首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To evaluate the influence of patch and matrix ingrowth of DA terminals upon striatal DA (dopamine) receptor function, we performed bilateral intrastriatal (i.s.) or single intracisternal (i.c.) injections of 6-hydroxydopamine (6-OHDA) into rat pups at various postnatal ages and determined D1 and D2 receptor binding, adenylate cyclase activities and markers for presynaptic DA terminal density and turnover as the animals matured. All injection schedules yielded: (a) variable and partial loss of DA, (b) increased DA turnover, (c) small (15-40%) increases in D1 receptor number but no change in affinity for antagonist ([3H]SCH 23390), (d) 2-3-fold increases in affinity of D1 receptors for agonist (SKF 38393) with preserved regulation of agonist affinity by guanine nucleotide, (e) no significant changes in DA-, guanine-nucleotide-, manganese- and forskolin-stimulated AC (adenylate cyclase) activity. D2 receptor binding was evaluated between 1 and 7 weeks of age in animals with i.s. treatment and 7 and 10 weeks of age in animals with i.c. treatment and was reduced by 40-50% with both treatment regimens. [3H]mazindol binding, a marker for presynaptic terminal DA transport sites, was reduced 30-40% by multiple i.s. or i.c. treatment regimens. In animals treated with one i.s. injection, [3H]mazindol binding was reduced 70% at 1 week of age, equal to control by 2 weeks and 14-46% greater than control between 3 and 7 weeks. We conclude that striatal D1 receptor sites maintain their density and second messenger function independently of postsynaptic DA terminal ingrowth, whereas the development of D2 receptor sites is sensitive to disruptions of DA terminal ingrowth.  相似文献   

2.
The relationship between the postnatal development of dopaminergic (DAergic) nerve endings and the maturation of D1 DA receptors in the rat striatum was analyzed by measuring the content of DA and dihydroxyphenylacetic acid (DOPAC), two biochemical markers of DAergic nerve terminal proliferation, and the ontogenetic changes in [3H]SCH 23390 binding sites. DA-stimulated adenylate cyclase (AC) activity was also measured in order to characterize the coupling of [3H]SCH 23390 binding sites to the responses mediated by the activation of D1 DA receptors. Striatal levels of DA and DOPAC, as well as the density and affinity of [3H]SCH 23390 binding sites and DA-stimulated AC activity were also measured in senescent rats. The striatal content of DA increased slowly after birth, reaching adult levels by postnatal day 60 and remaining constant through adulthood and senescence (up to 20 months of age). The density of [3H]SCH 23390 binding sites increased 14-fold from birth to postnatal day 35, when a peak value was reached, whereas a significant decrease was observed in the striatum of aged rats. In contrast, the affinity of D1 DA receptors for [3H]SCH 23390 remained unchanged from birth through senescence. The stimulation of cyclic AMP formation induced by 100 microM DA increased 4-fold from birth to postnatal day 14, when the maximal responsiveness to DA was observed and then returned to adult levels. No significant alterations were observed in the Km values during development, whereas the stimulatory effect of 100 microM DA on AC activity was significantly decreased in senescent rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The postnatal development of dopamine (DA) D1 receptors in the medial prefrontal cortex (mPFC), striatum (STR) and nucleus accumbens (NAC) of control and perinatally 6-hydroxydopamine (6-OHDA) lesioned rats was examined using quantitative autoradiography of 3H-SCH 23390 binding. D1 receptors are present at one week and increase only slightly to a stable level by 2 weeks in the STR and NAC. Their ontogeny is not altered by intracisternal injection of 6-OHDA 5 days after birth. A biphasic pattern of appearance of D1 receptors was found in the mPFC. D1 receptors are present in the mPFC at 1 week, increase 3-fold by 2-3 weeks, and then decline at 4 and 6 weeks. 6-OHDA lesions do not significantly alter this pattern. At all postnatal ages. D1 receptor binding in the mPFC exhibits a laminar distribution with increased receptor density in deep cortical layers (V, VI) compared to more superficial cortical layers (I, II). Both superficial and deep layers of D1 receptors in the mPFC show similar postnatal developmental patterns. DA turnover rates are consistently about 10-fold higher in frontal pole compared to remainder of forebrain at all postnatal ages. Early 6-OHDA lesions increase DA turnover in forebrain, but lead to a persistent reduction in DA turnover in frontal pole by 2 weeks of age.  相似文献   

