensitized CD27?/? recipients. Improved allograft survival was accompanied by diminished secondary responsiveness of memory CD8+ T cells, which resulted from deficiency in memory formation rather than their lack of secondary expansion. Chronic allograft vasculopathy and fibrosis were diminished in CD27?/? recipients of class I‐ but not class II‐mismatched hearts as compared to WT controls. These data establish a novel role for CD27 as an important costimulatory molecule for alloreactive CD8+ memory T cells in acute and chronic allograft rejection.  相似文献   

6.
BACKGROUND: Investigations of the role of CD4 T lymphocytes in allograft rejection and tolerance have relied on the use of mouse models with a deficiency in CD4 cells. However, in mice treated with depleting monoclonal antibody (mAb) and in MHC class II knockout (KO) mice, there are residual populations of CD4 cells. CD4 KO mice had increased CD4- CD8-TCRalphabeta+ helper T cells, and both strains of KO mice could reject skin allografts at the normal rate. In this study, transgenic mice with no peripheral CD4 cells were the recipients of skin and heart allografts. Results were compared with allograft survival in CD4 and MHC class II KO mice. METHODS: GK5 (C57BL/6 bml mice transgenic for a chimeric anti-CD4 antibody) had no peripheral CD4 cells. These mice, and CD4 and class II KO mice, received BALB/c or CBA skin or cardiac allografts. Some GK5 mice were treated with anti-CD8 mAb to investigate the role of CD8 cells in rejection. CD4 and CD8 cells were assessed by FACS and immunohistochemistry. RESULTS: BALB/c skin on GK5 mice had a mean survival time +/- SD of 24+/-6 days, compared with 9+/-2 days in wild-type mice. Anti-CD8 mAb prolonged this to 66+/-7 days. BALB/c skin survived 10+/-2 days on class II KO and 14+/-2 days on CD4 KO, both significantly less than the survival seen on GK5 recipients (P<0.001). BALB/c hearts survived >100 days in GK5 recipients and in wild-type recipients treated with anti-CD4 mAb at the time of grafting, in contrast to a mean survival time of 10+/-2 days in untreated wild-type mice. Immunohistochemistry revealed that long-term surviving heart allografts from the GK5 recipients had CD8 but no CD4 cellular infiltrate. These hearts showed evidence of transplant vasculopathy. CONCLUSIONS: The GK5 mice, with a complete absence of peripheral CD4 cells, provide the cleanest available model for investigating the role of CD4 lymphocytes in allograft rejection. Prolonged skin allograft survival in these mice compared with CD4 and MHC class II KO recipients was clearly the result of improved CD4 depletion. Nevertheless, skin allograft rejection, heart allograft infiltration, and vascular disease, mediated by CD8 cells, developed in the absence of peripheral CD4 T cells.  相似文献   

7.
CD4+ T-cell-independent rejection of corneal allografts   总被引:3,自引:0,他引:3  
BACKGROUND: Several studies suggest that a significant number of corneal allografts undergo rejection in the absence of CD4 T cells. This study examined the role of CD4 T cell-independent mechanisms of corneal allograft rejection. METHODS: BALB/c corneal allografts were transplanted to C57BL/6 beige nude mice that received either CD8 or CD8 T cells from C57BL/6 CD4 knockout (KO) mice that had rejected BALB/c corneal allografts. Immune effector functions of CD8 or CD8 T cells from C57BL/6 CD4 KO mice were assessed using delayed-type hypersensitivity assays and Annexin V apoptosis assays respectively. RESULTS.: Both CD8 and CD8 T cells from CD4 KO corneal allograft rejector mice mediated corneal allograft rejection following adoptive transfer to nude mice. CD8 T cells, but not CD8 T cells, from CD4 KO mice adoptively transferred donor-specific DTH and induced apoptosis of BALB/c corneal endothelial cells in vitro. Apoptosis of BALB/c corneal endothelial cells was mediated by double negative (DN) T cells, as treatment of CD8 cells from CD4 KO mice with anti-Thy 1.2 plus complement abolished their effector function. CONCLUSION: The results support the proposition that CD4 T cell-independent rejection of corneal allografts can be mediated by either CD8 or CD8 T cells. The CD8 T cells represent a unique DN T cell population that might mediate rejection by either direct cytolysis or by inducing apoptosis of the donor corneal endothelium.  相似文献   

