首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation.

Methods

Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes.

Results

The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25–40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution.

Conclusions

A method of highly solubilizing an extremely water-insoluble drug, ITZ, in aqueous media and converting it into an amorphous form in a physically stable SD was successfully investigated. The dissolution rate and the extent of supersaturation of the drug in dissolution media improved greatly, and any precipitate formed at high pH had very small particle size.
  相似文献   

2.

Purpose

Three- dimensional (3D) printing has received significant attention as a manufacturing process for pharmaceutical dosage forms. In this study, we used Fusion Deposition Modelling (FDM) in order to print “candy – like” formulations by imitating Starmix® sweets to prepare paediatric medicines with enhanced palatability.

Methods

Hot melt extrusion processing (HME) was coupled with FDM to prepare extruded filaments of indomethacin (IND), hypromellose acetate succinate (HPMCAS) and polyethylene glycol (PEG) formulations and subsequently feed them in the 3D printer. The shapes of the Starmix® objects were printed in the form of a heart, ring, bottle, ring, bear and lion. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infra-red Spectroscopy (FT-IR) and confocal Raman analysis were used to assess the drug – excipient interactions and the content uniformity.

Results

Physicochemical analysis showed the presence of molecularly dispersed IND in the printed tablets. In vivo taste masking evaluation demonstrated excellent masking of the drug bitterness. The printed forms were evaluated for drug dissolution and showed immediate IND release independently of the printed shape, within 60 min.

Conclusions

3D printing was used successfully to process drug loaded filaments for the development of paediatric printed tablets in the form of Starmix® designs.
  相似文献   

3.

Purpose

We describe here a novel lyophilized nanosuspension technology in order to improve the dissolution rate and oral bioavailability of the insoluble drug P2X7 receptor antagonist (PRA), which is an effective antagonist to P2X7 receptor for non-steroidal anti-inflammatory.

Methods

PRA-lyophilized nanosuspension (PRA-LNS) was fabricated by anti-solvent precipitation in combination with high pressure homogenization, and then lyophilized for prolonged storage. After preparations, various characterization experiments were performed including particle size, zeta potential, surface morphology, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), in vitro dissolution study, and in vivo pharmacokinetic study.

Results

The re-dissolved particle size of PRA-LNS was about 180~250 nm with uniform distribution, confirmed by TEM image. The drug PRA in nanosuspensions possessed crystalline form evaluated via XRPD and DSC analysis. The solubility of PRA-LNS in water was 1.52 times larger than PRA raw drug; in vitro dissolution tests showed that PRA-LNS could dissolve completely within 5 min, which is a significant improvement compared to the raw drug. The relative bioavailability of PRA-LNS is 290.70% compared to the raw drug and 177.94% compared to the physical mixture.

Conclusions

PRA-LNS could easily re-disperse in water with increased solubility, enhanced oral bioavailability, and controllable production process.
  相似文献   

4.

Purpose

To predict the cellular-level epithelial absorbed dose from deposited inhaled corticosteroid (ICS) particles in a model of an expanding and contracting small airway segment for different particle forms.

Methods

A computational fluid dynamics (CFD)-based model of drug dissolution, absorption and clearance occurring in the surface liquid of a representative small airway generation (G13) was developed and used to evaluate epithelial dose for the same deposited drug mass of conventional microparticles, nanoaggregates and a true nanoaerosol. The ICS medications considered were budesonide (BD) and fluticasone propionate (FP). Within G13, total epithelial absorption efficiency (AE) and dose uniformity (microdosimetry) were evaluated.

Results

Conventional microparticles resulted in very poor AE of FP (0.37%) and highly nonuniform epithelial absorption, such that <5% of cells received drug. Nanoaggregates improved AE of FP by a factor of 57-fold and improved dose delivery to reach approximately 40% of epithelial cells. True nanoaerosol resulted in near 100% AE for both drugs and more uniform drug delivery to all cells.

Conclusions

Current ICS therapies are absorbed by respiratory epithelial cells in a highly nonuniform manner that may partially explain poor clinical performance in the small airways. Both nanoaggregates and nanoaerosols can significantly improve ICS absorption efficiency and uniformity.
  相似文献   

5.

