首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PURPOSE: To assess accuracy of contrast material-enhanced magnetic resonance (MR) angiography as compared with three-dimensional (3D) time-of-flight (TOF) MR angiography and reference digital subtraction angiography (DSA) in diagnosis of carotid artery stenosis. MATERIALS AND METHODS: Enhanced and 3D TOF MR angiography and DSA were performed in 51 consecutive patients suspected of having carotid artery stenosis at duplex ultrasonography. Stenoses were measured by two independent observers blinded to clinical information and other test results. Pearson correlation coefficients were used, and kappa for interobserver variabilities was estimated. Sensitivity and specificity of enhanced and 3D TOF MR angiography were calculated and compared with those of DSA. RESULTS: Pearson correlation coefficients were 0.94 (P <.01) for enhanced angiography versus DSA, 0.92 (P <.01) for 3D TOF angiography versus DSA, and 0.93 (P <.01) for enhanced versus 3D TOF angiography for observer 1 and 0.94 (P <.01), 0.95 (P <.01), and 0.94 (P <.01), respectively, for observer 2. kappa statistics were 0.81 for enhanced angiography, 0.79 for 3D TOF angiography, and 0.78 for DSA. Stenosis measurements of observer 1 at enhanced MR angiography, with inclusion of carotid arteries on the symptomatic side only, compared with those of DSA yielded a sensitivity of 90% (95% CI: 68%, 99%) and a specificity of 77% (95% CI: 55%, 92%). 3D TOF angiography yielded a sensitivity of 86% (95% CI: 67%, 97%) and a specificity of 73% (95% CI: 50%, 89%) compared with those of DSA. For observer 2, sensitivity and specificity for enhanced angiography were 91% (95% CI: 70%, 99%) and 76% (95% CI: 52%, 91%), respectively, and 90% (95% CI: 68%, 99%) and 77% (95% CI: 51%, 92%), respectively, for 3D TOF angiography. CONCLUSION: Accuracy of enhanced MR angiography in diagnosis of severe stenosis is similar to that of 3D TOF MR angiography.  相似文献   

3.
PURPOSE: To compare three-dimensional (3D) time-of-flight (TOF) MR angiography, contrast-enhanced MR angiography, digital subtraction angiography (DSA), and rotational angiography for depiction of stenosis. MATERIALS AND METHODS: The study had Ethics Committee approval, and each patient gave written informed consent. Forty-nine patients (18 women, mean age, 67.2 years +/- 9.1 [+/- standard deviation], and 31 men, mean age, 63.1 years +/- 8.0) with symptomatic stenosis of internal carotid artery (ICA) diagnosed at duplex ultrasonography underwent transverse 3D TOF MR angiography with sliding interleaved kY acquisition and coronal contrast-enhanced MR angiography, followed by DSA and rotational angiography within 48 hours. MR angiography was performed at 1.5-T with a cervical coil. Contrast-enhanced MR angiograms were obtained after a bolus injection of 20 mL of gadobenate dimeglumine. Maximum ICA stenosis on maximum intensity projection and source images was quantified according to NASCET criteria. Correlations for 3D TOF MR angiography, contrast-enhanced MR angiography, DSA, and rotational angiography were determined by means of cross tabulation, and accuracy for detection and grading of stenoses were calculated. Data were evaluated with analysis of variance, Wilcoxon signed rank test, and McNemar test, all at significance of P < .05. RESULTS: Ninety-eight ICAs were evaluated at contrast-enhanced MR angiography, DSA, and rotational angiography, and 97 were evaluated at 3D TOF MR angiography. Correlations for contrast-enhanced MR angiography, 3D TOF MR angiography, and DSA relative to rotational angiography were r2 = 0.9332, r2 = 0.9048, and r2 = 0.9255, respectively. Lower correlation (r2 = 0.8593) was noted for contrast-enhanced MR angiography and DSA. Respective sensitivity and specificity for detection of hemodynamically relevant stenosis relative to rotational angiography were 100% and 90% for contrast-enhanced MR angiography, 95.5% and 87.2% for 3D TOF MR angiography, and 88.6% and 100% for DSA. Four of 31 severe stenoses were underestimated at DSA, and three were underestimated at contrast-enhanced MR angiography. Three severe stenoses were underestimated at 3D TOF MR angiography, and one was misclassified as occluded. Of 13 moderate (50%-69%) stenoses, one was overestimated at contrast-enhanced MR angiography, two were underestimated and three overestimated at 3D TOF MR angiography, and two were underestimated at DSA. CONCLUSION: DSA results in an underestimation of ICA stenosis compared with rotational angiography. Contrast-enhanced MR angiography correlates best with rotational angiography.  相似文献   

