首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The angular vestibulo-ocular reflex (AVOR) normally has an increased response during vergence on a near target. Some lines of evidence suggest that different vestibular afferent classes may contribute differentially to the vergence effect. For example, lesions that selectively affect those afferents sensitive to acceleration, i.e. irregular afferents, (galvanic ablation, intratympanic gentamicin) have been found to markedly reduce the vergence-mediated modulation of the AVOR. We hypothesized that a nonspecific and incomplete reduction in the AVOR response caused by canal plugging should have minimal effect on vergence-mediated modulation of the AVOR. The AVOR response to passive head impulses in canal planes (horizontal canals, left anterior-right posterior canals, right anterior-left posterior canals) while viewing a far (124 cm) or near (15 cm) target was measured in seven human subjects before and after anterior canal (AC) plugging to treat vertigo caused by dehiscence of the AC (i.e. superior canal dehiscence). The impulses were low amplitude (∼20°), high velocity (∼150°/s), high-acceleration (∼3,000°/s2) head rotations administered manually by the investigator. Binocular eye and head velocity were recorded using the scleral search coil technique. The AVOR gain was defined as inverted eye velocity divided by head velocity. Before plugging, AVOR gain for the dehiscent AC went from 0.87 ± 0.10 for far targets to 1.04 ± 0.13 for near targets (+19.1 ± 7.3%). After plugging, the AC AVOR gain went from 0.50 ± 0.10 for far targets to 0.59 ± 0.11 for near targets (+19.7 ± 6.1%). There was no difference in the vergence-mediated gain increase between pre- and post-plugged conditions (multi-way analysis of variance: P = 0.66). AC plugging also did not change the latency of the AVOR for either AC. We hypothesize that canal plugging, unlike gentamicin or galvanic ablation, has no effect on vergence-mediated modulation of the AVOR because plugging does not preferentially affect irregular afferents.  相似文献   

2.
The vestibulo-ocular reflex (VOR) acts to maintain images stable on the retina by rotating the eyes in exactly the opposite direction, but with equal magnitude, to head velocity. When viewing a near target, this reflex has an increased response to compensate for the translation of the eyes relative to the target that acts to reduce retinal image slip. Previous studies have shown that retinal velocity error provides an important visual feedback signal to increase the low-frequency (<1 Hz) VOR response during near viewing. We sought to determine whether initial eye position and retinal image position error could provide enough information to substantially increase the high-frequency VOR gain (eye velocity/head velocity) during near viewing. Ten human subjects were tested using the scleral search coil technique during horizontal head impulses under different lighting conditions (constant dark, strobe light at 0.5, 1, 2, 4, 10, 15 Hz, constant light) while viewing near (9.5 ± 1.3 cm) and far (104 cm) targets. Our results showed that the VOR gain increased during near viewing compared to far viewing, even during constant dark. For the near target, there was an increase in VOR gain with increasing strobe frequency from 1.17 ± 0.17 in constant dark to 1.36 ± 0.27 in constant light, a 21 ± 9 % increase. For the far target, strobe frequency had no effect. Presentation order of strobe frequency (i.e. 0.5–15 vs. 15–0.5 Hz) did not affect the gain, but it did affect the vergence angle (angle between the two eye’s lines of sight). The VOR gain and vergence angles were constant during each trial. Our findings show that a retinal position error signal helps increase the vergence angle and could be invoking vestibular adaptation mechanisms to increase the high-frequency VOR response during near viewing. This is in contrast to the low-frequency VOR that depends more on retinal velocity error and predictive adaptation mechanisms.  相似文献   

3.
This study used visual-vestibular conflict to effect short-term torsional and horizontal adaptation of the vestibulo-ocular reflex (VOR). Seven normal subjects underwent sinusoidal whole-body rotation about the earth-vertical axis for 40 min (±37°/s, 0.3 Hz) while viewing a stationary radial pattern fixed to the chair (×0 viewing). During adaptation and testing in darkness, the head was pitched either up or down 35° to excite both the horizontal and torsional VOR. The eyes were kept close to zero orbital elevation. Eye movements were recorded with a dual search coil in a three-field magnetic system. VOR gain was determined by averaging peak eye velocity from ten cycles of chair oscillation in complete darkness. The gain of the angular horizontal VOR (response to rotation about the head rostral-caudal axis) was significantly reduced after training in both head orientations. Angular torsional VOR gain (head rotation about the naso-occipital axis) was reduced in both head orientations, but this reached statistical significance only in the head down position. These results suggest that torsional and horizontal VOR gain adaptation, even when elicited together, may be subject to different influences depending upon head orientation. Differences between head up and down could be due to the relatively greater contribution of the horizontal semicircular canals with nose-down pitch. Alternatively, different VOR-adaptation processes could depend on the usual association of the head down posture to near viewing, in which case the torsional VOR is relatively suppressed.  相似文献   

