首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the brain during functional activity has shown that cerebral blood flow in the sensory-motor cortex on the injured side is higher during a power-assisted FES session than during simple active movement or simple electrical stimulation. Nevertheless, evidence-based strategies for motor rehabilitation are more easily available, particularly for patients with hemiparesis.  相似文献   

2.
In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field.  相似文献   

3.
Rehabilitation with augmented electrical stimulation can enhance functional recovery after stroke, and cortical plasticity may play a role in this process. The purpose of this study was to compare the effects of three training paradigms on cortical excitability in healthy subjects. Cortical excitability was evaluated by analysing the input–output relationship between transcranial magnetic stimulation intensity and motor evoked potentials (MEPs) from the flexor muscles of the fingers. The study was performed with 25 healthy volunteers who underwent 20-min simulated therapy sessions of: (1) functional electrical stimulation (FES) of the finger flexors and extensors, (2) voluntary movement (VOL) with sensory stimulation, and (3) therapeutic FES (TFES) where the electrical stimulation augmented voluntary activation. TFES training produced a significant increase in MEP magnitude throughout the stimulation range, suggesting an increase in cortical excitability. In contrast, neither the FES nor voluntary movement alone had such an effect. These results suggest that the combination of voluntary effort and FES has greater potential to induce plasticity in the motor cortex and that TFES might be a more effective approach in rehabilitation after stroke than FES or repetitive voluntary training alone.  相似文献   

4.
A prototype of wireless surface electrical stimulation system combined with the fuzzy FES controller was developed for rehabilitation training with functional electrical stimulation (FES). The developed FES system has three features for rehabilitation training: small-sized electrical stimulator for surface FES, wireless connection between controller and stimulators, and between controller and sensors, and the fuzzy FES controller based on the cycle-to-cycle control for repetitive training. The developed stimulator could generate monophasic or biphasic high voltage stimulus pulse and could output stimulation pulses continuously more than 20 hours with 4 AAA batteries. The developed system was examined with neurologically intact subjects and hemiplegic subjects in knee joint control. The maximum knee joint angle was controlled by regulating burst duration of stimulation pulses by the fuzzy controller. In the results of two experiments of knee extension angle control and knee flexion and extension angle control, the maximum angles reached their targets within small number of cycles and were controlled stably in the stimulation cycles after reaching the target. The fuzzy FES controller based on the cycle-to-cycle control worked effectively to reach the target angle and to compensate difference in muscle properties between subjects. The developed wireless surface FES system would be practical in clinical applications of repetitive execution of similar movements of the limbs for motor rehabilitation with FES.  相似文献   

5.
A neurobot (NR) is a mechatronic wearable robot that can be applied to drive a paralyzed limb. Through the application of controllable forces, a NR can assist, replace, or retrain a certain motor function. Robotic intervention in rehabilitation of motor disorders has a potential to improve traditional therapeutic interventions. Because of its flexibility, repeatability and quantifiability, NRs have been more and more applied in neurorehabilitation. Furthermore, combination of NRs with functional electrical stimulation/therapy constitutes a trend to overcome a number of practical limitations to widespread the application of NRs in clinical settings and motor control studies. In this review, we examine the motor learning principles, robotic control approaches and novel developments from studies with NRs and hybrid systems, with a focus on rehabilitation of the lower limbs.  相似文献   

6.
利用机器人技术进行上肢康复训练是脑卒中患者进行康复治疗的重要手段之一。本文根据中枢神经系统具有高度的可塑性,分析了机器人辅助康复训练的理论依据。并且依据康复机器人的社会需求和研究意义,归纳总结了5种上肢康复机器人的研究进展和研究成果,其中包括上肢康复机器人、功能性电刺激辅助上肢康复机器人、基于虚拟现实技术的上肢康复机器人、基于sEMG的上肢康复训练机器人、基于BCI上肢康复训练机器人。为完善康复机器人的功能,实现对脑卒中患者上肢运动功能的量化评估,本文还分析了目前临床上常用的几种评价方法,即Brunnstrom等级评价法、Fugl?Meyer量表评价法、上田敏评价法和Bobath评价法。最后分析了上肢康复机器人在机械设计、控制策略和评价方法等方面的发展趋势。  相似文献   

7.
脊椎损伤、脑血管意外、脑血管外伤的患者会出现不同程度的下肢运动障碍。采用有效的方法对患者进行下肢康复训练,进而改善患者的步态,增强患者的步行能力,具有重要的意义。大量的临床实验表明,功能性电刺激与其他的康复疗法相结合对于下肢偏瘫患者运动功能的恢复有着极好的疗效。  相似文献   