Purpose

The aim of this work was to investigate the functional role of newly synthesised palm oil-based polyesteramide (POPEA) and stearic acid-based polyesteramide (SAPEA) in mefenamic acid (MA) solid dispersion (SD).

Methods

Solid dispersions of MA were prepared by hot melt method, using a combination of POPEA/SAPEA as a polymer carrier. The effects of POPEA/SAPEA mixture ratio, drug loading percentage and influence of different Mw of POPEA (4000–17,000 Da) in SD were investigated. The SDs were characterised for drug content, solubility, dissolution behaviour and physico-chemical characteristics by DSC and FTIR. Comparisons were made with pure drug, physical mixture and a marketed MA formulation.

Results

All SDs demonstrated faster dissolution rate than pure MA and SD 6 formulated with SAPEA/POPEA 4000 Da, 8:2 showed the highest T 50 release rate (45 min) with no significant difference (P?>?0.05) compared to marketed formulation. All SDs showed improved drug release (85.48?±?1.17 to 90.66?±?1.53%) against marketed formulation (81.30?±?1.26%) and MA (56.27?±?1.08%) after 6 h of dissolution. DSC endothermic peak for MA in SD 6 was broadened and shifted to lower temperature (194 °C). FTIR spectroscopy confirmed no chemical changes in MA SD, but establishment of hydrogen bonding between hydroxyl groups of PEA with amine groups of MA was observed by the red shift of OH band in SD samples. The SD was stable (P?>?0.05) at ambient condition for up to 90 days, reflecting by the drug content, dissolution profiles and solubility of the formulation.

Conclusions

POPEA demonstrated surface lowering and wettability effects in improving the aqueous solubility and dissolution rate of MA in SD. The crystalline drug was transformed to amorphous formulation, via solubilisation and crystallisation inhibition effect of the PEA.
  相似文献   

6.

Purpose

Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution.

Methods

Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier.

Results

The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner.

Conclusions

Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.
  相似文献   

7.

Purpose

The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product.

Methods

Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated.

Results

Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 μm did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions.

Conclusions

The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.
  相似文献   

8.

Purpose

In this study HPMC-eudragit based hydrodynamically balanced capsules of two model drugs; propranolol HCl and ofloxacin were prepared with the aim to have the gastric retention of the systems for longer periods of time with desired sustained/ controlled drug release.

Methods

Gastro-retentive capsules were prepared by simple physical blending of various low density polymers and filling into capsules. These capsules were subjected to in vitro buoyancy/ matrix integrity and dissolution studies. Weight variation, content uniformity test, UV spectral analysis and placebo interaction studies were also performed.

Results

Preliminary studies revealed that high soluble drug required higher polymer ratios to sustain drug release and maintain matrix integrity/ buoyancy than low soluble drug. In both the cases, with increase in HPMC and eudragit S100 levels there was an increase in matrix integrity and decrease in drug release rate, however much higher levels of eudragit S100 decreased matrix integrity and buoyancy. Lactose (release rate modifier) decreased matrix integrity, buoyancy and increased drug release. Mechanism of release in the both cases was found to be anomalous "non-fickian".

Conclusion

From this research and the literature available on the eudragit and HPMC matrix systems, it is evident that different categories of drugs (suitable for gastric retention), ranging from freely soluble to sparingly soluble can be suitably formulated as HPMCeudragit based GR HBS capsules with desired drug release characteristics, provided no chemical instability/ incompatibility occurs between the drug and the polymers.
  相似文献   

9.

Purpose

The study discusses the value of electrospun cilostazol-loaded (CIL) polymer structures for potential vascular implant applications.

Methods

Biodegradable polycaprolactone (PCL) fibers were produced by electrospinning on a rotating drum collector. Three different concentrations of CIL: 6.25%, 12.50% and 18.75% based on the amount of polymer, were incorporated into the fibers. The fibers were characterized by their size, shape and orientation. Materials characterization was carried out by Fourier Transformed Infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). In vitro drug release study was conducted using flow-through cell apparatus (USP 4).