4.
The aim of this study was to determine whether vergence-mediated changes in the axis of eye rotation in the human vestibulo-ocular reflex (VOR) would obey Listing's Law (normally associated with saccadic eye movements) independent of the initial eye position. We devised a paradigm for disassociating the saccadic velocity axis from eye position by presenting near and far targets that were centered with respect to one eye. We measured binocular 3-dimensional eye movements using search coils in ten normal subjects and 3-dimensional linear head acceleration using Optotrak in seven normal subjects. The stimuli consisted of passive, unpredictable, pitch head rotations with peak acceleration of ~2,000°/s2 and amplitude of ~20°. During the pitch head rotation, each subject fixated straight ahead with one eye, whereas the other eye was adducted 4° during far viewing (94 cm) and 25° during near viewing (15 cm). Our data showed expected compensatory pitch rotations in both eyes, and a vergence-mediated horizontal rotation only in the adducting eye. In addition, during near viewing we observed torsional eye rotations not only in the adducting eye but also in the eye looking straight ahead. In the straight-ahead eye, the change in torsional eye velocity between near and far viewing, which began ~40 ms after the start of head rotation, was 10±6°/s (mean ± SD). This change in torsional eye velocity resulted in a 2.4±1.5° axis tilt toward Listing's plane in that eye. In the adducting eye, the change in torsional eye velocity between near and far viewing was 16±6°/s (mean ± SD) and resulted in a 4.1±1.4° axis tilt. The torsional eye velocities were conjugate and both eyes partially obeyed Listing's Law. The axis of eye rotation tilted in the direction of the line of sight by approximately one-third of the angle between the line of sight and a line orthogonal to Listing's plane. This tilt was higher than predicted by the one-quarter rule. The translational acceleration component of the pitch head rotation measured 0.5 g and may have contributed to the increased torsional component observed during near viewing. Our data show that vergence-mediated eye movements obey a VOR/Listing's Law compromise strategy independent of the initial eye position.  相似文献   

5.
Summary We measured the effect of static lateral tilt (roll) on the gain and time constant of the vestibulo-ocular reflex (VOR) in five normal subjects by recording both the horizontal and vertical components of eye velocity in space for rotation about an earth vertical axis with the head either upright or rolled to either side. The time constant of the VOR in the upright position was 19.6 ±3.2s (mean ± standard deviation). The time constant of the horizontal component with respect to the head decreased to 15.7±4.0s for 30° roll and to 12.7±2.7s for 60° roll. The time constant of the vertical component with respect to the head was 11.0±1.4 s for 30° roll and 7.5±1.6 s for 60° roll. The gain of the horizontal VOR with respect to space did not vary significantly with roll angle but a small space-vertical component to the VOR appeared during all rotations when the head was rolled away from upright. This non-compensatory nystagmus built up to a maximum of 2–3°/s at 17.0±4.7s after the onset of rotation and then decayed. These data suggest that static otolith input modulates the central storage of semicircular canal signals, and that head-horizontal and head-vertical components of the VOR can decay at different rates.  相似文献   

6.
Vergence is one of several viewing contexts that require an increase in the angular vestibular-ocular reflex (aVOR) response. A previous monkey study found that the vergence-mediated gain (eye/head velocity) increase of the aVOR was attenuated by 64 % when anodic currents, which preferentially lower the activity of irregularly firing vestibular afferents, were delivered to both labyrinths. We sought to determine whether there was similar evidence implicating a role for irregular afferents in the vergence-mediated gain increase of the human aVOR. Our study is based upon analysis of the aVOR evoked by head rotations, delivered passively while subjects viewed a near (15 cm) or far (124 cm) target and applying galvanic vestibular stimulation (GVS) via surface electrodes. We tested 12 subjects during 2–3 sessions each. Vestibular stimuli consisted of passive whole-body rotations (sinusoids from 0.05–3 Hz and 12–25°/s, and transients with peak ~15°, 50°/s, 500°/s2) and head-on-body impulses (peak ~30°, 150°/s, 3,000°/s2). GVS was on for 10 s every 20 s. All polarity combinations were tested, with emphasis on uni- and bi-lateral anodic inhibition. The average stimulus current was 5.9 ± 1.6 mA (range: 3–9.5 mA), vergence angle (during near viewing) was 22.6 ± 2.8° and slow-phase eye velocity caused by left anodic current stimulation with head stationary was ?3.4 ± 1.1°/s, ?0.2 ± 0.6°/s and 2.5 ± 1.4°/s (torsion, vertical, horizontal). No statistically significant GVS effects were observed, suggesting that surface electrode GVS has no effect on the vergence-mediated gain increase of the aVOR at the current levels (~6 mA) tolerated by most humans. We conclude that clinically practical transmastoid GVS does not effectively silence irregular afferents and hypothesize that currents >10 mA are needed to reproduce the monkey results.  相似文献   