4.
5.
We describe two MR angiographic methods of diagnosing subclavian steal in each of three patients. By using phase-directional information from a single two-dimensional phase-contrast sequence, we were able to show that the direction of flow in the affected vertebral artery was reversed. The same vertebral artery showed no signal on a 2-D time-of-flight sequence with a concatenated presaturation pulse applied above each section.  相似文献   

6.
Contrast enhanced magnetic resonance angiography (CE MRA) is a non-invasive alternative to conventional digital subtraction angiography (DSA). CE MRA is increasingly used as a complement to Duplex in the preoperative assessment of carotid artery stenosis. The purpose of this study was to determine if CE MRA could replace preoperative DSA. CE MRA with a scan time of 10 or 28 s was performed in 24 consecutive patients who were scheduled for preoperative DSA because of Duplex-verified severe carotid artery stenosis. Two neuroradiologists measured the degree of stenosis with three different methods, and the image quality was evaluated. DSA was used as the gold standard. For detection of severe stenosis (N. American symptomatic carotid endarterectomy trial (NASCET) > or =70%; European symptomatic carotid endarterectomy trial (ECST) > or =80%; common carotid artery method (CCAM) > or =80%), the sensitivity of CE MRA maximum intensity projection (MIP) compared with DSA was 82%-100 %, the specificity was 74%-93% and the accuracy was 77%-90%. The inter-observer agreement was higher, the image quality was better and the intracranial main arteries were better visualized with the 28 s than with the 10 s scan time. The enhancement of the jugular veins seen in 17% of the 10 s scans and in 58% of the patients with the 28 s scans did not interfere with the evaluation of the carotid arteries. CE MRA, preferably with a scan time of 28 s, can replace DSA in the preoperative assessment of most patients with carotid artery stenosis.  相似文献   

7.
8.
Fifty patients underwent 2DFT time-of-flight MR angiography and intraarterial contrast angiography for evaluation of possible carotid atherosclerotic disease. The MR angiography technique employed contiguous axial flow-sensitive (short TR/TE) slices that were reformatted and postprocessed by using a maximum-intensity projection algorithm to provide 16 angiographic views of the carotid arteries. Both studies were independently reviewed by two observers in a blinded manner. Carotid arteries were categorized as normal, mildly stenotic, moderately stenotic, severely stenotic, or occluded. For the 94 carotid arteries available for review, one observer reported a 70% agreement between the two techniques and the second observer reported a 56% agreement (p = .0001). The best correlation was in the severely stenotic category and the worst was in the occluded category. Agreement between observers was 67% for MR angiography and 72% for contrast angiography, which was similar to that between the two techniques. Although not all carotid atherosclerotic disease was visualized equally well, 2DFT time-of-flight MR angiography had a good overall correlation with the "gold standard" of intraarterial contrast angiography, supporting its use as a screening technique. While further improvements are needed, use of MR angiography as the primary diagnostic tool for many patients with suspected carotid stenosis should continue to increase.  相似文献   

9.
To assess the usefulness of magnetic resonance (MR) angiography in the characterization of intracranial arterial stenosis and occlusion, a three-dimensional time-of-flight method was compared with conventional angiography in 214 vessels in 29 patients. Studies were independently interpreted by two neuroradiologists who scored each vessel as normal, narrowed, or occluded. Overall, 97% of normal vessels and 100% of occlusions were correctly graded. Sixty-one percent of stenoses were graded correctly; the remainder were graded as normal. The portions of the intracranial vessels near the skull base and especially the paracavernous and supraclinoid segments of the internal carotid arteries were areas of frequent over- and underestimation of stenosis due to the presence of dephasing artifacts. In patients with stenosis or occlusion, MR angiography also provided information regarding the presence of collateral flow in the circle of Willis. When used in conjunction with MR imaging of the brain and MR angiography of the extracranial carotid arteries, intracranial MR angiography allows a more complete evaluation of the patient with symptoms of cerebral ischemia or infarction.  相似文献   

10.
PURPOSE: To determine the accuracy of elliptic centric contrast material-enhanced magnetic resonance (MR) angiography by using conventional angiography as the reference standard. MATERIALS AND METHODS: Fifty patients were examined prospectively with contrast-enhanced MR angiography and conventional angiography. The two examinations were performed within 1 week of each other. Two patients underwent conventional angiography of only one carotid artery, which yielded 98 arteries for comparison. RESULTS: With conventional angiography as the reference standard and by using a 70% threshold for internal carotid arterial diameter stenosis, maximum intensity projection (MIP) images had a sensitivity of 93.3%, specificity of 85.1%, and accuracy of 87.6%, whereas reformatted transverse source images had a sensitivity of 83.3%, specificity of 97.0%, and accuracy of 92.8%. Interobserver variability for conventional angiograms was 0.97, for MIP images was 0.91, and for source images was 0.90. The contrast-enhanced MR angiographic technique had a sensitivity of 88.9% and specificity of 58.1% for the presence of irregularity and/or ulceration. All 50 examinations were triggered appropriately so that minimal or no venous signal intensity was depicted. CONCLUSION: Contrast-enhanced elliptic centric three-dimensional MR angiography offers high-spatial-resolution, venous-suppressed images of the carotid arteries that appear to be adequate to replace conventional angiography in most patients examined prior to carotid endarterectomy.  相似文献   