8.
9.
INTRODUCTION: This is the first in a series of reports that characterizes immune responses evoked by allogeneic hepatocytes using a functional model of hepatocyte transplantation in mice. METHODS: "Donor" hepatocytes expressing the transgene human alpha-1-antitrypsin (hA1AT-FVB/N, H2q) were transplanted into C57BL/6 (H2b) or MHC II knockout (H2b) hosts treated with anti-CD4, anti-CD8, or a combination of anti-CD4 and anti-CD8 monoclonal antibodies (mAbs). Hepatocyte rejection was determined as a loss of circulating ELISA-detectable transgene product (hA1AT). In addition, some C57BL/6 mice underwent transplantation with FVB/N heterotopic cardiac allografts and were treated with anti-CD4 mAb. Cardiac allograft rejection was determined by palpation. Graft recipients were tested for donor-reactive alloantibodies and donor-reactive delayed-type hypersensitivity (DTH) responses. RESULTS: The median survival time (MST) of allogeneic hepatocytes in normal C57BL/6 mice was 10 days (no treatment), 10 days (anti-CD4 mAb), 14 days (anti-CD8 mAb), and 35 days (anti-CD4 and anti-CD8 mAbs). The MST of hepatocytes in B6 MHC class II knockout mice was 10 days (no treatment) and 21 days (anti-CD8 mAb). The MST of cardiac allografts was 11 days (no treatment) and >100 days (anti-CD4 mAb). Donor-reactive DTH responses were readily detected in both untreated and mAb-treated recipients. Donor-reactive alloantibody was barely detectable in untreated hosts. CONCLUSIONS: These studies demonstrate that allogeneic hepatocytes are highly immunogenic and stimulate strong cell-mediated immune responses by both CD4+ and CD8+ T cells, even when treated with agents that can cause acceptance of cardiac allografts. Indeed, CD4+ or CD8+ T cells seem to independently cause hepatocellular allograft rejection. Allogeneic hepatocytes evoked strong donor-reactive DTH responses but were poor stimuli for donor-reactive antibody production. This is an unusual pattern of immune reactivity in allograft recipients.  相似文献   

10.
INTRODUCTION: Accelerated rejection (AccR) in sensitized recipients (second-set rejection) is considered a classic humorally mediated form of allograft rejection, although additional effector mechanisms may be involved. METHODS: We developed a model of AccR in which C57BL6 mice are sensitized by BALB/c skin grafts, followed 10 days later by transplantation of BALB/c hearts. We undertook analysis of various humoral and cellular components in this model using knockout or monoclonal antibody-treated allograft recipients. RESULTS: Sensitized mice rejected cardiac allografts in 34+/-7 hr. AccR was accompanied by endothelial deposition of immunoglobulins, complement, and fibrin, but also by dense expression of multiple chemokines and a mixed polymorphonuclear and mononuclear cellular infiltrate. Whereas neutrophil or complement depletion had no significant effect on the tempo of AccR, surprisingly B cell-deficient recipients still underwent AccR (41+/-7 hr) in conjunction with T cell and macrophage recruitment. In contrast, T cell-deficient (nude) mice maintained functioning cardiac allografts for >720 hr despite prior skin engraftment. CONCLUSIONS: AccR in sensitized experimental recipients involves multiple effector pathways. Although most previous studies have emphasized the key role of humoral pathways in mediating AccR, our data indicate that T cell-dependent mechanisms can also promote AccR, alone or in conjunction with humoral responses.  相似文献   

11.
Chemokines are known to participate in allograft rejection by mediating leukocyte trafficking. Despite redundancy in chemokine family, several chemokine-chemokine receptor interactions have proven critical in alloimmune responses. We sought to determine the effect of combined blockade of CXCR3 and CCR5, two critical chemokine receptors, in acute rejection. METHODS: Heterotopic heart transplantation was performed using BALB/c to B6/129 mice deficient in CCR5. Following transplantation these mice were treated with goat anti-CXCR3 serum every other day. In the control group, BALB/c hearts were transplanted in wild type B6/129 recipients and treated with goat serum alone. No immunosuppression was given to either group. Recipient mice were then assessed daily for allograft function by abdominal palpation, and graft survival was confirmed by laparotomy. RESULTS: The donor hearts in the control group were rejected at 6 +/- 1 days posttransplantation. Combined blockade of CXCR3 and CCR5 prolonged allograft survival versus control; all allografts survived to 24 days. In addition, there was a decrease in graft infiltrating CD4 and CD8 lymphocytes in the experimental group at 24 days. CONCLUSION: Combined CXCR3 and CCR5 blockade is effective in prolonging allograft survival in a fully MHC mismatched murine model. Combined chemokine blockade holds promise in control of acute rejection in organ transplantation.  相似文献   