7.
Rapid, passive, unpredictable, low-amplitude (10–20°), high-acceleration (3000–000°/s2) head rota tions were used to study the vertical vestibulo-ocular reflex in the pitch plane (pitch-vVOR) after unilateral vestibular deafferentation. The results from 23 human subjects who had undergone therapeutic unilateral vestibular deafferentation were compared with those from 19 normals. All subjects were tested while seated in the upright position. Group means and two-tailed 95% confidence intervals are reported for the pitch-vVOR gains in normal and unilateral vestibular deafferented subjects. In normal subjects, at a head velocity of 125°/s the pitch-vVOR gains were: upward 0.89±0.06, down ward 0.91±0.04. At a head velocity of 200°/s, the pitchvVOR gains were: upward 0.92±0.06, downward 0.96±0.04. There was no significant up-down asymme try. In the 15 unilateral vestibular deafferented subjects who were studied more than 1 year after unilateral vestibular deafferentation, the pitch-vVOR was signifi cantly impaired. At a head velocity of 125°/s the pitchvVOR gains were: upward 0.67±0.11, downward 0.63 ± 0.07. At a head velocity of 200°/s, the pitch-vVOR gains were: upward 0.67±0.07, downward 0.58±0.06. There was no significant up-down asymmetry. The pitch-vVOR gain in unilateral vestibular deafferented subjects was significantly lower (P<0.05) than the pitch-vVOR gain in normal subjects at the same head velocities. These results show that total, permanent uni lateral loss of vestibular function produces a permanent symmetrical 30% (approximately) decrease in pitchv-VOR gain. This pitch-vVOR deficit is still present more than 1 year after deafferentation despite retinal slip velocities greater than 30°/s in response to head accelerations in the physiological range, indicating that compensation of pitch-vVOR function following unilat eral vestibular deafferention remains incomplete.  相似文献   

8.
Summary The normal horizontal vestibulo-ocular reflex (HVOR) is largely generated by simultaneous stimulation of the two horizontal semicircular canals (HSCCs). To determine the dynamics of the HVOR when it is generated by only one HSCC, compensatory eye movements in response to a novel vestibular stimulus were measured using magnetic search coils. The vestibular stimulus consisted of low-amplitude, high-acceleration, passive, unpredictable, horizontal rotations of the head with respect to the trunk. While these so called head “impulses” had amplitudes of only 15–20 degrees with peak velocities up to 250 deg/s, they had peak accelerations up to 3000 deg/s/s. Fourteen humans were studied in this way before and after therapeutic unilateral vestibular neurectomy; 10 were studied 1 week or 1 year afterwards; 4 were studied 1 week and 1 year afterwards. The results from these 14 patients were compared with the results from 30 normal control subjects and with the results from one subject with absent vestibular function following bilateral vestibular neurectomy. Compensatory eye rotation in normal subjects closely mirrored head rotation. In contrast there was no compensatory eye rotation in the first 170 ms after the onset of head rotation in the subject without vestibular function. Before unilateral vestibular neurectomy all the patients' eye movement responses were within the normal control range. One week after unilateral vestibular neurectomy however there was a symmetrical bilateral HVOR deficit. The asymmetry was much more profound than has been shown in any previous studies. The HVOR generated in response to head impulses directed away from the intact side largely by ampullofugal disfacilitation from the single intact HSCC (ignoring for the moment the small contribution to the HVOR from stimulation of the vertical SCCs), was severely deficient with an average gain (eye velocity/head velocity) of 0.25 at 122.5 deg/sec head velocity (normal gain=0.94+/−0.08). In contrast the HVOR generated in response to head impulses directed toward the intact side, largely by ampullopetal excitation from the single intact HSCC, was only mildly (but nonetheless significantly) deficient, with an average gain of 0.80 at 122.5 deg/sec head velocity. At these accelerations there was no significant improvement in the average HVOR velocity gain in either direction over the following year. These results indicate that ampullopetal excitation from one HSCC can, even in the absence of ampullofugal disfacilitation from the opposite HSCC, generate a near normal HVOR in response to high-acceleration stimulation. Furthermore, since ampullofugal disfacilitation on its own, can only generate an inadequate HVOR in response to high-acceleration stimulation, it may under some normal circumstances make little contribution to the bilaterally generated HVOR.  相似文献   

