首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose. The purpose of this study was to estimate the activation energy at the glass transition temperature (and the fragility index) of amorphous indomethacin from the influence of heating rate on the features of the relaxation peaks obtained by thermally stimulated depolarization currents (TSDC) and to compare the obtained results with those obtained by other procedures based on TSDC data. Methods. The glass transition temperature region of amorphous indomethacin was characterized at different heating rates by TSDC in a way similar to that used to determine the kinetics of the glass transition relaxation by differential scanning calorimetry. The features of a thermal sampled TSDC peak, namely the temperature location and the intensity, depend on the heating rate. Results. The activation energy for structural relaxation (directly related to glass fragility) was estimated from the heating rate dependence of the TSDC peak location, T m, and of the maximum intensity of the TSDC peak, I(T m). Conclusions. The methods for determining the activation energy for structural relaxation and fragility of indomethacin from TSDC data obtained with different heating rates were compared with other procedures previously proposed. TSDC, which is not a very familiar technique in the community of pharmaceutical scientists, proved to be a very convenient technique to study molecular mobility and to determine the fragility index in glass-forming systems. The value of 60 appears as a reasonable value of the fragility index of indomethacin.  相似文献   

2.
Purpose The aims of the study are to characterize the slow molecular mobility in solid raffinose in the crystalline pentahydrate form, as well as in the anhydrous amorphous form (Tg = 109°C at 5°C/min), and to analyze the differences and the similarities of the molecular motions in both forms.Methods Thermally stimulated depolarization current (TSDC) is used to isolate the individual modes of motion present in raffinose, in the temperature range between −165 and +60°C. From the experimental output of the TSDC experiments, the kinetic parameters associated with the different relaxational modes of motion were obtained, which allowed a detailed characterization of the distribution of relaxation times of the complex relaxations observed in raffinose. The features of the glass transition relaxation in raffinose were characterized by differential scanning calorimetry (DSC).Results A complex mobility was found in the crystalline form of raffinose. From the analysis of the TSDC data, we conclude that these molecular motions are local and noncooperative. A sub-Tg relaxation, or secondary process, was also detected and analyzed by TSDC in the amorphous phase. It has low activation energy and low degree of cooperativity. The glass transition was studied by DSC. The fragility index (Angell’s scale) of raffinose obtained from DSC data is m = 148.Conclusions TSDC proved to be an adequate technique to study the molecular mobility in the crystalline pentahydrate form of raffinose. In the amorphous form, on the other hand, the secondary relaxation was analyzed by TSDC, but the study of the glass transition relaxation was not possible by this experimental technique as a consequence of conductivity problems. The DSC study of the glass transition indicates that raffinose is an extremely fragile glass former.  相似文献   

3.
Purpose. To evaluate thermomechanical analysis (TMA) as a technique for determining the viscosity of amorphous pharmaceutical materials. This property of amorphous drugs and excipients is related to their average rate of molecular mobility and thus to their physical and chemical stability. Methods. Indomethacin was selected as a model amorphous drug whose viscosity has previously been reported in the literature. A Seiko TMA 120C thermomechanical analyzer was utilized in isothermal penetration mode to determine the viscosity of the amorphous drug over the maximum possible range of temperatures. Results. Using a cylindrical penetration geometry it was possible to accurately determine the viscosity of amorphous indomethacin samples by TMA over the temperature range from 35 to 75°C. The results were consistent with those reported in the literature using a controlled strain rheometer over the range 44–75°C. The limiting lower experimental temperature for the TMA technique was extended to significantly below the calorimetric glass transition temperature (Tg 42°C), thus allowing a direct experimental determination of the viscosity at Tg to be made. Conclusions. Thermomechanical analysis can be used to accurately determine the viscosity of amorphous pharmaceutical materials at temperatures near and above their calorimetric glass transition temperatures.  相似文献   

4.
Purpose. To determine the viscosity and the frequency-dependent shear modulus of supercooled indomethacin as a function of temperature near and above its glass transition temperature and from these data to obtain a quantitative measure of its molecular mobility in the amorphous state. Methods. Viscoelastic measurements were carried with a controlled strain rheometer in the frequency domain, at 9 temperatures from 44° to 90°C. Results. The viscosity of supercooled indomethacin shows a strong non-Arrhenius temperature dependence over the temperature range studied, indicative of a fragile amorphous material. Application of the viscosity data to the VTF equation indicates a viscosity of 4.5 × 1010 Pa.s at the calorimetric Tg of 41°C, and a T0 of –17°C. From the complex shear modulus and the Cole-Davidson equation the shear relaxation behaviour is found to be non-exponential, and the shear relaxation time at Tg is found to be approximately 100 sec. Conclusions. Supercooled indomethacin near and above its Tg exhibits significant molecular mobility, with relaxation times similar to the timescales covered in the handling and storage of pharmaceutical products.  相似文献   

