首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocyte growth factor (HGF) is a pleiotrophic factor whose many functions include promoting neuronal survival and growth. Hitherto, these effects have been observed in the presence of other neurotrophic factors like NGF and CNTF, and this requirement for an accessory factor has made it difficult to elucidate the signaling pathways that mediate its survival and growth-enhancing effects. Here, we show that HGF promotes the survival of mature sympathetic neurons of the superior cervical ganglion (SCG) grown at low density in defined medium lacking other neurotrophic factors. This effect was first clearly observed in cultures established from postnatal day 20 (P20) mice and became maximal by P40. HGF also enhanced the growth of neurite arbors from neurons throughout postnatal development and in the adult. HGF treatment resulted in phosphorylation of Akt and ERK1/ERK2. Preventing Akt activation with the phosphatidylinositol-3 (PI-3) kinase inhibitor LY294002 blocked the HGF survival response, and inhibition of ERK activation with the MEK inhibitors PD98059 or U0126 reduced the HGF survival response and the neurite growth-promoting effects of HGF. These results indicate that HGF promotes the survival and growth of maturing sympathetic neurons by both PI-3 kinase- and MAP kinase-dependent mechanisms.  相似文献   

2.
Role of Bcl-2 in the Brain-derived Neurotrophic Factor Survival Response   总被引:8,自引:0,他引:8  
Developing neurons die if they fail to obtain an adequate supply of neurotrophins from their targets but how neurotrophins suppress cell death is not known. Although over-expression of exogenous Bcl-2 can prevent the death of cultured neurons deprived of members of the nerve growth factor family of neurotrophins it is not known if this effect is physiologically relevant. To determine if Bcl-2 participates in the neurotrophin survival response we used antisense bcl-2 RNA to inhibit endogenous Bcl-2 expression. Here we show that brain-derived neurotrophic factor (BDNF)-dependent neurons are killed by antisense bcl-2 RNA in the presence of BDNF. However, when these neurons were supported with ciliary neurotrophic factor (CNTF) their survival was not affected by antisense bcl-2 RNA. Likewise, the survival of CNTF-dependent ciliary neurons was not affected by antisense bcl-2 RNA. Our findings suggest that Bcl-2 is required for the BDNF survival response and that alternative, Bcl-2-independent survival mechanisms operate in sensory and parasympathetic neurons exposed to CNTF.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, and ciliary neurotrophic factor (CNTF), a member of the neurocytokine family, are known to have synergistic effects on motoneurons, but such synergistic effect has not been studied in detail especially in the brain. In the present study, we examined the synergistic effects of BDNF and CNTF on the survival of basal forebrain cholinergic neurons cultured from postnatal 2-week-old (P2w) rats. Although BDNF is well-known to promote the survival of basal forebrain cholinergic neurons in P2w culture, CNTF had little effect on the survival of choline acetyltransferase (ChAT)-positive neurons and did not increase ChAT activity in the culture. However, CNTF enhanced BDNF-mediated promotion of cell survival of cholinergic neurons when added concomitantly. BDNF alone induced only a three-fold increase in ChAT activity in control cultures, but the concomitant addition of CNTF resulted in an eight-fold increase. CNTF did not enhance BDNF-mediated cell survival of total neurons from the basal forebrain, hippocampus or cerebellum, suggesting that the synergistic effects of CNTF on the BDNF-mediated increase of viability might be strong in basal forebrain cholinergic neurons. CNTF also enhanced the neurotrophin-4/5-mediated increase of ChAT activity, but not the nerve growth factor (NGF)-mediated one. Furthermore, the BDNF-mediated increase was also enhanced by leukemia inhibitory factor but not by interleukin-6. Similar synergistic pattern between neurotrophins and cytokines were also observed in the induction of ChAT activity in embryonic basal forebrain culture. These results suggest that TrkB, a functional high-affinity receptor of BDNF and NT-4/5, and LIFR beta, a receptor component contained in CNTF and LIF receptor complex, might be involved in the observed synergistic effects.  相似文献   