9.
The vestibulo-ocular reflex (VOR) was studied in nine human subjects 2–15 months after permanent surgical occlusion of one posterior semicircular canal. The stimuli used were rapid, passive, unpredictable, low-amplitude (10–20°), high-acceleration (3000–4000°/s2) head rotations in pitch and yaw planes. The responses measured were vertical and horizontal eye rotations, and the results were compared with those from 19 normal subjects. After unilateral occlusion of the posterior semi-circular canal, the gain of the head-up pitch vertical VOR — the vertical VOR generated by excitation from only one and disfacilitation from two vertical semicircular canals — was reduced to 0.61±0.06 (normal 0.92±0.06) at a head velocity of 200°/s. In contrast the gain of the head-down pitch vertical VOR — the VOR still generated by excitation from two, but disfacilitation from only one vertical semicircular canal — was within normal limits: 0.86±0.11 (normal 0.96±0.04). The gain of the horizontal VOR in response to yaw head rotations — ipsilesion 0.81±0.06 (normal 0.88±0.05) and contralesion 0.80±0.11 (normal 0.92±0.11) — was within normal limits in both directions (group means ± two-tailed 95% confidence intervals given in each case). These results show that occlusion of just one vertical semicircular canal produces a permanent deficit of about 30% in the vertical VOR gain in response to rapid pitch head rotations in the excitatory direction of the occluded canal. This observation indicates that, in response to a stimulus in the higher dynamic range, compensation of the human VOR for the loss of excitatory input from even one vertical semicircular canal is incomplete.  相似文献   

10.
Summary Squirrel monkeys were trained to cancel their vestibulo-ocular reflex (VOR) by fixating a visual target that was head stationary during passive vestibular stimulation. The monkeys were seated on a vestibular turntable, and their heads were restrained. A small visual target (0.2°) was projected from the vestibular turntable onto a tangent screen. The monkeys' ability to suppress their VOR by fixating a head stationary target while the turntable was moving was compared to their ability to pursue the target when it was moved in the same manner.Squirrel monkeys were better able to suppress their VOR when the turntable was moved at high velocities than they were able to pursue targets that were moving at high velocities. The gaze velocity gain during VOR cancellation began to decrease when the head velocity was above 80°/s, and was greater than 0.6 when the head velocity was above 150°/s. However, gaze velocity gain during smooth pursuit decreased significantly when the target velocity was greater than 60°/s, and was less than 0.4 when the target velocity was 150°/s or more.The latency of VOR suppression was significantly shorter than the latency of smooth pursuit while the monkey was cancelling its VOR. When an unpredictable step change in head acceleration was generated while the monkey was cancelling its VOR, the VOR evoked by the head acceleration step began to be suppressed shortly after the initiation of the step ( 30 ms). On the other hand, the latency of the smooth pursuit eye movement elicited when the visual target was accelerated in the same manner during VOR cancellation was 100 ms. The comparison between these two results suggests that the monkeys did not use visual information related to target motion to suppress their VOR at an early latency.The monkeys' ability to suppress the VOR evoked by an unexpected change in head acceleration depended on the size of the head acceleration step. The VOR evoked by unexpected step changes in head acceleration was progressively less suppressed at an early latency as the size of the acceleration step increased, and was not suppressed at an early latency when the step change in head acceleration was greater than 500°/s2.During smooth pursuit eye movements, unexpected step changes in head acceleration evoked a VOR that was suppressed at an early latency ( 50 ms) if the head movement was in the same direction as the ongoing smooth pursuit eye movement. The amount of early VOR suppression increased as the pursuit eye velocity increased.We conclude that squirrel monkeys utilize a fast, non-visual mechanism for cancelling their VOR while they are fixating a visual target and their head is moving. This non-visual mechanism appears to be turned on when the head is moving and the monkey is fixating a head stationary target. The mechanism probably utilizes a voluntarily gated vestibular signal to cancel the signals in VOR pathways at the level of the extraocular motorneurons. Although the VOR cancellation mechanism is not capable of completely suppressing the VOR evoked by large unexpected changes in head acceleration, we suggest that it is capable of suppressing the VOR generated by most voluntary head movements during combined eye and head gaze pursuit and that the function of this gated VOR cancellation system is to extend the range and accuracy of eye-head tracking movements.  相似文献   