11.
12.
Carotid stenosis: a comparison between MR and spiral CT angiography   总被引:9,自引:2,他引:7  
We performed a preliminary study comparing three-dimensional time-of-flight (3 D TOF) magnetic resonance angiography (MRA) and spiral CT angiography (SCTA) in the detection and assessment of internal carotid artery stenosis. Digital subtraction angiography (DSA) was the reference examination. We examined 20 patients with signs of cerebrovascular insufficiency, who underwent MRA, SCTA and DSA within a 3 day period. Both internal carotid arteries were assessed by three blinded readers for degree of stenosis at two different levels (bulb and remaining section) giving a total of 80 assessments. Interobserver variability, sensitivity, specificity, diagnostic accuracy, concordance, overestimation and underestimation were assessed. Interobserver variability was not statistically significant. MRA showed higher sensitivity, specificity, diagnostic accuracy and concordance than SCTA (92.0 % vs 80.8 %, 98.2 % vs 96.4 %, 96.3 % vs 91.3 % and 96.0 % vs 88.0 %, respectively). MRA gave rise to a 5.0 % overestimation rate, whereas SCTA occasioned a 7.5 % underestimation rate. These differences are not statistically significant. These results suggest that MRA is a more useful, noninvasive modality for assessment of the internal carotid artery with a more than 70 % stenosis. Received: 8 August 1997 Accepted: 10 October 1997  相似文献   

13.
14.
PURPOSETo investigate the effectiveness of MR angiography in conjunction with spin-echo imaging for evaluating vascular patency in patients with middle cerebral artery (MCA) stenosis or occlusion.METHODSSeven patients with MCA stenosis or occlusion, verified with contrast angiography in five and correlated with transcranial Doppler sonography in two, were examined using two-dimensional and/or three-dimensional time-of-flight MR angiographic techniques as well as conventional spin-echo imaging.RESULTSOf the seven patients, six demonstrated basal ganglionic and/or cortical infarct in the MCA territory. Except one case with minimal stenosis immediately distal to the MCA origin, all six cases with either severe stenosis or occlusion of the main trunk of the MCA showed the absence of normal flow voids using spin-echo imaging in the sylvian fissure on the affected side. However, it was not possible to discriminate between stenosis and occlusion. Although different mechanisms (ie, flow-induced spin dephasing for the 2-D technique and progressive spin saturation for the 3-D technique) were predominantly responsible for the loss of signal through the area of stenosis, both the 2-D and 3-D MR angiograms clearly depicted the compromised flow of the MCA: a focal discontinuity with decreased vessel caliber corresponded to stenosis, and nonvisualization of distal MCA branches represented occlusion.CONCLUSIONEither 2-D or 3-D time-of-flight MR angiography is a useful adjunct to conventional parenchymal spin-echo imaging for evaluating vascular patency in patients with MCA stenosis or occlusion, although it is important to recognize that each technique has a different basis for the loss of signal through the area of stenosis.  相似文献   

15.
PURPOSE: To evaluate the interobserver and intermodality variability of conventional angiography and gadolinium-enhanced magnetic resonance (MR) angiography in the assessment of renal artery stenosis. MATERIALS AND METHODS: Fifty-four patients underwent conventional angiography and gadolinium-enhanced three-dimensional gradient-echo MR angiography. Three angiographers blinded to each other's interpretations and the MR angiographic findings assessed the conventional angiograms for renal artery stenosis. Similarly, three blinded MR imagers evaluated the MR angiograms. RESULTS: Interobserver variability for the degree of renal artery stenosis in the 107 kidneys evaluated was not significantly different between the two modalities. The mean SD of the degree of stenosis was 6.9% at MR angiography versus 7.5% at conventional angiography (alpha < or = .05, P > .05). In 70 kidneys (65%), the average degree of stenosis reported by the readers for the two modalities differed by 10% or less. In 22 cases (21%), the degree of stenosis was overestimated with MR angiography by more than 10% relative to the results of conventional angiography. In 15 cases (14%), the degree of stenosis was underestimated with MR angiography by more than 10%. CONCLUSION: Gadolinium-enhanced MR angiography permits evaluation of renal artery stenosis with an interobserver variability comparable with that of conventional angiography.  相似文献   