Results

Three-dimensional structures characterized by fibers diameter ranging from 0.81 to 2.48 μm were in the range required for cardiovascular application. DSC and XRD confirmed the presence of CIL in the electrospun fibers. FTIR and Raman spectra confirmed CIL polymorphic form. Elastic modulus values for PCL and the CIL-loaded PCL fibers were in the range from 0.6 to 1.1 GPa. The in vitro release studies were conducted and revealed drug dissolution in combination with diffusion and polymer relaxation as mechanisms for CIL release from the polymer matrix.

Conclusions

The release profile of CIL and nanomechanical properties of all formulations of PCL fibers demonstrate that the cilostazol loaded PCL fibers are an efficient delivery system for vascular implant application.
  相似文献   

10.

Purpose

A novel drug delivery platform, mesoporous phospholipid particle (MPP), is introduced. Its physicochemical properties and ability as a carrier for enhancing oral absorption of poorly soluble drugs are discussed.

Methods

MPP was prepared through freeze-drying a cyclohexane/t-butyl alcohol solution of phosphatidylcholine. Its basic properties were revealed using scanning electron microscopy, x-ray diffraction, thermal analysis, hygroscopicity measurement, and so on. Fenofibrate was loaded to MPP as a poorly soluble model drug, and effect of MPP on the oral absorption behavior was observed.

Results

MPP is spherical in shape with a diameter typically in the range of 10–15 μm and a wide surface area that exceeds 10 m2/g. It has a bilayer structure that may accommodate hydrophobic drugs in the acyl chain region. When fenofibrate was loaded in MPP as a model drug, it existed partially in a crystalline state and improvement in the dissolution behavior was achieved in the presence of a surfactant, because of the formation of mixed micelles composed of phospholipids and surfactants in the dissolution media. MPP greatly improved the oral absorption of fenofibrate compared to that of the crystalline drug and its efficacy was almost equivalent to that of an amorphous drug dispersion.

Conclusion

MPP is a promising option for improving the oral absorption of poorly soluble drugs based on the novel mechanism of dissolution improvement.
  相似文献   

11.

Purpose

The aims of this study were twofold. First, to evaluate the effectiveness of selected polymers in inhibiting solution crystallization of celecoxib. Second, to compare the release rate and crystallization tendency of celecoxib amorphous solid dispersions (ASDs) formulated with a single polymer, or binary polymer combinations.

Methods

The effectiveness of polymers, polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS), in maintaining supersaturation of celecoxib solutions was evaluated by performing nucleation induction time measurements. Crystallization kinetics of ASD suspensions were monitored using Raman spectroscopy. Dissolution experiments were carried out under non-sink conditions.

Results

Pure amorphous celecoxib crystallized rapidly through both matrix and solution pathways. Matrix and solution crystallization was inhibited when celecoxib was molecularly mixed with a polymer, resulting in release of the drug to form supersaturated solutions. Cellulosic polymers were more effective than PVP in maintaining supersaturation. Combining a cellulosic polymer and PVP enabled improved drug release and stability to crystallization.

Conclusions

Inclusion of an effective solution crystallization inhibitor as a minor component in ternary dispersions resulted in prolonged supersaturation following dissolution. This study shows the feasibility of formulation strategies for ASDs where a major polymer component is used to achieve one key property e.g. release, while a minor polymer component is added to prevent crystallization.
  相似文献   

12.

Purpose

The ability of two semi-mechanistic simulation approaches to predict the systemic pharmacokinetics (PK) of inhaled corticosteroids (ICSs) delivered via dry powder inhalers (DPIs) was assessed for mometasone furoate, budesonide and fluticasone propionate.

Methods

Both approaches derived the total lung doses and the central to peripheral lung deposition ratios from clinically relevant cascade impactor studies, but differed in the way the pulmonary absorption rate was derived. In approach 1, the rate of in vivo drug dissolution/absorption was predicted for the included ICSs from in vitro aerodynamic particle size distribution and in vitro drug solubility estimates measured in an in vivo predictive dissolution medium. Approach 2 derived a first order absorption rate from the mean dissolution time (MDT), determined for the test formulations in an in vitro Transwell® based dissolution system.

Results

Approach 1 suggested PK profiles which agreed well with the published pharmacokinetic profiles. Similarly, within approach 2, input parameters for the pulmonary absorption rate constant derived from dissolution rate experiments were able to reasonably predict the pharmacokinetic profiles published in literature.