11.
Latencies of normal and adapted feline vestibulo-ocular reflex (VOR) were studied in five cats by applying ± 20°/s horizontal head velocity steps (4000°/s2 acceleration) and measuring the elicited horizontal or vertical reflex eye responses. Normal VOR latency was 13.0 ms ± 1.9 SD. Short-term adaptation was then accomplished by using 2 h of paired horizontal sinusoidal vestibular stimulation and phase-synchronized vertical optokinetic stimulation (cross-axis adaptation). For long-term adaptation, cats wore ×0.25 or ×2.2 magnifying lenses for 4 days. The cats were passively rotated for 2 h/day and allowed to walk freely in the laboratory or their cages for the remainder of the time. The latency of the early (primary) adaptive response was 15.2ms±5.2 SD for crossaxis adaptation and 12.5 ms±3.9 SD for lens adaptation. This short-latency response appeared within 30 min after beginning the adaptation procedure and diminished in magnitude overnight. A late (secondary) adaptive response with latency of 76.8 ms±7.0 SD for cross-axis adaptation and 68.1 ms±8.8 SD for lens adaptation appeared after approximately 2 h of adaptation. It had a more gradual increase in magnitude than the primary response and did not diminish in magnitude overnight. These data suggest that brainstem VOR pathways are a site of learning for adaptive VOR modification, since the primary latency is short and has a similar latency to that of the normal VOR.  相似文献   

12.
The purpose of this study was to examine the effect of fixation target distance on the human vestibuloocular reflex (VOR) during eccentric rotation in pitch. Such rotation induces both angular and linear acceleration. Eight normal subjects viewed earth-fixed targets that were either remote or near to the eyes during wholebody rotation about an earth-horizontal axis that was either oculocentric or 15 cm posterior (eccentric) to the eyes. Eye and head movements were recorded using magnetic search coils. Using a servomotor-driven chair, passive whole-body rotations were delivered as trains of single-frequency sinusoids at frequencies from 0.8 to 2.0 Hz and as pseudorandom impulses of acceleration. In the light, the visually enhanced VOR (VVOR) was recorded while subjects were asked to fixate targets at one of several distances. In darkness, subjects were asked to remember targets that had been viewed immediately prior to the rotation. In order to eliminate slip of the retinal image of a near target when the axis of rotation of the head is posterior to the eyes, the ideal gain (compensatory eye velocity divided by head velocity) of the VVOR and VOR must exceed 1.0. Both the VOR and VVOR were found to have significantly enhanced gains during sinusoidal and pseudorandom impulses of rotation (P<0.05). Enhancement of VVOR gain was greatest at low frequencies of head rotation and decreased with increasing frequency. However, enhanced VOR gain only slightly exceeded 1.0, and VVOR gain enhancement was significantly lower than the expected ideal values for the stimulus conditions employed (P<0.05). During oculocentric rotations with near targets, both the VOR and VVOR tended to exhibit small phase leads that increased with rotational frequency. In contrast, during eccentric rotations with near targets, there were small phase lags that increased with frequency. Visual tracking contributes during ocular compensatory responses to sustained head rotation, although the latency of visual tracking reflexes exceeds 100 ms. In order to study initial vestibular responses prior to modification by visual tracking, we presented impulses of head acceleration in pseudorandom sequence of initial positions and directions, and evaluated the ocular response in the epoch from 25 to 80 ms after movement onset. As with sinusoidal rotations, pseudorandom eccentric head rotation in the presence of a near, earth-fixed target was associated with enhancement of VVOR and VOR gains in the interval from 25 to 80 ms from movement onset. Despite the inability of visual tracking to contribute to these responses, VVOR gain significantly exceeded VOR gain for pseudorandom accelerations. This gain enhancement indicates that target distance and linear motion of the head are considered by the human ocular motor system in adjustment of performance of the early VOR, prior to a contribution by visual following reflexes. Vergence was appropriate to target distance during all VVOR rotations, but varied during VOR rotations with remembered targets. For the 3-m target distance, vergence during the VOR was stable over each entire trial but slightly exceeded the ideal value. For the 0.1-m near target, instantaneous vergence during the VOR typically declined gradually in a manner not corresponding to the time course of instantaneous VOR gain change; mean vergence over entire trials ranged from 60 to 90% of ideal, corresponding to target distances for which ideal gain would be much higher than actually observed. These findings suggest a dissociation between vergence and VOR gain during eccentric rotation with near targets in the frequency range from 0.8 to 2.0 Hz.  相似文献   