4.
Purification of adult rat sciatic nerve ciliary neuronotrophic factor   总被引:9,自引:0,他引:9  
The ciliary neuronotrophic factor (CNTF), a protein required for the survival of cultured avian embryonic parasympathetic ciliary ganglionic neurons, was recently purified from extracts of selected chick intraocular tissues. Here we report the purification of a mammalian CNTF activity from extracts of adult rat sciatic nerve using a fractionation procedure similar to that employed for isolating chick eye CNTF. About 2 micrograms of CNTF protein can be obtained from each 1.5 g batch of nerve tissue. Like the chick CNTF, the mammalian factor displays trophic activity for dorsal root and sympathetic as well as ciliary ganglionic neurons. The nerve CNTF activity differs from its chick counterpart in molecular weight and chromatographic behavior on ion-exchange columns. Unlike purified nerve growth factor (NGF), nerve CNTF activity is insensitive to anti-NGF antibodies and is unable to support the survival of 8-day chick embryo dorsal root ganglion neurons.  相似文献   

5.
We have studied the effects of ciliary neuronotrophic factor (CNTF) and nerve growth factor (NGF) on cultures of E14 rat spinal cord cells maintained for 7 days. The trophic factors were supplied at the day of seeding and every other day thereafter. Treatments with CNTF (human recombinant or purified from rat sciatic nerve, 100 TU/ml) resulted after 7 days in an increase, relative to control cultures, of: (i) the total number of neurons (identified by neurofilament protein and neuron-specific enolase immunostaining) that were not stained with choline, acetyltransferase (ChAT) and low affinity nerve growth factor receptor (LNGFR) antibodies; (ii) the number of motoneurons (0.5% of the neuronal population) as identified by size (greater than 25 microns), morphology and immunostaining for ChAT and LNGFR; and (iii) a population of small- to medium-sized (less than 25 microns), ChAT- and LNGFR-positive neurons, representing 5-10% of the total neuronal population. NGF treatments (mouse submaxillary beta NGF; 10-3000 TU/ml) were without effect on all 3 neuronal populations. Experiments in which CNTF administration was delayed revealed that the population of ChAT- and LNGFR-negative neurons and the population of motoneurons, were both dependent on CNTF for their survival. The third population, small ChAT and LNGFR-positive neurons, was not dependent on CNTF for survival but was induced by CNTF to express its two markers. These observations indicate that CNTF is a neuronotrophic factor for motoneurons, but that the effect of CNTF is not restricted to that cell population. In addition to its survival promoting effect, CNTF has also a regulatory role on the expression of ChAT and LNGFR for some spinal cord neurons.  相似文献   

6.
Ciliary neurotrophic factor (CNTF) has been shown to promote the survival of motoneurons, but its effects on axonal outgrowth have not been examined in detail. Since nerve growth factor (NGF) promotes the outgrowth of neurites within the same populations of neurons that depend on NGF for survival, we investigated whether CNTF would stimulate neurite outgrowth from motoneurons in addition to enhancing their survival. We found that CNTF is a powerful promoter of neurite outgrowth from cultured chick embryo ventral spinal cord neurons. An effect of CNTF on neurite outgrowth was detectable within 7 hours, and at a concentration of 10 ng/ml, CNTF enhanced neurite length by about 3- to 4-fold within 48 hours. The neurite growth-promoting effect of CNTF does not appear to be a consequence of its survival-promoting effect. To determine whether the effect of CNTF on spinal cord neurons was specific for motoneurons, we analyzed cell survival and neurite outgrowth for motoneurons labeled with diI, as well as for neurons taken from the dorsal half of the spinal cord, which lacks motoneurons. We found that the effect of CNTF was about the same for motoneurons as it was for neurons from the dorsal spinal cord. The responsiveness of a variety of spinal cord neurons to CNTF may broaden the appeal of CNTF as a candidate for the treatment of spinal cord injury or disease. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Cultured astrocytes are known to possess a range of neurotrophic activities in culture. In order to examine which factors may be responsible for these activities, we have examined the expression of the genes for four known neurotrophic factors – ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) – in purified astrocyte cultures derived from neonatal rat hippocampus. Hippocampal astrocytes were found to express mRNA for three neurotrophic factors – CNTF, NGF and NT3 – at significantly higher levels than other cultured cell types or cell lines examined. BDNF messenger RNA (mRNA), however, was undetectable in these astrocytes. The levels of CNTF, NGF and NT3 mRNA in astrocytes were largely unaffected by their degree of confluency, while serum removal caused only a transient decrease in mRNA levels, which returned to basal levels within 48 h. Astrocyte-derived CNTF was found to comigrate with recombinant rat CNTF at 23 kD on a Western blot. Immunocytochemical analysis revealed strong CNTF immunoreactivity in the cytoplasm of astrocytes, weak staining in the nucleus, but no CNTF at the cell surface. NGF and NT3 were undetectable immunocytochemically. CNTF-like activity, as assessed by bioassay on ciliary ganglion neurons, was found in the extract of cultured astrocytes but not in conditioned medium, whereas astrocyte-conditioned medium supported survival of dorsal root ganglion neurons but not ciliary or nodose ganglion neurons. This conditioned medium activity was neutralized with antibodies to NGF. Astrocyte extract also supported survival of dorsal root ganglion and nodose ganglion neurons, but these activities were not blocked by anti-NGF. Part, but not all, of the activity in astrocyte extracts which sustained nodose ganglion neurons could be attributed to CNTF.  相似文献   