Conclusion

Approach 1 utilizes more complex strategies for predicting the dissolution/absorption process without providing a significant advantage over approach 2 with regard to accuracy of in vivo predictions.
  相似文献   

13.

Purpose

The aim of the present work was to classify metaxalone according to the Biopharmaceutics Classification System (BCS), to develop a clinically relevant dissolution method that can be used to predict the oral absorption of metaxalone and to establish an in vitro-in vivo correlation (IVIVC).

Methods

Solubility of the drug was studied in different pH media and permeability studies were performed using a Caco-2 cell model. The in vitro dissolution and in vivo disposition of metaxalone from 3 different immediate release (IR) tablet formulations were investigated using USP 2 apparatus and a single dose, four-way, crossover bioequivalence study in healthy humans along with an oral solution of the drug, respectively. An IVIVC was established by using a direct, differential based method.

Results

Metaxalone has been confirmed as a Class II drug according to BCS. Bioavailability studies performed in humans demonstrated that dissolution was the rate limiting step for bioavailability of the drug and one of the test products had significantly improved bioavailability compared to the marketed product Skelaxin®. An IVIVC model was developed that demonstrated an acceptable internal predictability.

Conclusion

The IVIVC demonstrated that formulation factors play a significant role in dissolution and absorption of metaxalone. A pH 4.5 dissolution medium containing 0.5% NaCl with 0.2% SLS (USP apparatus 2 at 50 rpm) is clinically relevant to predict bioavailability of the drug and is superior to the USP method in terms of the Quality by Design (QbD) concept.
  相似文献   

14.

Purpose

This study was conducted to characterize UV imaging as a platform for performing in vitro release studies using Nicorette® nicotine patches as a model drug delivery system.

Methods

The rate of nicotine release from 2 mm diameter patch samples (Nicorette®) into 0.067 M phosphate buffer, pH 7.40, was studied by UV imaging (Actipix SDI300 dissolution imaging system) at 254 nm. The release rates were compared to those obtained using the paddle-over-disk method.

Results

Calibration curves were successfully established which allowed temporally and spatially resolved quantification of nicotine. Release profiles obtained from UV imaging were in qualitative agreement with results from the paddle-over-disk release method.

Conclusion

Visualization as well as quantification of nicotine concentration gradients was achieved by UV imaging in real time. UV imaging has the potential to become an important technology platform for conducting in vitro drug release studies.
  相似文献   

15.

Purpose

The purpose of the study was initial evaluation of applicability of metal organic framework (MOF) Fe-MIL-101-NH2 as a theranostic carrier of antituberculous drug in terms of its functionality, i.e. drug loading, drug dissolution, magnetic resonance imaging (MRI) contrast and cytotoxic safety.

Methods

Fe-MIL-101-NH2 was characterized using X-ray powder diffraction, FTIR spectrometry and scanning electron microscopy. The particle size analysis was determined using laser diffraction. Magnetic resonance relaxometry and MRI were carried out on phantoms of the MOF system suspended in polymer solution. Drug dissolution studies were conducted using Franz cells. For MOF cytotoxicity, commercially available fibroblasts L929 were cultured in Eagle’s Minimum Essential Medium supplemented with 10% fetal bovine serum.

Results

MOF particles were loaded with 12% of isoniazid. The particle size (3.37–6.45 μm) depended on the micronization method used. The proposed drug delivery system can also serve as the MRI contrast agent. The drug dissolution showed extended release of isoniazid. MOF particles accumulated in the L929 fibroblast cytoplasmic area, suggesting MOF release the drug inside the cells. The cytotoxicity confirmed safety of MOF system.

Conclusions

The application of MOF for extended release inhalable system proposes the novel strategy for delivery of standard antimycobacterial agents combined with monitoring of their distribution within the lung tissue.
  相似文献   

16.

Purpose

The objective of present study was to increase solubility and dissolution performance of a poorly water soluble antidiabetic drug, Nateglinide (NAT), through formation of inclusion complexes with hydroxypropyl-beta-cyclodextrin (HP–β–CD). The effect of L-arginine (ARG), an amino acid, on the complexation efficiency and solubility enhancing power of HP–β–CD was investigated by preparing ternary inclusion complexes.