4.
The postnatal development of D1 dopaminergic receptors (D1 receptors) was investigated in the rat striatum in relation to distribution of mu opiate receptor patches and islandic tyrosine hydroxylase (TH)-immunoreactive fibers. The possible influence of dopaminergic (DA) fibers originating from the substantia nigra on the postnatal distribution of striatal D1 and mu receptors was also examined by producing an early 6-hydroxydopamine (6-OHDA) lesion of DA fibers. D1 and mu receptors were labeled with selective ligands: [3H]SCH 23390 and [3H]DAGO, respectively. During the first postnatal week, control rats showed patches of dense D1 binding sites in the entire rostro-caudal extension of the striatum. The localization of D1 receptor patches corresponded to striosomes identified by TH-immunoreactive islands. The striatal distribution of mu receptors was relatively homogeneous at postnatal day 0 (P0) but was clearly patchy at P3-P4. During the second postnatal week the striosomal pattern of D1 binding sites disappeared along a dorso-ventral gradient whereas mu binding sites remained distributed in patches. Densitometric measurements showed that there was a parallel increase of D1 binding sites in both striosomes and the surrounding matrix from P0 to P4. The disappearance of D1 receptor patches observed in the dorsal striatum at P9 was due to a faster increase of D1 binding sites in the matrix than in striosomes between P4 and P9 whereas a significant difference was still observed between these two compartments in the ventral striatum of P9 rats. During the third postnatal week, the density of D1 binding sites still increased but became progressively uniform in the whole striatum. The intrastriatal injection of 6-OHDA in 2-day-old rats produced a local disappearance of TH-immunoreactive fibers in the striatum and a distal degeneration of TH-immunoreactive cell bodies in the substantia nigra. However an early lesion of striatal DA fibers did not modify the pattern of development or the density of D1 binding sites during the postnatal period examined (1 and 3 weeks after the lesion). The distribution of mu receptors was unchanged 1 week after the lesion but showed a clear disorganization 3 weeks after the lesion. We discuss the differential influence of DA fibers on the distribution of D1 and mu receptors in the rat striatum and the possible role of DA in the regulation of the expression of mu receptors.  相似文献   

5.
Lesions to the dopamine (DA) system in early postnatal development have different behavioral consequences compared to lesions made in adulthood. Intrastriatal injections of the neurotoxin 6-hydroxydopamine (6-OHDA) on the day of birth (PO) or postnatal day 1 (P1) produce a selective supersensitivity to D1 receptor agonists and a subsensitivity to D1 antagonists (Neal and Joyce, 1991a). In this paper, we describe the long-term effects of early DA loss on DA receptor regulation. Pups received bilateral intrastriatal injections of the neurotoxin 6-OHDA (4 micrograms per striatum) on PO or P1. Adult rats were killed at 90 days of age and the brains were processed for quantitative autoradiography (QAR) or tyrosine hydroxylase (TH) immunocytochemistry. Cohorts were tested for the behavioral responses to the selective D1 receptor agonist SKF38393 (10 mg/kg). Neonatally lesioned rats exhibited increases in abnormal perioral movements in response to D1 receptor stimulation. There was a heterogenous and patchy loss (40-50%) of [3H]mazindol binding to high-affinity DA uptake sites (a marker of DA terminal density) and a similar loss of TH-like immunoreactivity within the striata of the neonatally lesioned rats. There was also a reduction in the number of mu-opioid receptor patches (labelled with [3H]naloxone), a marker for the striatal patch compartment, and a similar patchy loss of D1 binding sites (labeled with [3H]SCH23390). The binding of [3H]spiroperidol to D2 sites was not altered. This is in contrast to the changes observed following adult 6-OHDA lesions, wherein there is a significant increase in the number of D2 binding sites (Joyce, 1991a,b). The results are discussed with respect to the behavioral consequences of neonatal lesions and the differences between neonatal and adult lesions.  相似文献   