5.
Tong  Ping  Zografi  George 《Pharmaceutical research》1999,16(8):1186-1192
Purpose. Having previously studied the amorphous properties of indomethacin (IN) as a model compound for drugs rendered amorphous during processing, we report on the formation and characterization of its sodium salt in the amorphous state and a comparison between the two systems. Methods. Sodium indomethacin (SI) was subjected to lyophilization from aqueous solution, rapid precipitation from methanol solution, and dehydration followed by grinding to produce, in each case, a completely amorphous form. The amorphous form of SI was analyzed using DSC, XRD, thermomicroscopy and FTIR. The method of scanning rate dependence of the glass transition temperature, Tg, was used to estimate the fragility of the SI system. Enthalpy relaxation experiments were carried out to probe the molecular mobility of the SI system below Tg. Results. The amorphous form of SI formed by different methods had a Tg equal to 121°C at a scanning rate of 20°C/min. This compares with a Tgfor indomethacin of 45°C. Estimation of fragility by the scanning rate dependence of Tg indicates no significant differences in fragility between ionized and unionized forms. Enthalpy relaxation measurements reveal very similar relaxation patterns between the two systems at the same degree of supercooling relative to their respective Tg values. Conclusions. The amorphous form of SI made by various methods has a Tg that is about 75°C greater than that of IN, most likely because of the greater density and hence lower free volume of SI. Yet, the change of molecular mobility as a function of temperature relative to Tgis not very different between the ionized and unionized systems.  相似文献   

6.
The analysis of the thermal behavior of efavirenz showed a high glass-forming ability and good glass stability of this glass-forming liquid at room temperature. No polymorphic forms were formed either by cold crystallization or by recrystallization from solvent acetone. The determination of the dynamic fragility by the differential scanning calorimetry, thermally stimulated depolarization currents (TSDC), and dielectric relaxation spectroscopy (DRS) techniques is unanimous in suggesting efavirenz as a moderately fragile liquid. With DRS, secondary relaxations were detected, however, with weak intensities that did not allow the respective kinetic analysis; in contrast, TSDC allows clearly resolving the components of the secondary β-relaxation below Tg, with activation energies distributed between about 75 and 90 kJ mol?1 and Arrhenius prefactors of the order of 10?13 s. In this regard, the TSDC technique proved to be more effective compared to DRS in characterizing the secondary relaxation. The glass forming ability and glass stability found for efavirenz have been discussed in terms of various thermodynamic and kinetic parameters such as the reduced glass transition temperature, Tgred, the dynamic fragility, m, the stretching exponent, βKWW, the melting entropy, ΔSfus, and the molecular stiffness. The exceptionally low value of efavirenz fusion entropy was highlighted as a key feature of the thermal behavior of this glass-forming liquid.  相似文献   

7.
Breen  E. D.  Curley  J. G.  Overcashier  D. E.  Hsu  C. C.  Shire  S. J. 《Pharmaceutical research》2001,18(9):1345-1353
Purpose. To determine the effect of moisture and the role of the glass transition temperature (Tg) on the stability of a high concentration, lyophilized, monoclonal antibody. Methods. A humanized monoclonal antibody was lyophilized in a sucrose/histidine/polysorbate 20 formulation. Residual moistures were from 1 to 8%. Tg values were measured by modulated DSC. Vials were stored at temperatures from 5 to 50°C for 6 or 12 months. Aggregation was monitored by size exclusion chromatography and Asp isomerization by hydrophobic interaction chromatography. Changes in secondary structure were monitored by Fourier transform infrared (FTIR). Results. Tg values varied from 80°C at 1% moisture to 25°C at 8% moisture. There was no cake collapse and were no differences in the secondary structure by FTIR. All formulations were stable at 5°C. High moisture cakes had higher aggregation rates than drier samples if stored above their Tg values. Intermediate moisture vials were more stable to aggregation than dry vials. High moisture samples had increased rates of Asp isomerization at elevated temperatures both above and below their Tg values. Chemical and physical degradation pathways followed Arrhenius kinetics during storage in the glassy state. Only Asp isomerization followed the Arrhenius model above the Tg value. Both chemical and physical stability at T Tg were fitted to Williams-Landel-Ferry (WLF) kinetics. The WLF constants were dependent on the nature of the degradation system and were not characteristic of the solid system. Conclusion. High moisture levels decreased chemical stability of the formulation regardless of whether the protein was in a glassy or rubbery state. In contrast, physical stability was not compromised, and may even be enhanced, by increasing residual moisture if storage is below the Tg value.  相似文献   