8.
Chick ciliary ganglion neurons have a cholinergic membrane component that binds alpha-bungarotoxin with high affinity but has no known function. The component is different from the nicotinic ACh receptor on the neurons that mediates cholinergic transmission through the ganglion. Ciliary neuronotrophic factor (CNTF) has been shown to enhance the survival of ciliary ganglion neurons in cell culture and has been postulated to act as a target-derived trophic factor for the neurons in vivo. We show here that a factor indistinguishable from CNTF specifically down-regulates alpha-bungarotoxin binding sites on the neurons while increasing cell growth and the number of ACh receptors on the cells. Similar effects, though reduced in magnitude, are seen with chick sympathetic neurons. CNTF has no effect on the number of ACh receptors found on chick myotubes in culture. The down-regulation of alpha-bungarotoxin binding sites on neurons caused by CNTF occurs with a half-time of about 19 hr and is largely reversed within a 4 d period following CNTF removal. It is distinct from the down-regulation caused by cholinergic agonists. Nerve growth factor and fibroblast growth factor have no apparent effect on the number of alpha-bungarotoxin binding sites on the neurons, though fibroblast growth factor does stimulate neuronal growth. The results indicate that the effects of CNTF on the alpha-bungarotoxin binding component are both novel for a growth factor and specific, and they suggest a relationship between the component and the regulation of growth by the target tissue.  相似文献   

9.
Ciliary neurotrophic factor (CNTF) is produced and released in response to injury in the central nervous system (CNS). While CNTF initially was characterized as a trophic factor for neurons, more recent evidence supports roles for this factor in survival, proliferation, and maturation of oligodendrocyte lineage cells. Evidence is emerging to support the hypothesis that CNTF's actions may include enhancing other growth and trophic factors. Here we tested the hypothesis that CNTF can induce expression of receptors on oligodendrocytes for factors that are known to promote their generation, maturation, and survival. Specifically, we used an in vivo paradigm to test whether CNTF, when injected stereotactically into forebrain white matter of adult rats, could induce mRNA expression for the insulin-like growth factor (IGF) type I receptor (IGF-IR), fibroblast growth factor (FGF) receptor (FGFR)-1, FGFR3, and platelet-derived growth factor (PDGF) receptor-alpha (PDGFRalpha). We determined that CNTF injection increased expression of IGF-IR and FGFR1 mRNAs in adult white matter to 200-250% of control levels. Cellular analysis indicated that these receptor mRNAs were induced in interfascicular oligodendrocytes. In contrast, CNTF had no effect on levels of FGFR3 and PDGFRalpha mRNAs. These results suggest that CNTF enhances the sensitivity of oligodendrocytes to other mitogens and trophic factors via induction of their receptors.  相似文献   

10.
The normal development of somatostatin (SOM) expression in neurons of the chick ciliary ganglion and the effects of ciliary neuronotrophic factor (CNTF) on SOM induction in cultured ciliary ganglion neurons, were studied by immunocytochemical techniques. SOM immunoreactivity was first detectable in some neurons of the ganglion at embryonic day (E)8 and between E14 to hatch, 44–46% of the neuronal population contained the peptide. It was inferred that essentially all choroid neurons, which constitute 50% of the neuronal population, contain SOM. Culture studies indicated that CNTF supported both the SOM positive choroid neurons and the SOM negative ciliary neurons. Although CNTF was necessary for the survival and maturation of cultured ciliary ganglion neurons, it did not influence either the induction or maintenance of SOM expression in these neurons. CNTF may instead act as a permissive factor, allowing the induction of SOM in neurons of the ciliary ganglion by other, more specific, factors.  相似文献   