6.
Quantitative autoradiography was utilized to examine the response of the dopamine (DA) and muscarinic cholinergic system within the striatum to lesions of the mesostriatal DA system following intranigral 6-hydroxydopamine (6-OHDA) injections. In addition, the response of DA system was examined in the striatum of animals treated with low, medium, or high doses of 6-OHDA made intracerebroventricularly (icv). Three weeks following removal of the mesostriatal DA fibers with intranigral 6-OHDA, there was an almost complete depletion of DA and [3H]mazindol binding throughout the striatum. The resulting increase in D2 receptors labeled with [3H]spiroperidol (27%) was most evident in the lateral striatum and topographically correlated with an increase in choline uptake sites labeled with [3H]hemicholinium-3 (20%). There was a smaller but significant decrease in D1 receptors labeled with [3H]SCH 23390 (15-18%) that was not topographically related to changes in [3H]spiroperidol or [3H]hemicholinium-3 binding. All doses of icv 6-OHDA produced a significant loss of DA and of [3H]mazindol binding as compared to vehicle injections that was more pronounced in the medial than in the lateral striatum. No increase in D1 receptors was observed with any dose of 6-OHDA and greater than 90% loss of DA and [3H]mazindol resulted in an increase in D2 receptors in the lateral striatum and a reduction in D1 receptors in the dorsal striatum. These data are consistent with the evidence that there is independent regulation of the two subtypes of the DA receptor. Moreover, the distribution and regulation of the subtypes of the muscarinic receptor were independent. Muscarinic M2 receptors ([3H]N-methylscopolamine in presence of excess pirenzepine) showed a lateral to medial gradient (highest laterally) that was related to the pattern of choline uptake sites and D2 receptors. Loss of DA resulted in a reduction in M2 receptors (24-30%) that was correlated with the increase in choline uptake sites. In contrast, M1 ([3H]pirenzepine) receptors showed a reverse gradient from the M2 receptor and a smaller reduction following loss of DA.  相似文献   

7.
A Hamdi  J Porter  C Prasad 《Brain research》1992,589(2):338-340
The specific binding of [3H]YM-09151-2 was used to investigate the possible differences in age-associated changes in striatal D2 dopamine (DA) receptor properties in genetically obese (fa/fa) Zucker rats and their lean (Fa/?) littermates. The maximal binding sites (Bmax) of D2 DA receptors was found to decline with age in both obese and lean rats; the rate of decline in receptor Bmax was slightly higher in lean than obese rats. However, the Bmax of D2 DA receptor in 6-, 12- and 18-month-old obese rats was significantly lower compared to the age-matched lean rats. These data indicate that obesity decreases the number of striatal D2 DA receptors without affecting the rate at which receptor number decreases with age.  相似文献   

8.
The present study examined the effect of pentylenetetrazol (PTZ) induced kindling as well as the action of the hexapeptide angiotensin IV (ANG IV) on the dopamine (DA) D1 and D2 receptor binding in the basal ganglia of the mouse brain. By using quantitative receptor autoradiography, it was found that PTZ kindling led to a decrease in DA D2 receptor density (about 20%) in all regions of the neostriatum (NS) as well as in the olfactory tubercle (OT), the nucleus accumbens (NA) and the globus pallidus, which persisted 24 h and 7 days after the kindling procedure. PTZ induced kindling also elicited a decrease in DA D1 receptor binding sites (about 10%), which however was, restricted to the rostral NS (rNA) and NA. ANG IV (0.2 mg/kg), injected prior to PTZ, not only prevented the development of the kindling process but it also reversed the kindling-induced down-regulation of both DA receptors to the control levels. Furthermore ANG IV induced an area-specific increase of DA D1 receptor density above control levels in the dorsal part of rNS. These findings suggest that DA D2 receptors could mainly contribute to epileptogenesis in the PTZ kindling model, whereas the role of DA D1 receptors is limited to particular regions in the basal ganglia. The anticonvulsant effect of ANG IV pretreatment might be influenced by a DA-related mechanism and particularly by preventing D2 receptor down-regulation as well as by an adaptive area-specific increase in DA D1 receptors.  相似文献   