13.
1. The vestibuloocular reflex (VOR) stabilizes images on the retina against movements of the head in space. Viewing distance, target eccentricity, and location of the axis of rotation may influence VOR responses because rotation of the head about most axes in space rotates and translates the eyes relative to visual targets. To study the VOR response to combined rotation and translation, monkeys were placed on a rate table and rotated briefly in the dark about a vertical axis that was located in front of or behind the eyes. The monkeys fixated a near or far visual target that was extinguished before the rotation. Eye movements were recorded from both eyes by the use of the search coil technique. 2. Peak eye velocity evoked by the VOR was linearly related to vergence angle for any axis of rotation. The percent change in the VOR with near target viewing relative to far target viewing at a vergence angle of 20 degrees was linearly related to the location of the axis of rotation. Axes located behind the eyes produced positive changes in VOR amplitude, and axes located in front of the eyes produced negative changes in VOR amplitude. An axis of rotation located in the coronal plane containing the centers of rotation of the eyes produced no modification of VOR amplitude. For any axis, the VOR compensated for approximately 90% of the translation of the eye relative to near targets. 3. The initial VOR response was not correct in magnitude but was refined by a series of three temporally delayed corrections of increasing complexity. The earliest VOR-evoked eye movement (10-20 ms after rotation onset) was independent of viewing distance and rotational axis location. In the next 100 ms, eye speed appeared to be sequentially modified three times: within 20 ms by viewing distance; within 30 ms by otolith translation; and within 100 ms by eye translation relative to the visual target. 4. These data suggest a formal model of the VOR consisting of four channels. Channel 1 conveys an unmodified head rotation signal with a pure delay of 10 ms. Channel 2 conveys an angular head velocity signal, modified by viewing distance with a pure delay of 20 ms, but invariant with respect to the location of the axis of rotation. Channel 3 conveys a linear head velocity signal, dependent on the location of the axis of rotation, that is modified by viewing distance with a pure delay of 30 ms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The gain (ratio of eye velocity to head velocity) of the initial horizontal vestibulo-ocular reflex (VOR) was calculated in 12 normal subjects over 350 ms during impulsive, unpredictable whole body rotation under three conditions: (1) darkness; (2) visual enhancement of the VOR, while the subjects fixated a stationary target; and (3) visual cancellation of the reflex, while subjects fixated a target that rotated with the head. The gain of the initial 80 ms of compensatory eye movement increased significantly during visual fixation in 5 subjects and decreased during attempted VOR cancellation in 3 subjects, when compared with VOR gain in darkness. Compensatory vestibular smooth eye movements were slowed, becoming curved at the onset of VOR cancellation, at mean latencies ranging from 78 to 149 ms in individual subjects (group mean 128 ms). At about 190 ms, quick phases moved the eyes in the same direction as head and target motion. The subsequent vestibular eye movements were about 50% slower than the initial smooth eye movements, indicating more effective cancellation. Visual enhancement of the VOR can occur prior to the onset of pursuit, providing evidence that fixation and smooth pursuit are distinct ocular motor systems. Visual cancellation of the VOR also begins prior to smooth pursuit initiation and becomes more effective after the latency of smooth pursuit.  相似文献   

15.
The aim of this study was to determine if the angular vestibulo-ocular reflex (VOR) in response to pitch, roll, left anterior–right posterior (LARP), and right anterior–left posterior (RALP) head rotations exhibited the same linear and nonlinear characteristics as those found in the horizontal VOR. Three-dimensional eye movements were recorded with the scleral search coil technique. The VOR in response to rotations in five planes (horizontal, vertical, torsional, LARP, and RALP) was studied in three squirrel monkeys. The latency of the VOR evoked by steps of acceleration in darkness (3,000°/s2 reaching a velocity of 150°/s) was 5.8±1.7 ms and was the same in response to head rotations in all five planes of rotation. The gain of the reflex during the acceleration was 36.7±15.4% greater than that measured at the plateau of head velocity. Polynomial fits to the trajectory of the response show that eye velocity is proportional to the cube of head velocity in all five planes of rotation. For sinusoidal rotations of 0.5–15 Hz with a peak velocity of 20°/s, the VOR gain did not change with frequency (0.74±0.06, 0.74±0.07, 0.37±0.05, 0.69±0.06, and 0.64±0.06, for yaw, pitch, roll, LARP, and RALP respectively). The VOR gain increased with head velocity for sinusoidal rotations at frequencies 4 Hz. For rotational frequencies 4 Hz, we show that the vertical, torsional, LARP, and RALP VORs have the same linear and nonlinear characteristics as the horizontal VOR. In addition, we show that the gain, phase and axis of eye rotation during LARP and RALP head rotations can be predicted once the pitch and roll responses are characterized.This work was supported by NIH grant R01 DC02390  相似文献   