8.
Stroke is a leading cause of disability, and the number of stroke survivors continues to rise. Traditional neurorehabilitation strategies aimed at restoring function to weakened limbs provide only modest benefit. New brain stimulation techniques designed to augment traditional neurorehabilitation hold promise for reducing the burden of stroke-related disability. Investigators discovered that repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and epidural cortical stimulation (ECS) can enhance neural plasticity in the motor cortex post-stroke. Improved outcomes may be obtained with activity-dependent stimulation, in which brain stimulation is contingent on neural or muscular activity during normal behavior. We review the evidence for improved motor function in stroke patients treated with rTMS, tDCS, and ECS and discuss the mediating physiological mechanisms. We compare these techniques to activity-dependent stimulation, discuss the advantages of this newer strategy for stroke rehabilitation, and suggest future applications for activity-dependent brain stimulation.  相似文献   

9.
Hemiplegia is a common sequel of stroke and assisted living care is needed in many cases. The purpose of this study was to evaluate the effect of using surface electrode stimulation device in rehabilitation, in terms of functional improvement in upper limb and the changes in brain activation related to central nervous system reconstruction. Five patients with chronic hemiplegia received electrical stimulation therapy using the orthosis-type surface electrode stimulation device for 12 weeks. Training time was 30 min/day for the first weeks, and increased 30 min/day in every 4 weeks. Upper limb outcome measures included Brunnstrom stage, range of motion, Fugl-Meyer assessment and manual function test. Brain activation was measured using functional MRI. After therapy with therapeutic electrical stimulation (TES) for 12 weeks upper limb function improved in all cases. The results of brain activation showed two patterns. In the first, the stimulation produced an activity in the bilateral somatosensory cortices (SMC), which was seen to continue over time. The second, activation was bilateral and extensive before stimulation, but localized to the SMC after intervention. Treatment with TES using an orthosis-type electrode stimulation device improves upper limb function in chronic hemiplegia patients. The present findings suggest that there are not only efferent but also afferent effects that may promote central nervous system remodeling.  相似文献   

10.
Proximal upper limb muscles are represented bilaterally in primary motor cortex. Goal-directed upper limb movement requires precise control of proximal and distal agonist and antagonist muscles. Failure to suppress antagonist muscles can lead to abnormal movement patterns, such as those commonly experienced in the proximal upper limb after stroke. We examined whether noninvasive brain stimulation of primary motor cortex could be used to improve selective control of the ipsilateral proximal upper limb. Thirteen healthy participants performed isometric left elbow flexion by contracting biceps brachii (BB; agonist) and left forearm pronation (BB antagonist) before and after 20 min of cathodal transcranial direct current stimulation (c-tDCS) or sham tDCS of left M1. During the tasks, motor evoked potentials (MEPs) in left BB were acquired using single-pulse transcranial magnetic stimulation of right M1 150-270 ms before muscle contraction. As expected, left BB MEPs were facilitated before flexion and suppressed before pronation. After c-tDCS, left BB MEP amplitudes were reduced compared with sham stimulation, before pronation but not flexion, indicating that c-tDCS enhanced selective muscle activation of the ipsilateral BB in a task-specific manner. The potential for c-tDCS to improve BB antagonist control correlated with BB MEP amplitude for pronation relative to flexion, expressed as a selectivity ratio. This is the first demonstration that selective muscle activation in the proximal upper limb can be improved after c-tDCS of ipsilateral M1 and that the benefits of c-tDCS for selective muscle activation may be most effective in cases where activation strategies are already suboptimal. These findings may have relevance for the use of tDCS in rehabilitation after stroke.  相似文献   

11.
功能性电刺激技术在截瘫行走中的应用研究进展   总被引:2,自引:0,他引:2  
截瘫是由脊髓损伤所造成的双下肢严重残疾,近年来的发病率呈显著上升趋势。截瘫最主要的病症就是行走能力的丧失。经过40多年的研究表明,功能性电刺激技术能成功地恢复截瘫患者的部分运动功能,是现代康复工程领域很有应用前景的一项新技术,正在受到越来越多的重视。本文专门针对用于截瘫行走的功能性电刺激技术,介绍了与之相关的背景知识和研究进展。  相似文献   