9.
Summary. Weaver mutant mice have a selective degeneration of the nigrostriatal dopamine pathway arising between 7–21 days after birth. The goal of this study was to investigate the effects of this mutation on different parameters of the nigrostriatal and mesolimbic dopamine system: apparent D1 and D2 receptor binding sites as well as their signal transduction pathway. Using quantitative autoradiography of ligands for dopamine D1, D2 receptors and the dopamine uptake site, we found a significant loss in apparent D1 receptor binding sites throughout the neostriatum, significant increase of apparent D2 receptor binding in the dorsal aspect of the neostriatum, and almost complete loss of DA uptake sites in these regions of the weaver mouse. In contrast to the neostriatum, the density of dopamine receptors and uptake sites in the nucleus accumbens of the weaver mouse did not differ from controls. Despite alterations in the binding of apparent D1 and D2 receptors, there was no significant difference in either basal, DA stimulated or GTPγS stimulated cAMP production. These findings suggest the down-regulation of apparent D1 receptor binding sites reported in this model, probably does not reflect an important physiological mechanism through which these animals compensate for loss of dopamine innervation. Received July 21, 1998; accepted November 11, 1998  相似文献   

10.
The distribution of D1 and D2 dopamine (DA) receptors in the nuclei and subnuclear zones of the rat amygdaloid complex was mapped using quantitative light microscopic autoradiography. [125I]iodosulpiride and [125I]SCH 23982 (in the presence of 50 nM ketanserin) were used to label D2 and D1 DA receptors, respectively. The DA receptor subtypes exhibited a topographic, nonoverlapping distribution which generally conformed to the cytoarchitectonic boundaries of the component nuclei and subnuclear zones of the amygdaloid complex. The highest density of [125I]iodosulpiride binding sites was observed in the main intercalated cell group and the central amygdaloid nucleus where a medial to lateral gradient of binding sites was localized to its subnuclear zones. [125I]SCH 23982 binding sites were localized in the main intercalated cell group and the basolateral amygdaloid nucleus with a uniform low density in the central nucleus. The functional topography of mesoamygdaloid DA neurons may therefore be mediated, in part, at the level of DA receptor subtypes. The pattern of distribution of [125I]iodosulpiride binding sites in subdivisions of the central amygdaloid nucleus and bed nucleus of the stria terminalis suggests that the functions of the "extended amygdala," a major system of the functional organization of the basal forebrain, may be regulated by DA afferents at multiple key sites of D2 receptor action.  相似文献   

11.
Chronic administration of SCH 23390 (0.03 mg/kg s.c., three times daily), a selective D1 dopamine (DA) receptor blocker, markedly increased the [3H]SCH 23390 binding in the rat retina. As revealed by the Scatchard plot analysis of saturation data from retinal homogenates, chronic SCH 23390 increased the total number of binding sites by 34% when compared to tissue from solvent-treated rats but failed to change the apparent affinity of [3H]SCH 23390 for its binding sites. The up-regulation of [3H]SCH 23390 binding sites was paralleled by an increase in the sensitivity of retina DA-sensitive adenylate cyclase. In fact, DA (5 X 10(-6) M to 10(-4) M) produced a higher accumulation of cyclic AMP (from 58 to 128%) in the retina of SCH 23390-treated rats as compared to the accumulation (from 35 to 80%) found in tissue from solvent-treated rats. Since dark adaptation decreases dopaminergic function in the rat retina, the influence of environmental lighting on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity was studied. After 4 h of dark adaptation the density of [3H]SCH 23390 binding sites was higher (32%) than that from light-adapted rats. On the other hand, dark adaptation failed to change the apparent affinity of [3H]SCH 23390 for its binding sites. Moreover, DA elicited a greater stimulation of adenylate cyclase activity in homogenates of retina from dark-adapted rats. Thus, the maximum adenylate cyclase response to DA resulted higher in the retina of dark-adapted rats (152%) than that found in the retina of light-adapted animals (97%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
High-affinity, specific 3H-5-hydroxytryptamine (5-HT) binding was analyzed in membrane homogenates of human frontal cortex, caudate, and globus pallidus. 5-HT1A and 5-HT1C binding sites were pharmacologically blocked using 100 nM 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) and 100 nM mesulergine, respectively. The majority of 5-HT1 sites remained in each of the three brain regions under these conditions. The pattern of nucleotide interactions with these binding sites (GppNHp = GTP = GDP greater than GMP = adenine nucleotides) suggests a possible linkage to a G protein. RU 24969 competition studies confirmed the absence of 5-HT1B binding sites in human cortex, caudate, and globus pallidus. Drug interactions with putative 5-HT1D binding sites in bovine caudate membranes correlated significantly with their affinities for human membrane recognition sites labeled by 3H-5-HT in the presence of 100 nM 8-OH-DPAT + 100 nM mesulergine. We conclude that the majority of 3H-5-HT labeled recognition sites in human cortex, caudate, and globus pallidus represent 5-HT1D binding sites.  相似文献   