11.
It is unknown whether adult dorsal root ganglion (DRG) neurons require trophic factors for their survival and maintenance of neuropeptide phenotypes. We have established and characterized neuron-enriched cultures of adult rat DRGs and investigated their responses to nerve growth factor (NGF), ciliary neuronotrophic factor (CNTF), pig brain extract (PBE, crude fraction of brain-derived neuronotrophic factor, BDNF), and laminin (LN). DRGs were dissected from levels C1 through L6 and dissociated and freed from myelin fragments and most satellite (S-100-immunoreactive) cells by centrifugation on Percoll and preplating. The enriched neurons, characterized by their morphology and immunoreactivity for neuron-specific enolase, constituted a population representative of the in vivo situation with regard to expression of substance P (SP), somatostatin (SOM), and cholecystokinin-8 (CCK) immunoreactivities. In the absence of trophic factors and using polyornithine (PORN) as a substratum, 60-70% of the neurons present initially (0.5 days) had died after 7 days. LN as a substratum did not prevent a 30% loss of neurons up to day 4.5, but it subsequently maintained DRG neurons at a plateau. This behavior might reflect a cotrophic effect of LN and factors provided by non-neuronal cells, whose proliferation between 4.5 and 7 days could not be prevented by addition of mitotic inhibitors of gamma-irradiation. CNTF, but not NGF, slightly enhanced survival at 7 days on either PORN or LN. No neuronal losses were found in non-enriched cultures or when enriched neurons were supplemented with PBE, indicating that non-neuronal cells and PBE provide factor(s) essential for adult DRG neuron survival. Proportions of SP-, SOM-, and CCK-immunoreactive cells were unaltered under any experimental condition, with the exception of a numerical decline in SP cells in 7-day cultures with LN, but not PORN, as the substratum. Our data, considered in the context of recent in vivo and vitro studies, suggest that a combination of trophic factors or an unidentified factor, rather than the established molecules NGF, CNTF, and BDNF, which address embryonic and neonatal DRG neurons, are required for the in vitro maintenance of adult DRG neurons.  相似文献   

12.
Hepatocyte growth factor (HGF) exhibits neurotrophic properties on different types of neuron, including motor, sensory and parasympathetic neurons. We demonstrate that sciatic nerve ligation induces an increase of the HGF receptor, c-met, mRNA in the distal segment of the sciatic nerve to the ligation site and a delayed elevation in the proximal segment. Immunohistochemical analysis revealed co-localization of cMet and GFAP and indicates that Schwann cells express cMet in the sciatic nerve after injury. HGF mRNA was detected in the spinal cord and DRG, and nerve injury did not alter the expression. These data demonstrate that the expression of HGF and cMet in the peripheral nervous system shows the unique pattern of regulation following nerve injury.  相似文献   

13.
Two key components of neural development and regeneration, survival of the involved neurons and elongation of neuritic elements, are likely to depend on the availability of an appropriate trophic drive to these neurons. At present, only one trophic factor, Nerve Growth Factor, is known to ensure both survival and neuritic growth for its target neurons. A search for a second such agent, a putative cholinergic neuronotrophic factor (CNTF), has been undertaken using as indicators neuronal survival, neurite outgrowth and choline acetyltransferase (CAT) activity in monolayer cell cultures. Eight-day chick embryo ciliary ganglia yielded two monolayer culture systems which appear to be well suited for a CNTF assay. Ciliary ganglionic dissociates, seeded on a highly adhesive collagen substratum, show no neuronal survival by 24 h if the medium is supplemented only with serum or chick embryo extract. However serum and embryo extract combined support survival of, and extensive neuritic outgrowth from, nearly the theoretical number of ganglionic neurons seeded. Alternatively, ciliary ganglionic neurons can be made to survive and produce a profuse neuritic outgrowth on polyornithine-coated dishes if supplied with medium conditioned over chick embryo heart muscle cultures, as already described by other laboratories. The two trophic sources differ markedly in their effects on the ganglionic neurons when tested on collagen or polyornithine substrata, and in some cases when different serum supplements are used. Neuronal survival, neurite production and, possibly, CAT activity appear to be subject to independent regulation. The culture systems used in this study can be developed into quantitative bioassays for the isolation of the different agents responsible for neuronal survival and neurite promotion, and for the investigation of their activities.  相似文献   