Methods

The binary and ternary inclusion complexes were prepared by physical mixing, kneading, co-evaporation, and spray drying methods containing NAT, HP–β–CD, and ARG. The complexes were characterized by FTIR, DSC, PXRD, and 1H–NMR. Molecular modeling study revealed that introduction of ternary agent ARG have improved the interactions of NAT and HP–β–CD.

Results

The complex prepared by spray drying method showed the highest increase in solubility and dissolution rate compared to other methods. Molecular docking study revealed that ARG interactions plays an essential role in increasing the stability and solubility of the complex.

Conclusions

The present study demonstrated increase in solubility and dissolution of NAT. Hence, ternary complexes of NAT can be used as an efficient tool for the delivery of insoluble drug, NAT.
  相似文献   

17.

Purpose

Transdermal delivery has the potential to offer improved bioavailability by circumventing first-pass gut and hepatic metabolism. This study evaluated the pharmacokinetics of oral immediate release and transdermal latrepirdine in extensive and poor CYP2D6 metabolizers (EM/PM).

Methods

Latrepirdine transdermal solution was prepared extemporaneously. The solution was applied with occlusive dressing to upper or middle back for 24 h. Each subject received a single dose of 8.14 mg oral, 5 mg transdermal, and 10 mg transdermal (EMs only) latrepirdine free base in a fixed sequence.

Results

Twelve EMs and 7 PMs (50–79 years) enrolled and completed the study. Latrepirdine was well tolerated following both routes of administration. Dose-normalized latrepirdine total exposures were approximately 11-fold and 1.5-fold higher in EMs and PMs, respectively following administration of transdermal relative to oral. Differences between EM and PM latrepirdine exposures were decreased, with PMs having 1.9- and 2.7-fold higher peak and total exposures, respectively, following transdermal administration compared to 11- and 20-fold higher exposures, respectively, following oral administration.

Conclusion

Transdermal delivery can potentially mitigate the large intersubject differences observed with compounds metabolized primarily by CYP2D6. Transdermal delivery was readily accomplished in the clinic using an extemporaneously prepared solution [NCT00990613].
  相似文献   

18.

Purpose

To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations.

Methods

Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets.

Results

PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems.

Conclusions

Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.
  相似文献   

19.

Purpose

The aim of the present work was to develop gastroretentive drug delivery system of gabapentin from different matrices prepared by hot melt or conventional wet granulation, which may enhance drug bioavailability. The influence of core type, granulation process, and coating level on the drug release rates was investigated.

Methods

Tablet cores were prepared from hydrophilic system of hypermellose, carboxy melthyl celloulse, and Avicel or hydrophobic system of ethyl cellulose, alginic acid, and stearic acid. The tablets were coated by Eudragit RL with triethyl citrate and compressed directly. These tablets were evaluated according to their in vitro dissolution profiles and release mechanisms.

Results

Hydrophobic matrices allowed the control of drug release. Hot melt granulation was an effective tool over wet granulation or coating for slowing release rates from hydrophobic tablets. Both hydrophobic polymer ratio and coating level influenced the drug release mechanism. The drug release of samples with minor proportion of ethyl cellulose and stearic acid or low Eudragit RL level was driven by anomalous transport and the increase of their proportions contributed to the erosion of the matrix.

Conclusions

Hydrophobic core tablet prepared from hot melt granulation and coated by Eudragit RL has shown to be a promising formulation intended to gastroretentive gabapentin delivery system.
  相似文献   

20.

Purpose

In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin, paracetamol and ranitidine.

Methods

Caplets were prepared by hot-melt extrusion (HME) and injection moulding (IM). Each of the three model drugs were tested on two drug loadings in various dissolution media. The physical state of the drug, microstructure and hydration behaviour were investigated to build up understanding for the release behaviour from a zein based matrix for drug delivery.

Results

Drug crystallinity of the caplets increases with drug hydrophobicity. For ranitidine and indomethacin, swelling rates, swelling capacity and release rates were pH dependent as a consequence of the presence of charged groups on the drug molecules. Both hydration rates and release rates could be approached by existing models.

Conclusion

The drug state and pH dependant electrostatic interactions are hypothesised to influence release kinetics. Both factors can potentially be used to influence release kinetics release, thereby broadening the horizon for zein as a tuneable release agent.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号