13.
Postnatal development of dopamine D1 and D2 receptor sites in rat striatum   总被引:6,自引:0,他引:6  
Tissue was obtained from corpus striatum of maturing rats at representative postnatal ages of 8-120 days for evaluation of D1 and D2 dopamine (DA) receptor sites in radioreceptor assays based on use of 0.05-2.5 nM concentrations of [3H]SCH-23390 or [3H]domperidone, respectively. Pharmacologic selectivity was verified by high rank-correlations (rs greater than 0.90) of Ki values for representative test agents in both assays (vs 0.3 nM ligand), using striatal tissue obtained at ages 20 and 120 days. Data from repeated (3-5x) six-concentration isotherm experiments involving a wide range of D1 or D2 radioligand concentrations were analyzed by linear regression of specific binding (B) vs free ligand concentration (F) in linearized form (B/F vs B) for each replicate assay and for pooled values, as well as by curve-fitting all available raw data (B vs F) using the LIGAND program adapted to microcomputer. Values for apparent ligand affinity (Kd = 0.15-0.35 nM) failed to show a consistent change with age, while values for apparent receptor site density (Bmax) followed a similar developmental course with both methods of analysis (between methods: r = 0.99 and 0.89 for D1 and D2 assays, respectively, across all ages tested).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have determined the kinetic, equilibrium saturation, and pharmacological characteristics of [3H]spiperone ([3H]SPIP) binding to rat brain regional particulate fractions following i.v. injections of [3H]SPIP and compared these parameters to those determined in vitro with traditional ligand-homogenate binding assays. [3H]SPIP binding to rat striatum in vivo and in vitro occurs to a single class of non-interacting binding sites which possess the pharmacological properties of a D2 dopamine (DA) receptor. The potencies of neuroleptic drugs in inhibiting DA receptor-mediated behaviors correlate with their potencies at displacing striatal [3H]SPIP binding in vivo. While striatum possesses a similar density of [3H]SPIP binding sites in vivo (34 pmol/g) and in vitro (31 pmol/g), binding affinity in vivo is about 200 times lower than in vitro. This difference in binding affinities appears to arise from alterations of [3H]SPIP association and dissociation rate constants brought about by tissue homogenization. The implications of our findings for external imaging of DA receptors and studies of DA receptor function in human brain homogenates are discussed.  相似文献   

15.
The effect of chronic postnatal treatment of rats with selective D1- and/or D2-receptor antagonists on the development of D1- and D2-receptors in the striatum was studied. When neonatal rats were treated postnatally from the day of birth for 32 successive days with the D1-receptor antagonist, SCH-23390 (0.30 mg/kg i.p.), the development of striatal dopamine D1-receptors was markedly impaired, and the development of striatal D2-receptors was slightly impaired. Alternatively, chronic treatment with the D2-receptor antagonist, spiroperidol (1.0 mg/kg i.p.), resulted in a markedly impaired development of striatal dopamine D2-receptors, and a slightly impaired development of striatal D1-receptors. Scatchard analysis revealed that chronic SCH-23390 treatment during development resulted in a 78% decrease in the Bmax for in vitro binding of [3H]SCH-23390 to striatal homogenates, while the Kd was unaltered. Similarly, chronic postnatal treatment with spiroperidol was associated with a 74% reduction in the Bmax, while the Kd for in vitro binding of [3H]spiroperidol to striatal homogenates was unchanged. These findings demonstrate that chronic selective dopamine receptor antagonism affects development of both striatal D1- and D2-receptor types. The critical period during which striatal dopamine receptor ontogeny can be altered is not restricted to prenatal periods, since suitable postnatal challenge will alter striatal dopamine-receptor development.  相似文献   