14.
Na+,K+-pump activity is indispensable for neuronal survival in vitro and a specific role in its regulation has been demonstrated for the NGF action on its target neurons. We have extended these earlier studies to include two other neuronotrophic agents: the chick eye-derived ciliary neuronotrophic factor (CNTF); and 12-O-tetradecanoyl-phorbol-13-acetate (TPA). CNTF and TPA individually supported the survival of an identical (and maximal) number of embryonic day 10 (E10) dorsal root ganglion (DRG) neurons as did NGF. E10 DRG neurons, seeded as monolayer cultures with86Rb+ (as K+ tracer) but no trophic supplement in their medium, received NGF, CNTF, TPA, or no agent at 2, 4 or 6 h after seeding. The cultures were analyzed at 6 and 24 h for Na+,K+-pump performance and at 24 h for neuronal survival. Neurons receiving no agent lost their pump activity over the first 6 h and died over the 10–24 h incubation period. Both pump performance and survival were fully supported by any one of the 3 agents when provided at seeding time. Delayed presentation of NGF also led to full restoration of pump activity and survival support, as expected. In contrast, CNTF and TPA failed to correct the increasing pump deficits incurred with increasing times of trophic deprivation, and neuronal survival was proportionally reduced. Delayed addition of CNTF and TPA did, however, prevent further losses of both pump and viability. Close similarities were observed between pump failure and cell losses, demonstrating a linear correlation between pump performance and neuronal survival. Thus, neuronal survival is strongly correlated with the Na+,KK+-pump performance regardless of whether the DRG neurons are supported by NGF, CNTF or TPA. All 3 agents protect the neurons against pump losses (hence, against death), but only NGF appears to be able to restore pump function and cell viability.  相似文献   

15.
The multifunctional proteins, basic fibroblast growth factor (bFGF) and ciliary neurotrophic factor (CNTF), share a capacity to promote in vitro and in vivo survival of several, partly overlapping neuron populations. Whether they can affect neurons directly or whether their supportive effects are mediated by non-neuronal cells and their growth factor products has been addressed in this study by establishing single neuron cultures from embryonic chick ciliary ganglia. Cultures with one or two neurons and without any non-neuronal cells were obtained by limiting dilution of ganglionic cell suspensions on 96-well microtiter plates. In the presence of bFGF about 80% of the wells that contained 1 or 2 neurons at the time of seeding, had this (these) neuron(s) maintained after 1 and 5 days. Absence of bFGF resulted in the death of neurons in over 80% of the wells screened. Identical results were obtained with CNTF. These data demonstrate the effectiveness of bFGF and CNTF at the single neuron level, but do not rule out that the factors may act indirectly on neurons, particularly in complex in vitro and in vivo situations.  相似文献   

16.
At focal CNS injury sites, several cytokines accumulate, including ciliary neurotrophic factor (CNTF) and interleukin-1beta (IL-1beta). Additionally, the CNTF alpha receptor is induced on astrocytes, establishing an autocrine/paracrine loop. How astrocyte function is altered as a result of CNTF stimulation remains incompletely characterized. Here, we demonstrate that direct injection of CNTF into the spinal cord increases GFAP expression and astroglial size and that primary cultures of spinal cord astrocytes treated with CNTF, IL-1beta, or leukemia inhibitory factor exhibit nuclear hypertrophy comparable to that observed in vivo. Using a coculture bioassay, we further demonstrate that CNTF treatment of astrocytes increases their ability to support ChAT(+) ventral spinal cord neurons (presumably motor neurons) more than twofold compared with untreated astrocytes. Also, the complexity of neurites was significantly increased in neurons cultured with CNTF-treated astrocytes compared with untreated astrocytes. RT-PCR analysis demonstrated that CNTF increased levels of FGF-2 and nerve growth factor (NGF) mRNA and that IL-1beta increased NGF and hepatocyte growth factor mRNA levels. Furthermore, both CNTF and IL-1beta stimulated the release of FGF-2 from cultured spinal cord astrocytes. These findings demonstrate that cytokine-activated astrocytes better support CNS neuron survival via the production of neurotrophic molecules. We also show that CNTF synergizes with FGF-2, but not epidermal growth factor, to promote DNA synthesis in spinal cord astrocyte cultures. The significance of these findings is discussed by presenting a new model depicting the sequential activation of astrocytes by cytokines and growth factors in the context of CNS injury and repair.  相似文献   