12.
Macrophage migration inhibitory factor (MIF) may play an important role in the pathogenesis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). We examined whether MIF has an influence on the development of aGVHD and survival using BALB/c-based MIF knock-out (MIF KO) mice. Although MIF expression was observed in lymphocytes that had infiltrated the liver during aGVHD in both wild-type (WT) and MIF KO mice that received bone marrow cells (BM) and spleen cells (SP) from C57BL/6N mice, no significant difference was found in severity of aGVHD or survival rate between the two groups of mice. However, MIF level had decreased at 1 week after HSCT when MIF KO mice were used as the recipients. In the experiment using MIF KO mice as the donors, the recipient mice transplanted with BM and SP from MIF KO mice had significantly lower aGVHD scores on days 14, 21, and 35 than those in the recipient mice transplanted with BM and SP from WT-BALB/c mice. Histopathological findings supported these observations, showing that the bile ducts and lobules in the liver were destroyed by infiltrating MIF-expressing lymphocytes in the recipients of BM and SP from WT-BALB/c mice, while the bile ducts were not destroyed even by infiltrating MIF-deficient lymphocytes in the recipients of BM and SP from MIF KO mice. Therefore, these findings suggest that MIF has an effect on the development of aGVHD in a murine model of allogeneic stem cell transplantation.  相似文献   

13.
The selectins expressed on activated endothelial cells (E- and P-selectin), leukocytes (L-selectin), and platelets (P-selectin) play crucial roles in the rolling and tethering of leukocytes. We explored the importance of donor and recipient selectins in acute and chronic cardiac allograft rejection using mice deficient in all three selectins (ELP-/-). In BALB/c recipients, survival of fully allomismatched hearts from ELP-/- C57BL/6 donors was almost double that of wild-type grafts. In ELP-/- cardiac allografts, mononuclear cell infiltration and vasculitis of intramyocardial coronary arteries were significantly reduced. Interestingly, ELP-/- grafts were rejected similarly in both the presence and the absence of recipient selectins, and both wild-type and ELP-/- recipients promptly rejected wild-type hearts. Alternative adhesive molecules such as alpha4beta7 integrin may compensate for the lack of selectins and may mediate rejection in ELP-/- recipients. Chronic rejection was evaluated in a major histocompatibility complex (MHC) class II mismatch model using C57BL/6.C-H2(bm12) mice. While lack of selectins in recipients did not offer protection against chronic rejection, luminal stenosis of coronary arteries in ELP-/- grafts was markedly diminished. In conclusion, donor-derived selectins contribute to the development of both acute and chronic cardiac allograft rejection, and targeting donor selectins may open novel therapeutic approaches in clinical transplantation.  相似文献   

14.
BACKGROUND: Acute cardiac allograft rejection requires host, but not donor, expression of B7-1/B7-2 costimulatory molecules. However, acute cardiac rejection requires direct antigen presentation by donor-derived antigen presenting cells to CD4 T-cells and does not require indirect antigen presentation to CD4 T-cells. Given this discrepancy in the literature and that the consequence of allograft exposure in B7-deficient mice is unknown; the goal of the study was to examine the antidonor status of allografted B7-1/B7-2-deficient hosts. METHODS: C57Bl/6 B7-1/B7-2-/- mice were grafted with heterotopic BALB/c hearts. Recipients bearing long-term surviving allografts were used to examine the status of antidonor reactivity in vitro and in vivo. Tolerance was examined in vivo through adoptive transfer of splenocytes from graft-bearing animals to secondary immune-deficient Rag-1-/- hosts bearing donor-type or third-party cardiac allografts and by regulatory T-cell depletion with anti-CD25 antibody. RESULTS: When transferred to B7-replete Rag-1-/- recipients, cells from na?ve B7-1/B7-2-/- mice readily initiated cardiac allograft rejection. However, splenocytes transferred from long-term allograft acceptor B7-1/B7-2-/- hosts failed to reject donor-type hearts but acutely rejected third-party allografts. In addition, such cells did not reject (donorxthird-party) F1 allografts. Finally, in vivo depletion of regulatory T-cells did not prevent long-term acceptance. CONCLUSIONS: Results demonstrate that B7-deficient T-cells are capable of acute cardiac allograft rejection in a B7-replete environment. Importantly, results also show that B7-deficient hosts do not simply ignore cardiac allografts, but rather spontaneously develop transferable, donor-specific tolerance and linked suppression in vivo. Interestingly, this tolerant state does not require endogenous CD4+CD25+ regulatory T-cells.  相似文献   