16.
To assess the feasibility of using magnetic resonance (MR) angiography and velocity-encoded cine MR imaging to evaluate morphology and function in the popliteal and tibioperoneal arteries, the profiles of blood flow velocity measured with velocity-encoded cine MR were compared with those measured with color-coded sonography. Two-dimensional time-of-flight MR angiography was performed in the popliteal and tibioperoneal arteries of 10 healthy subjects; velocity-encoded cine MR and color-coded sonography were performed above and below the trifurcation. The velocity waveforms acquired with velocity-encoded cine MR and color-coded sonography correlated well and showed a typical triphasic pattern. At peak systole in the popliteal artery, spatial maximum and spatial mean velocities measured with velocity-encoded cine MR were 42.29 cm/sec +/- 9.55 (standard deviation) and 27.7 cm/sec +/- 5.8, respectively; the peak velocity measured with color-coded sonography was 44.2 cm/sec +/- 12.3. It is concluded that use of both MR angiography and velocity-encoded cine MR should be considered for identification of arterial stenoses and assessment of the hemodynamic importance of peripheral vascular stenoses.  相似文献   

17.
MRI is a valuable method for evaluating thoracic vascular lesions by virtue of its non-invasiveness and multiplanar capability. In addition, ionizing radiation and iodinated contrast medium are not required. Electrocardiographically gated T1 weighted spin echo MRI remains the principal technique for demonstrating the anatomy and morphology of thoracic vascular diseases. Cine MRI allows dynamic evaluation of vascular flow, whereas MR angiography is particularly useful in the two-dimensional (2D) or three-dimensional (3D) display of vascular anatomy. This pictorial review illustrates the use of 2D time-of-flight MR angiography in the assessment of various thoracic vascular conditions including aortic arch and great vessel anomalies, heterotaxic syndromes, aortic dissection, aortic or arch vessel aneurysms, pulmonary embolism, pulmonary sequestration, axillofemoral bypass and tumour/vessel relationships.  相似文献   

18.
19.
PURPOSE: The authors prospectively evaluated optimized multiphase high-resolution (HR) Gadolinium (Gd)-enhanced three-dimensional (3D) magnetic resonance (MR) angiography and standard two-dimensional (2D) time-of-flight (TOF) MR angiography for their ability to delineate distal calf and pedal vessels. MATERIALS AND METHODS: Twelve patients (20 limbs) with limb-threatening peripheral arterial occlusive disease underwent HR Gd-enhanced and 2D TOF MR angiography to identify targets for distal bypass. Imaging of the region of the ankle and foot was performed on a 1.5 T system with a head coil. A standard 2D TOF MR angiography sequence was performed first. The HR Gd-enhanced MR angiography sequence was then performed after injection of 0.01-0.2 mmol/kg of gadodiamide, allowing the acquisition of multiple consecutive coronal partitions, each in 18-25 seconds. Two experienced angiographers independently analyzed both studies. Comparison with intraoperative conventional angiography was available in 10 limbs. RESULTS: HR Gd-enhanced MR angiography allowed significantly faster imaging time (P <.0001) and larger coverage area (P <.0001) than 2D TOF MR angiography. All segments seen on 2D TOF MR angiography were visualized on HR Gd MR angiography, and significantly more suitable targets were seen well on HR Gd-enhanced MR angiography than on 2D TOF MR angiography (mean targets per limb: 3.9 +/- 1.9 vs 2.6 +/- 1.5, respectively; P =.02). In addition, HR Gd-enhanced MR angiography allowed better visualization of the arcuate pedal branch than 2D TOF MR angiography (P <.0001). Excellent correlation was demonstrated between HR Gd-enhanced MR angiography and intraoperative angiography in 29 segments (binary similarity coefficient, 0.90). A significantly higher percentage of artifacts adversely affected image interpretation with 2D TOF MR angiography than with HR Gd-enhanced MR angiography (14 limbs vs five limbs, P <.001). Artifacts on HR Gd-enhanced MR angiography included suboptimal mask in two limbs, venous contamination in one patient (two limbs), and motion artifact in one limb, although the studies remained diagnostic in all cases. CONCLUSION: HR Gd-enhanced MR angiography identified more distal target vessels with greater confidence than 2D TOF MR angiography. Optimized HR Gd-enhanced MR angiography may replace 2D TOF MR angiography as the gold standard examination for evaluation of distal runoff.  相似文献   

20.
Abdominal aorta and renal artery stenosis: evaluation with MR angiography   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号