17.
We have examined the effects of ciliary neurotrophic factor (CNTF) on the development of rat Purkinje cells in vitro. Cerebellar cells, derived from embryonic day 16 rat fetuses, were found to respond rapidly to CNTF treatment by induction of c-Fos protein, such that 40% of the cells were immunopositive after 60 min. Treatment with low doses of CNTF (10-100 pg/ml) for 8 days resulted in an ∼ 1.6-fold increase in the number of Purkinje cells, identified by immunohistochemical staining for calbindin. Immunohistochemical staining for other Purkinje cell markers-cyclic-GMP-dependent protein kinase and the low-affinity nerve growth factor receptor-verified increased Purkinje cell survival following CNTF treatment. In addition, CNTF increased specific high-affinity GABA uptake by 45%, and the number of GABAergic neurons by 70%. A maximal increase in the number of Purkinje cells and GABA-uptake was only achieved if CNTF was added within 48 h of plating the cells, further suggesting that CNTF enhances Purkinje cell survival in vitro. These results taken together strongly support a direct effect of CNTF in promoting the survival of Purkinje cells and possibly other GABAergic cerebellar neurons.  相似文献   

18.
Exogenous ciliary neurotrophic factor (CNTF) administration promotes the survival of motor neurons in a wide range of models. It also increases the expression of the critical neurotransmitter enzyme choline acetyltransferase (ChAT) by in vitro motor neurons, likely independent of its effects on their survival. We have used the adult mouse facial nerve crush model and adult‐onset conditional disruption of the CNTF receptor α (CNTFRα) gene to directly examine the in vivo roles played by endogenous CNTF receptors in adult motor neuron survival and ChAT maintenance, independent of developmental functions. We have previously shown that adult activation of the CreER gene construct in floxed CNTFRα mice depletes this essential receptor subunit in a large subset of motor neurons (and all skeletal muscle, as shown in this study) but has no effect on the survival of intact or lesioned motor neurons, indicating that these adult CNTF receptors play no essential survival role in this model, in contrast to their essential role during embryonic development. Here we show that this same CNTFRα depletion does not affect ChAT labeling in nonlesioned motor neurons, but it significantly increases the loss of ChAT following nerve crush. The data suggest that, although neither motor neuron nor muscle CNTF receptors play a significant, nonredundant role in the maintenance of ChAT in intact adult motor neurons, the receptors become essential for ChAT maintenance when the motor neurons are challenged by nerve crush. Therefore, the data suggest that the receptors act as a critical component of an endogenous neuroprotective mechanism. J. Comp. Neurol. 525:1206–1215, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Many neurotrophic factors have been shown to enhance survival of embryonic motor neurons or affect their response to injury. Few studies have investigated the potential effects of neurotrophic factors on more mature motor neurons that might be relevant for neurodegenerative diseases. Using organotypic spinal cord cultures from postnatal rats, we have demonstrated that insulin-like growth factor-I (IGF-I) and glial-derived neurotrophic factor (GDNF) significantly increase choline acetyltransferase (ChAT) activity, but brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4/5), and neurotrophin-3 (NT-3) do not. Surprisingly, ciliary neurotrophic factor (CNTF) actually reduces ChAT activity compared to age-matched control cultures. Neurotrophic factors have also been shown to alter the sensitivity of some neurons to glutamate neurotoxicity, a postulated mechanism of injury in the neurodegenerative disease, amyotrophic lateral sclerosis (ALS). Incubation of organotypic spinal cord cultures in the presence of the glutamate transport inhibitor threo-hydroxyaspartate (THA) reproducibly causes death of motor neurons which is glutamate-mediated. In this model of motor neuron degeneration, IGF-I, GDNF, and NT-4/5 are potently neuroprotective, but BDNF, CNTF, and NT-3 are not. The organotypic glutamate toxicity model appears to be the best preclinical predictor to date of success in human clinical trials in ALS.  相似文献   

20.
Factors affecting neuronal growth may be considered to fall into two major categories: those required for neuronal survival during development or following a lesion, and those which enhance growth or regeneration of axonal or dendritic processes. We briefly review here some recent studies on the former in spinal cord development and plasticity as an introduction to other papers in the session on Factors controlling Neural Growth, and then present in more detail work on factors affecting motoneuron development in vitro. The neurotrophins are a closely-related family of basic neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and neurotrophins -3, -4 and -5 that enhance neuronal survival by binding to surface receptors whose major components are the trk tyrosine kinases and p75NGF-R. Only the latter has been studied in the context of spinal cord neuroplasticity: its levels on motoneurons are up-regulated following central or peripheral trauma, although its function there remains unknown. Much evidence exists for the existence of 'motoneuron growth factors' involved in regulation of survival and development of spinal motoneurons. Following a critical comparison of techniques for their purification, we review results obtained in vitro and in vivo using known growth factors such as ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF) and transforming growth factor (TGF/β1). Although none of them satisfies all the criteria for the embryonic 'motoneuron growth factor', CNTF is of potential interest for reducing motoneuron loss in pathological situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号