15.
目的 探讨白细胞介素-15(IL-15)在心脏移植排斥反应中的表达及其与排斥反应的关系。方法 采用小鼠颈部心脏移植模型,随机分为2组:同基因移植组,供、受体均为C57BL/6小鼠;异基因移植组,供、受体分别为BALB/C、C57BL/6小鼠。以pactin作内参照,分别于术后第1、3、5、7天取移植心脏,用逆转录-聚合酶链式反应(RT—PCR)法观察IL-15的表达情况。结果 随着术后天数的增加,异基因移植组IL-15表达逐渐升高,第5天达高峰(与同基因移植组相比,P〈0.01)。结论 IL-15的表达与心脏移植急性排斥反应的发生发展密切相关,可作为心脏移植急性排斥反应的监测指标,对急性排斥反应的早期诊断和移植物的预后估计具有重要的临床意义。  相似文献   

16.
There is substantial support for the hypothesis that T(H)1 cytokine responses are critical for the normal elaboration of allograft rejection. Recent studies by Wang et al. (1) underscore the importance of T(H)2 responses in xenograft rejection and revealed that T(H)1 cytokines, IL-12 and interferon-gamma (IFN-gamma), can negatively regulate the development of humoral responses necessary for xenograft rejection. Their exceptional studies prompted us to test whether the ability of allografts to elicit cellular rejection and xenografts to induce humoral rejection also result from the differential ability to induce T(H)1 and T(H)2 responses. We compared the kinetics of antibody and cytokine (IFN-gamma and IL-4) production in C57BL/6 mice following allograft transplantation with BALB/c hearts and in C57BL/6 and BALB/c mice following transplantation with Lewis rat hearts. We also compared the ability of BALB/c mice, deficient in the ability to produce IL-4 or IFN-gamma, to reject xenografts and produce xenoantibodies. We observed that T(H)1/T(H)2 cytokine production minimally affected the kinetics of graft rejection but regulated the magnitude of IgG subclass production. Anti-graft IgM played a critical role in initiating acute antibody-mediated xenograft rejection, and the production antigraft IgM was unaffected by IL-4 or IFN-gamma deficiency. In contrast to the report by Wang et al. (1), we conclude that antibody-mediated xenograft rejection in the concordant Lewis rat heart-to-C57BL/6 mouse xenotransplantation model is dependent on anti-IgM production but independent of T(H) cytokine profiles.  相似文献   

17.
Otomo N  Motoyama K  Yu S  Shimizu Y  Margenthaler J  Tu F  Flye MW 《Surgery》2000,128(2):206-212
BACKGROUND: Tolerance to cardiac allografts can be induced in mice and rats by the injection of donor alloantigen into the thymus in combination with a CD4 T-cell-depleting antibody. CD8(+) cells in these animals are hyporesponsive to graft-specific alloantigens. Most of the CD8(+) T cells in the transgenic 2C mouse express a T-cell receptor specific for the class I major histocompatibility complex L(d+) locus. This study was designed to determine whether the adoptive transfer of these 2C T cells could precipitate rejection of a tolerant, completely major histocompatibility complex-mismatched L(d+) or L(d-) heart. METHODS: C57BL/6 mice (L(d-)) were given 10 x 10(6) cells of BALB/c (L(d+)) or dm2 (BALB/c background lacking L(d) [L(d-)]) splenocytes intrathymically and GK1. 5 (10 mg/kg) intraperitoneally. Twenty-one days later, BALB/c or dm2 hearts were transplanted. On the day of transplantation or after long-term allograft acceptance, recipients received naive 2C cells or 2C cells sensitized by in vitro mixed lymphocyte culture with BALB/c (L(d+)). RESULTS: Mean survival time of BALB/c cardiac allografts in untreated C57BL/6 mice was 7.3 days, although 73% of the mice that were pretreated with BALB/c splenocytes IT plus GK1.5 accepted the donor antigen-specific heart allografts indefinitely. All recipients that were pretreated with the intrathymic plus GK1.5 and that were injected with naive 2C cells at the time of heart transplantation experienced rejection of the BALB/c (L(d+)), but not the dm2 (L(d-)) hearts. In contrast, naive 2C cells could not reject tolerant (>30 days acceptance) BALB/c (L(d+)) hearts. 2C cells sensitized in vitro against L(d) were able to reject established BALB/c hearts but could not reject the L(d-) dm2 hearts. CONCLUSIONS: L(d)-specific 2C T-cell receptor transgenic T cells that are adoptively transferred to recipients will precipitate the rejection of accepted hearts that express class I L(d+) in mice rendered tolerant by an intrathymic injection of alloantigen plus anti-CD4 monoclonal antibodies.  相似文献   