16.
We measured torsional vestibular and optokinetic eye movements in human subjects with the head and trunk erect, with the head supine and the trunk erect, and with the head and trunk supine, in order to quantify the effects of otolithic and proprioceptive modulation. During active head movements, the torsional vestibulo-ocular reflex (VOR) had significantly higher gain with the head upright than with the head supine, indicating that dynamic otolithic inputs can supplement the semicircular canal-ocular reflex. During passive earth-vertical axis rotation, torsional VOR gain was similar with the head and trunk supine and with the head supine and the trunk erect. This finding implies that static proprioceptive information from the neck and trunk has little effect upon the torsional VOR. VOR gain with the head supine was not increased by active, self-generated head movement compared with passive, whole body rotation, indicating that the torsional VOR is not augmented by dynamic proprioceptive inputs or by an efference copy of a command for head movement. Viewing earth-fixed surroundings enhanced the torsional VOR, while fixating a chair-fixed target suppressed the VOR, especially at low frequencies. Torsional optokinetic nystagmus (OKN) evoked by a full-field stimulus had a mean slow-phase gain of 0.22 for 10°/s drum rotation, but gain fell to 0.06 for 80°/s stimuli. Despite this fall in gain, mean OKN slow-phase velocities increased with drum speed, reaching maxima of 2.5°/s–8.0°/s in our subjects. Optokinetic afternystagmus (OKAN) was typically absent. Torsional OKN and OKAN were not modified by otolithic or proprioceptive changes caused by altering head and trunk position with respect to gravity. Torsional velocity storage is negligible in humans, regardless of head orientation.Presented in part at the Society for Neuroscience Annual Meeting, October 31, 1989, Phoenix, AZ  相似文献   

17.
Dynamic changes of deficits in canal and otolith vestibulo-ocular reflexes (VORs) to high acceleration, eccentric yaw rotations were investigated in five subjects aged 25–65 years before and at frequent intervals 3–451 days following unilateral vestibular deafferentation (UVD) due to labyrinthectomy or vestibular neurectomy. Eye and head movements were recorded using magnetic search coils during transients of directionally random, whole-body rotation in darkness at peak acceleration 2,800°/s2. Canal VORs were characterized during rotation about a mid-otolith axis, viewing a target 500 cm distant until rotation onset in darkness. Otolith VOR responses were characterized by the increase in VOR gain during identical rotation about an axis 13 cm posterior to the otoliths, initially viewing a target 15 cm distant. Pre-UVD canal gain was directionally symmetrical, averaging 0.87 ± 0.02 (±SEM). Contralesional canal gain declined from pre-UVD by an average of 22% in the first 3–5 days post-UVD, before recovering to an asymptote of close 90% of pre-UVD level at 1–3 months. This recovery corresponded to resolution of spontaneous nystagmus. Ipsilesional gain declined to 59%, and showed no consistent recovery afterwards. Pre-UVD otolith gain was directionally symmetrical, averaging 0.56 ± 0.02. Immediately after UVD, the contralesional otolith gain declined to 0.30 ± 0.02, and did not recover. Ipsilesional otolith gain declined profoundly to 0.08 ± 0.03 (P < 0.01), and never recovered. In contrast to the modest and directionally symmetrical effect of UVD on the human otolith VOR during pure translational acceleration, otolith gain during eccentric yaw rotation exhibited a profound and lasting deficit that might be diagnostically useful in lateralizing otolith pathology. Most recovery of the human canal gain to high acceleration transients following UVD is for contralesional head rotation, occurring within 3 months as spontaneous nystagmus resolves. Grant support: United States Public Health Service grants DC-02952 and AG-09693. JLD is Leonard Apt Professor of Ophthalmology.  相似文献   