8.
Purpose. To evaluate a simple calorimetric method for estimating the fragility of amorphous pharmaceutical materials from the width of the glass transition region. Methods. The glass transition temperature regions of eleven amorphous pharmaceutical materials were characterized at six different heating and cooling rates by differential scanning calorimetry (DSC). Results. Activation energies for structural relaxation (which are directly related to glass fragility) were estimated from the scan rate dependence of the glass transition temperature, and correlations between the glass transition widths and the activation energies were examined. The expected correlations were observed, and the exact nature of the relationship varied according to the type of material under consideration. Conclusions. The proposed method of determining the fragility of amorphous materials from the results of simple DSC experiments has some utility, although "calibration of the method for each type of materials is necessary. Further work is required to establish the nature of the relationships for a broad range of amorphous pharmaceutical materials.  相似文献   

9.
Purpose To develop a calorimetry-based model for estimating the time-dependence of molecular mobility during the isothermal relaxation of amorphous organic compounds below their glass transition temperature (T g).Methods The time-dependent enthalpy relaxation times of amorphous sorbitol, indomethacin, trehalose and sucrose were estimated based on the nonlinear Adam‐Gibbs equation. Fragility was determined from the scanning rate dependence of T g. Time evolution of the fictive temperature was determined from T g, the heat capacity of the amorphous and crystalline forms, and from the enthalpy relaxation data.Results Relaxation time changes significantly upon annealing for all compounds studied. The magnitude of the increase in relaxation time does not depend on any one parameter but on four parameters: T g, fragility, and the crystal–liquid and glass–liquid heat capacity differences. The obtained mobility data for indomethacin and sucrose, both stored at T g−16 K, correlated much better with their different crystallization tendencies than did the Kohlrausch‐Williams‐Watts (KWW) equation.Conclusions The observed changes in relaxation time help explain and address the limitations of the KWW approach. Due consideration of the time-dependence of molecular mobility upon storage is a key element for improving the understanding necessary for stabilizing amorphous formulations.  相似文献   

10.
Purpose. The purpose of this study is to highlight the importance of knowing the glass transition temperature, Tg, of a lyophilized amorphous solid composed primarily of a sugar and a protein in the interpretation of accelerated stability data. Methods. Glass transition temperatures were measured using DSC and dielectric relaxation spectroscopy. Aggregation of protein in the solid state was monitored using size-exclusion chromatography. Results. Sucrose formulation (Tg ~ 59°C) when stored at 60°C was found to undergo significant aggregation, while the trehalose formulation (Tg ~ 80°C) was stable at 60°C. The instability observed with sucrose formulation at 60°C can be attributed to its Tg (~59°C) being close to the testing temperature. Increase in the protein/sugar ratio was found to increase the Tgs of the formulations containing sucrose or trehalose, but to different degrees. Conclusions. Since the formulations exist in glassy state during their shelf-life, accelerated stability data generated in the glassy state (40°C) is perhaps a better predictor of the relative stability of formulations than the data generated at a higher temperature (60°C) where one formulation is in the glassy state while the other is near or above its Tg.  相似文献   

11.
The molecular relaxation in liquid and glassy states of Telmisartan (TEL) has been studied by Broadband Dielectric Spectroscopy (BDS) covering wide temperature and frequency range. Multiple relaxation processes were observed. Besides the primary α-relaxation, two secondary relaxations β and γ (labelled in order of decreasing time scale) have been reported.Well-separated β-process observed above and below glass transition temperature Tg, has activation energy Eβ = 81.8 kJ/mol and was identified as intermolecular Johari–Goldstein (JG) process. The γ-relaxation visible in dielectric loss spectra at very low temperatures is most likely non-JG relaxation. The temperature dependence of the relaxation times of α-process, measured over 11 orders of magnitude, cannot be described by a single Vogel–Fulcher–Tamman–Hesse (VFTH) equation. At temperature TB = 475.8 K the change in relaxation dynamics occurred, consequently a new set of VFTH parameters was required. From low temperature VFTH fits the glass transition temperature Tg was estimated as Tg = 400.3 K and fragility index m = 87 was calculated. Of particular interest was the time scale of molecular motion below the glass transition temperature. Our observation clearly indicates that the α-relaxation times at room temperature most probably would exceed 3 years and amorphous TEL should maintain physically and chemically stable over prolonged storage time.  相似文献   