16.
Dopamine (DA) autoreceptors expressed at DA nerve terminals regulate DA release. Considerable evidence has indicated that, in rodents, these autoreceptors belong to the D2 type of the DA receptor family, which, in turn, comprises the D2, D3 and D4 subtypes. We investigated here, for the first time, the subclassification of native human DA autoreceptors by studying the release of [3H]DA evoked by electrical stimulation in fresh human neocortical slices. The results have been compared with those obtained in three animal systems: rat neocortical and striatal slices and rat mesencephalic neuronal cultures. In human neocortical slices, the D2/D3 receptor agonist quinpirole (1 nM-10 microM) inhibited tritium release with a calculated EC50 of 17 nM and a maximal inhibition of approximately 75% reached at 1 microM. In the presence of the D2/D3 receptor antagonist (-)-sulpiride (0.1 and 1 microM), the concentration-response curve of quinpirole was shifted to the right, and the apparent pA2 mean value was 8.5 (8.14-8.77); on the other hand, the inhibitory effects of quinpirole were not affected by the D3 receptor-selective antagonist [7-N,N-dipropylamino-5,6,7, 8-tetrahydro-naphtho(2,3b) dihydro,2,3-furane] (S 14297) and the D4 receptor-selective antagonist 3-(4-[4-chlorophenyl]piperazin-1-yl)-methyl-1H-pyrrolo [2,3-b]pyridine (L-745,870) (0.01-1 microM in each case). Superimposable results have been obtained when the release was elicited from rat striatal slices or dopamine mesencephalic neurons in culture, whereas quantitative differences emerged in the case of rat cortical slices. It is concluded that in human brain, as well as in rat brain, the release of DA in the terminal region of midbrain dopaminergic neurons is regulated through autoreceptors of the D2 subtype.  相似文献   

17.
Unilateral olfactory deprivation during postnatal development results in significant anatomical and neurochemical changes in the deprived olfactory bulb. Perhaps the most dramatic neurochemical change is the loss of dopaminergic expression by neurons of the glomerular region. We describe here the effects of early olfactory deprivation on other elements of the bulb dopaminergic system, namely the dopamine receptors of the olfactory bulb. Rat pups had a single naris occluded on postnatal day 2 (PN2). On PN20 or PN60, animals were sacrificed and the bulbs were examined for catecholamine levels or D2 and D1 dopamine receptor binding. Receptor densities were quantified by in vitro autoradiography using the tritiated antagonists spiperone (D2) and SCH23390 (D1). Dopamine uptake sites were similarly examined using tritiated mazindol. No significant specific labeling of D1 or mazindol sites was observed in the olfactory bulbs of control or experimental animals at either age. Normal animals displayed prominent labeling of D2 sites in the glomerular and nerve layers. After 60 days of deprivation, deprived bulbs exhibited an average increase in D2 receptor density of 32%. As determined by Scatchard analysis, the mean values for Kd and Bmax were 0.134 nM and 293 fmol/mg protein in normal bulbs, and 0.136 nM and 403 fmol/mg protein in deprived bulbs. The results suggest that, as in the neostriatum, dopamine depletion in the olfactory bulb leads to an upregulation of D2 receptor sites. This change may represent an attempt by the system to adapt neurochemically to reduced dopaminergic activity and thereby maintain bulb function.  相似文献   