12.
肢体运动功能障碍作为卒中后的常见病症,急需有效的康复治疗手段以助其运动功能改善。近年来,诸如经颅电磁刺激等新型神经调控技术通过可逆性地调控神经系统活性,达到改善患者肢体运动功能障碍、增强康复效果的目的。本文在阐述经颅直流电刺激(transcranial direct current stimulation,tDCS)和重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)两种方法的作用机制基础上,对tDCS及rTMS分别在卒中后肢体运动功能康复中的神经可塑性机制、肢体运动功能康复刺激参数的研究、康复手段融合研究进行了回顾与总结,发现tDCS和rTMS均可促进患者大脑运动功能神经重组,与传统、现代技术治疗手段结合均可在运动功能康复方面发挥有效作用。而后归纳了影响二者临床应用的诸如刺激部位、tDCS最佳电流强度和rTMS最优频率等刺激参数设置不一致等问题。最后针对两种调控手段融合方式的探索性研究,展望了未来新型调控方法在临床的应用模式,为今后临床康复中面向肢体运动功能障碍的神经调控技术研究方法的设计、制定与优化提供新的技术思路。  相似文献   

13.
目的 评估缺血性脑卒中患者颅脑神经解剖学与脑区功能学的关联性,进一步挖掘缺血性卒中发生的神经机制。 方法 采集15例健康对照组和19例亚急性缺血性脑卒中上肢偏瘫患者,利用计算神经影像学计算个性化颅脑内部半球功能连接指标,采集治疗前后临床康复评分作统计相关分析。 结果 (1)与对照组相比,卒中患者大脑半球功能连接显著降低,差异有统计学意义(T=-10.077, P<0.001);(2)病灶异常集中于补充运动区(P=0.02)和中央前回(P=0.03),差异有统计学意义;(3)药物治疗前后患者组中央前回中的功能连接值与康复评分量表呈正相关,差异有统计学意义(r=0.29,P=0.03)。 结论 皮质下缺血性脑卒中患者大脑运动区域的半球间功能连接减少,可作为临床诊断和康复评估提供新的途径。  相似文献   

14.
Functional electrical stimulation (FES) is a well established method in the rehabilitation of stroke patients. Indeed, a bilateral movement such as cycling induced by FES would be crucial for these patients who had an unilateral motor impairment and had to recover an equivalent use of limbs. The aim of this study was to develop a low-cost metrologically qualified cycle-ergometer, optimized for patients with stroke. A commercial ergometer was instrumented with resistive strain gauges and was able to provide the torque produced at the right and left crank, independently. The developed system was integrated with a stimulator, obtaining a novel FES cycling device able to control in real-time the movement unbalance. A dynamic calibration of the sensors was performed and a total torque uncertainty was computed. The system was tested on a healthy subject and on a stroke patient. Results demonstrated that the proposed sensors could be successfully used during FES cycling sessions where the maximum torque produced is about 9 N m, an order of magnitude less than the torque produced during voluntary cycling. This FES cycling system will assist in future investigations on stroke rehabilitation by means of FES and in new exercise regimes designed specifically for patients with unilateral impairments.  相似文献   

15.
由脑卒中造成的神经性损伤是目前导致运动功能障碍的主要病因之一,为社会和患者家庭带来了巨大的精神和经济负担。结合经颅电刺激的运动康复疗法为改善患者运动功能障碍、提高生活质量提供一种重要的治疗方式。经颅电刺激是一种无痛、非侵入式脑刺激方法,能够调节神经元胞内钙离子浓度、增强突触可塑性、调制神经放电频率、改变皮层兴奋性,从而实现对大脑神经活动的调控。回顾经颅电刺激的神经机制,在科研临床应用中的参数设置,以及安全性等问题,总结其在运动功能康复方面的成果以及目前亟待解决的问题。  相似文献   

16.
Brain Topography - Sensorimotor rhythms-based Brain–Computer Interfaces (BCIs) have successfully been employed to address upper limb motor rehabilitation after stroke. In this context,...  相似文献   

17.
Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues.  相似文献   

18.
This paper proposes a new control framework to restore the coordination between upper (functional) and lower (paralyzed) limbs in the context of functional electrical stimulation in completely paraplegic individuals. A kinematic decoupling between the lower and upper limbs controls the 3D whole-body center of mass location and the relative foot positions by acting only on the lower-limb joints. The upper limbs are free to move under voluntary control, and are seen as a perturbation for the lower limbs. An experimental validation of this paradigm using a humanoid robot demonstrates the real-time applicability and robustness of the method. Different scenarios mimicking the motion of a healthy subject are investigated. The proposed method can maintain bipedal balance and track the desired center of mass trajectories under movement disturbances of the upper limbs with an error inferior to 0.01 m under any conditions.  相似文献   