12.
Purpose. To measure solid-state features of amorphous molecular dispersions of indomethacin and various molecular weight grades of poly(vinylpyrrolidone), PVP, and poly(vinylpyrrolidone-co-vinylacetate), PVP/VA, in relation to isothermal crystallization of indomethacin at 30°C Methods. The glass transition temperatures (Tg) of molecular dispersions were measured using differential scanning calorimetry (DSC). FT-IR spectroscopy was used to investigate possible differences in interactions between indomethacin and polymer in the various dispersions. The enthalpy relaxation of 5% w/w and 30% w/w polymer dispersions was determined following various aging times. Quantitative isothermal crystallization studies were carried out with pure indomethacin and 5% w/w polymers in drug as physical mixtures and molecular dispersions. Results. All coprecipitated mixtures exhibited a single glass transition temperature. All polymers interacted with indomethacin in the solid state through hydrogen bonding and in the process eliminated the hydrogen bonding associated with the carboxylic acid dimers of indomethacin. Molecular mobility at 16.5°C below Tg was reduced relative to indomethacin alone, at the 5% w/w and 30% w/w polymer level. No crystallization of indomethacin at 30°C was observed in any of the 5% w/w polymer molecular dispersions over a period of 20 weeks. Indomethacin alone and in physical mixtures with various polymers completely crystallized to the form at this level within 2 weeks. Conclusions. The major basis for crystal inhibition of indomethacin at 30°C at the 5% w/w polymer level in molecular dispersions is not related to polymer molecular weight and to the glass transition temperature, and is more likely related to the ability to hydrogen bond with indomethacin and to inhibit the formation of carboxylic acid dimers that are required for nucleation and growth to the crystal form of indomethacin.  相似文献   

13.
Purpose. The dependence of the molecular mobility of lyophilized formulations on pharmaceutical polymer excipients was studied. Molecular mobility as determined by NMR relaxation-based critical temperature of molecular mobility (Tmc) and glass transition temperature (Tg) is discussed in relation to the plasticizing effect of water in formulations. Methods. The Tmc and Tg of lyophilized -globulin formulations containing 6 different polymer excipients such as dextran, polyvinylpyrrolidone (PVP) and methylcellulose (MC) was determined by NMR and DSC. The molecular mobility of water in the formulations was determined by proton NMR and dielectric relaxation spectrometry (DRS). Results. Tmc varied with polymer excipients. Tmc increased as the ratio of bound water to mobile water increased and as the molecular mobility of mobile water decreased. The formulation containing MC exhibited a lower Tmc than the formulation containing dextran because of the smaller ratio of bound water and the higher molecular mobility of mobile water. The Tmc of the formulation containing PVP was higher than that expected from the higher T2 values of water because of the lower molecular mobility of mobile water regardless of the higher ratio of mobile water. The Tmc of these lyophilized formulations was higher than their Tg by 23°C to 34°C, indicating that the formulations became a NMR-detected microscopically liquidized state below their Tg. Conclusions. The quantity and the molecular mobility of mobile water in lyophilized formulations can be considered to affect the Tmc of lyophilized formulations, which in turn governs their stability.  相似文献   