18.
The role of dopamine (DA) D3 receptors is controversial in early developmental stages of specially locomotor activity. Past studies have only tested behavioral changes induced by neonatal administration of nonselective dopamine antagonist such as haloperidol or sulpiride in adult rats. We investigated the role of neonatal blockade of DA D3 receptors at (postnatal day, P1 to P12) using the DA D3 receptor antagonist (+)-S14297 on paradigms related to DA behaviors including locomotor activity in novel environment and after administration of the DA nonspecific agonists d-amphetamine, and apomorphine. Additionally, autoradiographic studies were performed to correlate behavioral alterations with DA D1-like, D2-like, and D3 receptors. All studies were performed at two critical ages, prepubertal (P35) and postpubertal (P60). The quantitative autoradiogaphic study revealed increases in the expression of DA D2-like receptor expression in the nucleus accumbens (NAcc) in prepubertal animals that received the DA D3 antagonist (+)-S14297 at neonatal age. In addition, novel environment and apomorphine administration (0.5 mg/kg, s.c.), induced increases of locomotor activity in prepubertal animals that received the DA D3 antagonist (+)-S14297. Autoradiographic and behavioral results suggest that blockade of DA D3 receptors after birth may mediate different neurodevelopmental aspects of the dopaminergic pathway before and after puberty.  相似文献   

19.
OBJECTIVE: Electroconvulsive therapy (ECT) is a widely used and effective treatment for mood disorders and appears to have positive effects on the motor symptoms of Parkinson's disease (PD), improving motor function for several weeks. Because repeated electroconvulsive shock (ECS) in normal animals enhances striatal dopamine (DA) D(1) and D(3) receptor binding, we hypothesized that upregulation of D(1) and D(3) receptors may also be occurring in the parkinsonian brain after repeated ECS treatment. METHODS: Rats were rendered hemi-parkinsonian through unilateral infusion of the DA-specific neurotoxin 6-hydroxydopamine into the medial forebrain bundle and substantia nigra. The animals were tested for hindlimb and forelimb function before and 48 hours after the last of 10 daily treatments with ECS or sham. After sacrifice, DA receptor binding was determined autoradiographically. RESULTS: While there was no increase in forelimb use in the cylinder test, ECS treatment significantly improved hindlimb motor performance on a tapered beam-walking test and enhanced striatal D(1) and D(3) receptor binding, without affecting D(2) receptor binding. CONCLUSION: This study suggests that at least part of the mechanism of action of ECT in PD may be enhanced DA function within the direct pathway of the basal ganglia and may support the further study and use of ECT as a potential adjunct treatment for PD.  相似文献   

20.
In the previous paper it was demonstrated that striatal dopamine (DA) D1 and D2 receptor subtypes and muscarinic M1 and M2 receptor subtypes show differing responses to lesions of the mesostriatal DA system. To examine this differential regulation further rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) or colchicine into the ventral tegmental area (VTA), or treated chronically with reserpine or saline. Two weeks later the animals were tested for their behavioral response to a subthreshold dose of apomorphine and 24 h later their brains were removed and processed for quantitative autoradiography or for analysis of DA levels by high-performance liquid chromatography. The 6-OHDA-lesioned animals showed a supersensitive rotational response to apomorphine. The loss of DA, loss of DA uptake sites, regulation of DA D1 and D2 receptors and regulation of the muscarinic cholinergic system was similar to the previous paper. Injection of colchicine in the VTA resulted in incomplete loss of striatal DA (50%), [3H]mazindol binding (50%), and no behavioral supersensitivity to apomorphine. There was a small loss of presynaptically located D2 receptors (13%). Similar to the 6-OHDA lesions there was a loss of D1 (12%) and M1 receptors. Reserpine treatment produced an 86% decrease in DA levels, an enhanced stereotyped responsiveness to apomorphine, and an increase of both D2 (28%) and D1 receptors (26%). There was a loss of muscarinic M1 but not M2 receptors. Thus removal of DA terminals or blockade of transport of proteins in the mesostriatal axons can lead to a reduction in D1 receptor density in the striatum. In contrast, loss of DA without removal of DA terminals leads to a significant up-regulation of the D1 receptor. D2 receptors show increases following removal of DA or of DA terminals. Alteration in the muscarinic cholinergic system following damage to the mesostriatal DA system is a complex response not mimicked by either reserpine or colchicine treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号