19.
文题释义: 神经营养素3:是神经生长因子基因家族的成员,可促进多种中枢和外周神经元的存活和分化,调节神经元突触活动,并对神经系统发育和成熟起重要作用。神经营养素3在损伤条件下对神经元具有保护作用,因而在治疗神经系统疾病和神经损伤中有临床应用前景。 内源性神经干细胞:正常机体中,神经干细胞一般处于静息状态,在特定的生理或病理刺激下被激活,其中侧脑室外侧壁的室下带和海马齿状回的颗粒下带是产生神经干细胞最为活跃的区域,神经系统损伤后,在多种细胞因子、调控基因的调节下发生增殖、迁移和分化等。 背景:由于外源性神经干细胞的获取有限,且容易产生免疫排斥以及伦理问题等严重制约其向临床转化,因此如何激活内源性神经干细胞并促进其生长增殖、分化,成为近期科研工作者究的热点。 目的:探讨电刺激联合神经营养素3对大鼠脊髓损伤后内源性神经干细胞增殖及向神经元分化的作用。 方法:将96只SD大鼠随机分为假手术组、脊髓损伤组、电刺激组、电刺激+神经营养素3组,每组24只。假手术组仅暴露脊髓,其他3组大鼠应用改良Allen法建立脊髓损伤模型,造模后给予相应措施进行干预。造模后7,14,21,28 d时,以BBB评分评价大鼠后肢运动功能,电生理学检查运动诱发电位潜伏期;造模后28 d取材,进行苏木精-伊红染色观察脊髓病理变化,免疫组化染色观察内源性神经干细胞的增殖和分化情况。实验方案经兰州大学第二医院医学伦理委员会批准。 结果与结论:①与假手术组相比,脊髓损伤组大鼠的BBB评分明显降低(P < 0.01),脊髓组织可见大量炎症细胞浸润,并存在多个空洞;与脊髓损伤组相比,电刺激组、电刺激+神经营养素3组大鼠后肢功能开始逐渐恢复,电刺激+神经营养素3组BBB评分明显高于电刺激组(P < 0.05),上述病理损伤变化明显改善;②脊髓损伤组7,14 d及电刺激组大鼠7 d时双后肢运动诱发电位潜伏期均未测出,电刺激组、电刺激+神经营养素3组21,28 d时运动诱发电位潜伏期较模型组缩短(P < 0.05),电刺激+神经营养素3组潜伏期缩短更显著    (P < 0.05);③BrdU和Nestin阳性细胞数、微管相关蛋白2的表达:电刺激+神经营养素3组>电刺激组>脊髓损伤组;胶质纤维酸性蛋白的表达:脊髓损伤组>电刺激组>电刺激+神经营养素3组。结果表明脊髓损伤大鼠经电刺激及神经营养素3干预后,促进内源性神经干细胞增殖和向神经元分化,病理损伤明显减轻,后肢运动功能显著改善。 ORCID: 0000-0002-6353-8874(张培根) 中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程  相似文献   

20.
The aim of this study was to evaluate the effectiveness of the associated electrotherapeutical and kinesiotherapeutical treatment in patients after ischemic stroke (N=24), mainly by means of neurophysiological tests. All patients underwent the same 20 days of neurorehabilitation procedures. Particular attention was paid to three-stage modified electrotherapy procedures such as: oververtebral functional electrical stimulation (FES), transcutaneous electrical nerve stimulation (TENS) and the alternate neuromuscular functional electrical stimulation (NMFES) of antagonistic muscles of the wrist and the ankle (N=16). Electrotherapy was supplemented with kinesiotherapeutic (mainly PNF) procedures acting as an amplifier. Clinical assessment included muscle tension (Ashworth's scale), muscle force (Lovett's scale) and reflex scoring at wrist and ankle. However, the effectiveness of the procedures was measured by the assessment of results in complex and repetitive, bilaterally performed global electromyography (EMG) and electroneurography (ENG; M-wave studies). The statistical analysis obtained from results in clinical and neurophysiological examinations suggested that the dorsiflexion of wrist and ankle was improved in the majority of patients who took part in this study. EMG and ENG examinations showed that 20 days of therapy improved both activity in muscle motor units on the more paralyzed side (mainly within upper extremities) and to a lesser degree in the transmission of efferent impulses within motor fibers of nerves. The results obtained suggest that patients after ischemic strokes never show an isolated unilateral disability in motor functions. No definite similarities between the results of clinical and neurophysiological studies were found, which may suggest greater accuracy of the neurophysiological evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号