14.
Purpose. To determine the relaxation times of supercooled indomethacin as a function of temperature and relative humidity above Tg, and to analyze the results in the context of being able to predict such behavior at various storage conditions. Methods. Dielectric relaxation times were measured in the frequency domain (12 to 105 Hz) for amorphous indomethacin equilibrated at 0, 56, and 83% relative humidity. The heating rate dependence of Tg for dry supercooled indomethacin was measured with differential scanning calorimetry and used to determine relaxation times. The results were compared with previously published shear relaxation times and enthalpy recovery data. Results. Very good agreement was observed between dielectric and shear relaxation times, and those obtained from the heating rate dependence of the Tg, for dry indomethacin as a function of temperature above Tg. The introduction of water lowered the dielectric relaxation times of supercooled indomethacin without significantly affecting its fragility. The relaxation times below Tg, found to be lower than those predicted by extrapolation of the data obtained above Tg, were analyzed in the context of the Adam-Gibbs-Vogel equation. Conclusions. The relaxation times of amorphous indomethacin obtained from the heating rate dependence of Tg were in good agreement with those obtained from shear and dielectric measurements, thus validating a relatively simple approach of assessing molecular mobility. The significant molecular mobility of amorphous indomethacin observed below Tg, and the significant plasticizing effects of sorbed water, help to explain why amorphous indomethacin crystallizes well below Tg over relatively short time scales.  相似文献   

15.
Co-milling of γ-indomethacin and ranitidine hydrochloride form 2 at various weight ratios (1:2, 1:1 and 2:1) was investigated with a particular interest in the physicochemical properties and the stability of the milled mixed amorphous form. Co-milling was carried out using an oscillatory ball mill for various periods of time up to 60 min in a cold room (4 °C). The maximum temperature of the solid material was 42 °C during co-milling in a cold room. Results showed that both indomethacin and ranitidine hydrochloride were fully converted into the amorphous state after 60 min of co-milling. In contrast individually milled drugs remained partially crystalline after co-milling under the same conditions. During co-milling, the XRPD characteristic peaks of indomethacin were found to decrease faster than those of ranitidine hydrochloride. DSC results were in agreement with XRPD, and Tgs of the fully converted amorphous mixtures of 29.3, 32.5 and 34.3 °C were measured for the 1:2, 1:1 and 2:1 mixtures, respectively. These Tg values were in good agreement with the predicted Tgs of the mixtures using the Gordon-Taylor equation. DRIFTS spectra of the co-milled amorphous samples showed peaks at 1610, 1679 and 1723 cm−1, that were not present in the individually milled samples and that are indicative of an interaction at the carboxylic acid carbonyl (HO-CO) and benzonyl amide (NCO) of the indomethacin molecule with the aci-nitro (CN) of ranitidine hydrochloride. Upon 30 days of storage, the 1:2 mixtures were found to crystallize; however, the amorphous 2:1 and 1:1 mixtures were stable when milled for 60 min and stored at 4 °C (for the 2:1 mixture) and at 4 and 25 °C (for the 1:1 mixture), respectively. Although XRPD, DSC and DRIFTS suggested an interaction between the two drugs, co-crystal formation was not observed between indomethacin and ranitidine hydrochloride.  相似文献   

16.
Purpose. To find out if the physical instability of a lyophilized dosage form is related to molecular mobility below the glass transition temperature. Further, to explore if the stability data generated at temperatures below the glass transition temperature can be used to predict the stability of a lyophilized solid under recommended storage conditions. Methods. The temperature dependence of relaxation time constant, , was obtained for sucrose and trehalose formulations of the monoclonal antibody (5 mg protein/vial) from enthalpy relaxation studies using differential scanning calorimetry. The non-exponentiality parameter, , in the relaxation behavior was also obtained using dielectric relaxation spectroscopy. Results. For both sucrose and trehalose formulations, the variation in with temperature could be fitted Vogel-Tammann-Fulcher (VTF) equation. The two formulations exhibited difference sensitivities to temperature. Sucrose formulation was more fragile and exhibited a stronger non-Arrhenius behavior compared to trehalose formulation below glass transition. Both formulations exhibited <2% aggregation at t values <10, where t is the time of storage. Conclusions. Since the relaxation times for sucrose and trehalose formulations at 5°C are on the order of 108 and 106 hrs, it is likely that both formulations would undergo very little (<2%) aggregation in a practical time scale under refrigerated conditions.  相似文献   

17.
In this work we study the molecular mobility in the amorphous solid state and in the glass transformation region of two compounds, diazepam and nordazepam; these are two benzodiazepines, a family of psychotropic drugs with sedative, anxiolytic and muscle-relaxing properties. The experimental techniques used are thermostimulated currents (TSC) and differential scanning calorimetry (DSC). TSC is a time-dependent technique recognized for its high resolving power; the use of this technique in the depolarization and polarization modes (TSDC and TSPC respectively), provides results that confirm and complement results of dielectric relaxation spectroscopy (DRS) published recently. On the other hand, the variation with the heating rate of the temperature position of the DSC glass transition signal also allowed the estimation of the activation energy at Tg and of the dynamic fragility of the two glass formers.  相似文献   