18.
The gain of the human vestibuloocular reflex (VOR) is influenced by the proximity of the object of regard. In six human subjects, we measured the eye rotations induced by passive, sinusoidal, horizontal head rotations at 2.0 Hz during binocular fixation of a stationary far target at 7 m; a stationary target close to the subject's near point of fixation (<15 cm); and the bridge of the subject's own nose, viewed through a mirror positioned so that, for each subject, the angle of vergence was similar to that during viewing of the near target. The median gain of compensatory eye movements for the group of subjects during far viewing was 0.99 (range 0.80-1.04), during near viewing was 1.21 (range 0.88-1.47), and during mirror viewing was 0.85 (range 0.71-1.01). The gain during near and mirror viewing was significantly different for each subject (P < 0.001) even though the vergence angles were similar. The lower gain values during mirror viewing can be attributed to the geometric relationship between the head rotation, the position of the eyes in the head, and the movement of the subject's virtual image in the mirror. To determine whether visually mediated eye movements were responsible for the observed gain values, we conducted a control experiment in which subjects were rotated using a sum-of-sines stimulus that minimized the effects of predictive visual tracking; differences of gain values between near- and mirror-viewing conditions were similar to those during rotation at 2 Hz. We conclude that, in these experiments, target proximity and vergence angle were not the key determinants of gain of the visuo-vestibular response during head rotation while viewing a near target but that contextual cues from motion vision were more important in generating the appropriate response.  相似文献   

19.
Geometry dictates that when subjects view a near target during head rotation the eyes must rotate more than the head. The relative contribution to this compensatory response by adjustment of the vestibulo-ocular reflex gain (Gvor), visual tracking mechanisms including prediction, and convergence is debated. We studied horizontal eye movements induced by sinusoidal 0.2–2.8 Hz, en-bloc yaw rotation as ten normal humans viewed a near target that was either earth-fixed (EFT) or head-fixed (HFT). For EFT, group median gain was 1.49 at 0.2 Hz declining to 1.08 at 2.8 Hz. For HFT, group median gain was 0.03 at 0.2 Hz increasing to 0.71 at 2.8 Hz. By applying transient head perturbations (peak acceleration >1,000° s–2) during sinusoidal rotation, we determined that Gvor was similar during either EFT or HFT conditions, and contributed only ~75% to the compensatory response. We confirmed that retinal image slip contributed to the compensatory response by demonstrating reduced gain during EFT viewing under strobe illumination. Gain also declined during sum-of-sines head rotations, confirming the contribution of predictive mechanisms. The gain of compensatory eye movements was similar during monocular or binocular viewing, although vergence angle was greater during binocular viewing. Comparison with previous studies indicates that mechanisms for generation of eye rotations during near viewing depend on head stimulus type (rotation or translation), waveform (transient or sinusoidal), and the species being tested.  相似文献   

20.
Effects of viewing distance on the responses of horizontal canal-related secondary vestibular neurons during angular head rotation. The eye movements generated by the horizontal canal-related angular vestibuloocular reflex (AVOR) depend on the distance of the image from the head and the axis of head rotation. The effects of viewing distance on the responses of 105 horizontal canal-related central vestibular neurons were examined in two squirrel monkeys that were trained to fixate small, earth-stationary targets at different distances (10 and 150 cm) from their eyes. The majority of these cells (77/105) were identified as secondary vestibular neurons by synaptic activation following electrical stimulation of the vestibular nerve. All of the viewing distance-sensitive units were also sensitive to eye movements in the absence of head movements. Some classes of eye movement-related vestibular units were more sensitive to viewing distance than others. For example, the average increase in rotational gain (discharge rate/head velocity) of position-vestibular-pause units was 20%, whereas the gain increase of eye-head-velocity units was 44%. The concomitant change in gain of the AVOR was 11%. Near viewing responses of units phase lagged the responses they generated during far target viewing by 6-25 degrees. A similar phase lag was not observed in either the near AVOR eye movements or in the firing behavior of burst-position units in the vestibular nuclei whose firing behavior was only related to eye movements. The viewing distance-related increase in the evoked eye movements and in the rotational gain of all unit classes declined progressively as stimulus frequency increased from 0.7 to 4.0 Hz. When monkeys canceled their VOR by fixating head-stationary targets, the responses recorded during near and far target viewing were comparable. However, the viewing distance-related response changes exhibited by central units were not directly attributable to the eye movement signals they generated. Subtraction of static eye position signals reduced, but did not abolish viewing distance gain changes in most units. Smooth pursuit eye velocity sensitivity and viewing distance sensitivity were not well correlated. We conclude that the central premotor pathways that mediate the AVOR also mediate viewing distance-related changes in the reflex. Because irregular vestibular nerve afferents are necessary for viewing distance-related gain changes in the AVOR, we suggest that a central estimate of viewing distance is used to parametrically modify vestibular afferent inputs to secondary vestibuloocular reflex pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号