18.
We examined the immune approaches that C57BI/6 and BALB/c mice take when treated to accept cardiac allografts. C57BI/6 mice accept DBA/2 cardiac allografts when treated with gallium nitrate (GN) or anti-CD40L mAb (MR1). These allograft acceptor mice fail to mount donor-reactive delayed type hypersensitivity (DTH) responses, and develop a donor-induced immunoregulatory mechanism that inhibits DTH responses. In contrast, BALB/c mice accept C57BI/6 cardiac allografts when treated with MR1 but not with GN. These allograft acceptor mice display modest donor-reactive DTH responses, and do not develop donor-induced immune regulation of DTH responses. Real-time PCR analysis of rejecting graft tissues demonstrated no strain-related skewing in the production of cytokines mRNAs. In related studies, C57BI/6 recipients of cytokine and alloantigen educated syngeneic peritoneal exudate cells (PECs) failed to mount DTH responses to the alloantigens unless neutralizing antibodies to transforming growth factor-beta (TGF-p were present at the DTH site demonstrating regulation of cell-mediated alloimmune responses. In contrast, BALB/c recipients of cytokine-and alloantigen-educated PECs expressed strong DTH responses to alloantigens demonstrating a lack of regulated alloimmunity. In conclusion, C57BI/6 mice respond to immunosuppression by accepting cardiac allografts and generating TGF-beta-related regulation of donor-reactive T cell responses, unlike BALB/c mice that do not generate these regulatory responses yet still can accept cardiac allografts.  相似文献   

19.
BACKGROUND: Recent studies have indicated that natural killer T (NKT) cells are essential for the establishment of transplantation tolerance. In the present study, we have elucidated the role of recipient and donor NKT cells in cyclophosphamide (CP)-induced tolerance. METHOD: DBA/2 (DBA; H-2) mice were used as donors and BALB/c (BALB; H-2) wild-type (WT) or Valpha14 NKT-knockout (KO, BALB/c background) mice were used as recipients. Recipients were treated with CP-induced tolerance regimen, which consists of donor spleen cells (SC) on day 0 and CP on day 2. In some experiments, NKT KO mice, which received NKT cells from either WT, inferon-gamma KO, or interleukin-4 KO mice, were treated with tolerant regimen. To deplete Ly49 inhibitory receptors on NKT cells in the recipient mice, anti-Ly49 monoclonal antibody cocktails were injected on day -1 when indicated. RESULTS: Donor skin graft was permanently accepted in recipient BALB WT mice with induction of donor mixed chimerism. On the contrary, donor DBA skin allografts were chronically rejected in NKT KO recipient. Lower levels of mixed chimerism were observed in NKT KO recipients comparing to the WT recipients. The production of interferon-gamma or interleukin-4 from NKT cells did not affect the induction of tolerance. Depletion of Ly49 positive NKT cells abrogated the induction of skin graft tolerance. CONCLUSION: Recipient NKT cells, but not donor NKT cells, were dominantly required for the induction of allograft tolerance. Our results indicated that the single cytokine produced by NKT cells did not mediate the regulatory function in the induction of allograft tolerance.  相似文献   

20.
The use of α1,3‐galactosyltransferase gene‐knockout (GalT‐KO) swine donors in discordant xenotransplantation has extended the survival of cardiac xenografts in baboons following transplantation. Eight baboons received heterotopic cardiac xenografts from GalT‐KO swine and were treated with a chronic immunosuppressive regimen. The pathologic features of acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR) and chronic rejection were assessed in the grafts. No hyperacute rejection developed and one graft survived up to 6 months after transplantation. However, all GalT‐KO heart grafts underwent graft failure with AHXR, ACXR and/or chronic rejection. AHXR was characterized by interstitial hemorrhage and multiple thrombi in vessels of various sizes. ACXR was characterized by TUNEL+ graft cell injury with the infiltration of T cells (including CD3 and TIA‐1+ cytotoxic T cells), CD4+ cells, CD8+ cells, macrophages and a small number of B and NK cells. Chronic xenograft vasculopathy, a manifestation of chronic rejection, was characterized by arterial intimal thickening with TUNEL+ dead cells, antibody and complement deposition, and/or cytotoxic T‐cell infiltration. In conclusion, despite the absence of the Gal epitope, acute and chronic antibody and cell‐mediated rejection developed in grafts, maintained by chronic immunosupression, presumably due to de novo responses to non‐Gal antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号