18.
Purpose. We studied the temperature dependence of acetyltransfer between aspirin and sulfadiazine, a bimolecular reaction, inlyophilized formulations at temperatures near the glass transitiontemperature (Tg) and NMR relaxation-based critical mobilitytemperature (Tmc), to further understand the effect of molecularmobility on chemical degradation rates in solid pharmaceutical formulations.The temperature dependence of the hydrolysis rates of aspirin andcephalothin in lyophilized formulations was also studied as a model ofbimolecular reactions in which water is a reactant. Methods. Degradation of lyophilized aspirin-sulfadiazineformulations containing dextran and various amounts of water at temperaturesranging from 1°C to 80°C was analyzed by HPLC. The degradation ofcephalothin in lyophilized formulations containing dextran andmethylcellulose was also analyzed at temperatures ranging from 10°C to70°C. Results. Acetyl transfer in lyophilizedasprin—sulfadiazine formulations containing dextran exhibited atemperature dependence with a distinct break around Tmc, whichmay be ascribed to a change in the translational mobility of aspirin andsulfadiazine molecules. The hydrolysis of aspirin and cephalothin inlyophilized formulations, which is also a bimolecular reaction, did not showa distinct break, suggesting that water diffusion is not rate-limiting. Conclusions. The diffusion barrier of water molecules inlyophilized formulations appears to be smaller than the activational barrierof the hydrolysis of aspirin and cephalothin based on the results of thisstudy that the temperature dependence of the hydrolysis rate is almostlinear regardless of Tmc and Tg. On the other hand,the diffusion barrier of aspirin and sulfadiazine molecules appears to becomparable to the activational barrier of the acetyl transfer reactionbetween these com pounds, resulting in nonlinear temperature dependence.  相似文献   

19.
Purpose To present a calorimetry-based approach for estimating the initial (at the onset of annealing) relaxation time (τ 0) of organic amorphous solids at relatively low temperatures, and to assess the temperature where molecular mobility of the amorphous drug is reduced to a level comparable with the desired shelf-life of the product.Materials and Methods Values of τ 0 for six amorphous pharmaceutical compounds were estimated based on the nonlinear Adam–Gibbs equation. Fragility was determined from the scanning rate-dependence of the glass transition temperature (T g). The initial enthalpic and entropic fictive temperatures were obtained from the T g and the heat capacities (C p) of the amorphous and crystalline forms.Results At a relatively low temperature (∼40°C or more below T g), τ 0 for the different compounds varies by over an order of magnitude. For some materials, the practical storage temperature at T g − 50 K was found to be still too high to ensure long-term stability. The estimated τ 0 is highly sensitive to the fragility of the material and the C p of the crystalline and amorphous forms. Materials with high fragility or greater C p differences between crystalline and amorphous forms tend to have longer τ 0.Conclusions The proposed method can be used to estimate molecular mobility at relatively low temperatures without having to conduct enthalpy recovery experiments. An accurate τ 0 determination from this method relies on faithful fragility measurements.  相似文献   

20.
Purpose. This study was designed to characterize the formulation of protein pharmaceuticals for freeze-drying cycle development. Thermal properties of a protein formulation in a freezing temperature range are important in the development of freezing and primary drying phases. Moisture sorption properties and the relationship between moisture and stability are the bases for the design of the secondary drying phase. Methods. We have characterized the formulation of TNF-MAb for the purpose of freeze-drying cycle development. The methods include: DTA with ER probes, freeze-drying microscopy, isothermal water adsorption, and moisture optimization.Results. The DTA/ER work demonstrated the tendency to noneutectic freezing for the TNF-MAb formulation at cooling rates of –1 to –3°C/min. The probability of glycine crystallization during freezing was quite low. A special treatment, either a high subzero temperature holding or annealing could promote the maximum crystallization of glycine, which could dramatically increase the Tg' of the remaining solution. The freeze-drying microscopy further indicated that, after the product was annealed, the cake structure was fully maintained at a Tp below –25°C during primary drying. The moisture optimization study demonstrated that a drier TNF-MAb product had better stability. Conclusions. An annealing treatment should be implemented in the freezing phase in order for TNF-MAb to be dried at a higher product temperature during primary drying. A secondary drying phase at an elevated temperature was necessary in order to achieve optimum moisture content in the final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号